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PARTIAL SUMS OF CERTAIN ANALYTIC FUNCTIONS
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Abstract. The object of the present paper is to consider the starlikeness and convexity
of partial sums of certain analytic functions in the open unit disk.
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1. Introduction. Let A denote the class of functions f(z) of the form

f(z)= z+
∞∑
k=2
akzk, (1.1)

which are analytic in the open unit diskU = {z ∈ C : |z|< 1}. Let S∗(α) be the subclass
of A consisting of functions f(z) which satisfy

Re
[
zf ′(z)
f(z)

]
>α (z ∈U) (1.2)

for some α (0 ≤ α < 1). A function f(z) in S∗(α) is said to be starlike of order α in
U . Furthermore, let K(α) denote the subclass of A consisting of all functions f(z)
which satisfy

Re
[
1+ zf

′′(z)
f ′(z)

]
>α (z ∈U) (1.3)

for some α (0 ≤ α < 1). A function f(z) belonging to K(α) is said to be convex of
order α in U . We note that f(z) ∈ S∗(α) if and only if zf ′(z) ∈ K(α) and denote by
S∗(0)≡ S∗ and K(0)≡K. For f(z)∈A, we introduce the partial sum of f(z) by

fn(z)= z+
n∑
k=2
akzk. (1.4)

Remark 1.1. It is well known that

(i) f(z) = z/(1−z)2 = z+∑∞
k=2kzk is the extremal function for the class S∗. But

f2(z)= z+2z2 ∉ S∗.
(ii) f(z) = z/(1− z) = z+∑∞

k=2zk is the extremal function for the class K. But
f2(z)= z+z2 ∉K.
For the partial sums fn(z) of f(z)∈ S∗, Szegö [2] showed the following theorem.
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Theorem 1.2. (i) f(z)∈ S∗ implies that fn(z)∈S∗ for |z|< 1/4. The result is sharp.
(ii) f(z)∈ S∗ implies that fn(z)∈K for |z|< 1/8. The result is sharp.
Further, Padmanabhan [1] proved the following theorem.

Theorem 1.3. If f(z) is 2-valently starlike in U , then fn(z) is 2-valently starlike for
|z|< 1/6. The result is sharp.

2. Function Fn(z). We define the function Fn(z) which is the partial sum of f(z)∈
A by

Fn(z)= z+anzn. (2.1)

Theorem 2.1. The function Fn(z) satisfies

1−n∣∣an∣∣rn−1
1−∣∣an∣∣rn−1 ≤ Re

[zF ′n(z)
Fn(z)

]
≤ 1+n

∣∣an∣∣rn−1
1+∣∣an∣∣rn−1 (2.2)

for 0≤r < n−1√1/|an|≤1. Therefore, Fn(z)∈S∗(α) for 0≤r < n−1√(1−α)/(n−α)|an|≤ 1.
Proof. Note that

zF ′n(z)
Fn(z)

= z+nanz
n

z+anzn =n− n−1
1+anzn−1 . (2.3)

It follows from (2.3) that

Re
[zF ′n(z)
Fn(z)

]
=n−(n−1) 1+∣∣an∣∣rn−1 cosθ

1+∣∣an∣∣2r 2(n−1)+2∣∣an∣∣rn−1 cosθ . (2.4)

Since, the right-hand side of (2.4) is increasing for cosθ if |an| < 1, we obtain (2.2).
Further, we also see that

Re
[zF ′n(z)
Fn(z)

]
≥ 1−n

∣∣an∣∣rn−1
1−∣∣an∣∣rn−1 >α (2.5)

for 0≤ r < n−1√(1−α)/(n−α)|an| ≤ 1. This completes the proof of the theorem.
Next, we derive the following theorem.

Theorem 2.2. The function Fn(z) satisfies

1−n2∣∣an∣∣rn−1
1−n∣∣an∣∣rn−1 ≤ Re

[
1+ zF

′′
n (z)

F ′n(z)

]
≤ 1+n

2
∣∣an∣∣rn−1

1+n∣∣an∣∣rn−1 (2.6)

for 0≤r < n−1√1/n|an|≤1. Therefore, Fn(z)∈K for 0≤r < n−1√(1−α)/n(n−α)|an|≤ 1.
Proof. Noting that

1+ zF
′′
n (z)

F ′n(z)
=n− n−1

1+nanzn−1 , (2.7)

we have

Re
[
1+ zF

′′
n (z)

F ′n(z)

]
=n−(n−1) 1+n∣∣an∣∣rn−1 cosθ

1+n2∣∣an∣∣2 r 2(n−1)+2n∣∣an∣∣rn−1 cosθ , (2.8)

which derives (2.6).
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By virtue of Theorems 2.1 and 2.2, we have the following conjecture.

Conjecture 2.3. For the partial sum fn(z) of f(z) belonging to the class A,
(i) fn(z)∈ S∗(α) for 0≤ r < n−1√(1−α)/(n−α)|an| ≤ 1,
(ii) fn(z)∈K(α) for 0≤ r < n−1√(1−α)/n(n−α)|an ≤ 1.

3. The partial sums of certain analytic functions. In this section, we consider the

partial sums of functions f(z)= z/(1−z) and f(z)= z/(1−z)2.
Theorem 3.1. Let f3(z) = z+z2+z3 be the partial sum of f(z) = z/(1−z) which

is the extremal function of the class K. Then f3(z)∈ S∗(626/961) for 0≤ r < β (1/7<
β< 1/6), where β is the positive root of

x4−8x3+9x2−8x+1= 0
(
0<x <

1√
3

)
. (3.1)

Proof. We consider α such that

Re
[
zf ′3(z)
f3(z)

]
= Re

[
3− 2+z

1+z2+z3
]
>α (3.2)

for 0≤ r < β. This implies that

Re
[

2+z
1+z2+z3

]
= 1+

(
1−r 2)(1+r 2+r cosθ)

1−r 2+r 4+4r 2 cos2θ+2r(1+r 2)cosθ < 3−α, (3.3)

that is,

Re
[ (

1−r 2)(1+r 2+r cosθ)
1−r 2+r 4+4r 2 cos2θ+2r(1+r 2)cosθ

]
< 2−α. (3.4)

Let the function g(t) be given by

g(t)=
(
1−r 2)(1+r 2+rt)

1−r 2+r 4+4r 2t2+2r(1+r 2)t (t = cosθ). (3.5)

Then, we have

g′(t)= r(r +1)(r −1)
(
1+5r 2+r 4+4r 2t2+8r(1+r 2)t)(

1−r 2+r 4+4r 2t2+2r(1+r 2)t)2 . (3.6)

Letting

h(t)= 1+5r 2+r 4+4r 2t2+8r(1+r 2)t, (3.7)

we see that (i) h(t) < 0 ⇒ g′(t) > 0, (ii) h(t) > 0 ⇒ g′(t) < 0, and (iii) h(t) = 0 for
t = (−2(1+r 2)±√3(1+r 2+r 4))/2r .
If we write

t1 =
−2(1+r 2)+

√
3
(
1+r 2+r 4)

2r
< 0, (3.8)

then, 0≤ r ≤ β implies that t1 ≤−1, so that, h(t)≥ 0. This gives us that

g(t)≤ g(−1)= 1−r +r 3−r 4
1−2r +3r 2−2r 3+r 4 =

g1(r)
g2(r)

. (3.9)
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It is easy to check that g1(r) is decreasing for r (0≤ r < 1/
√
3). Therefore,

8−2√3
9

= g1
(
1√
3

)
< g1(r)≤ g1(0)= 1. (3.10)

Also, g2(r) is decreasing for r (0 ≤ r < β), because g′2(0) = −2 < 0 and g′2(1/6) =
−31/27< 0. This gives that

961
1296

= g2
(
1
6

)
< g2(r)≤ 1. (3.11)

Consequently, we conclude that

g(t)≤ g(−1)= g1(r)
g2(r)

<
1296
961

= 2−α, (3.12)

that is, α= 626/961= 0.651 . . . . Thus, we have

Re
[
zf ′3(z)
f3(z)

]
>α

(
α= 626

961

)
(3.13)

for 0≤ r < β.
Finally, we obtain the following theorem.

Theorem 3.2. Let f3(z) = z + 2z2 + 3z3 be the partial sum of the Koebe func-

tion f(z) = z/(1−z)2 which is the extremal function for the class S∗. Then f3(z) ∈
K(3191/15876) for 0≤ r < β (1/14< β< 113), where β is the positive root of

81x4−162x3+72x2−18x+1= 0
(
0≤ x < 1

3

)
. (3.14)

Proof. Since

Re
[
1+ zf

′′
3 (z)
f ′3(z)

]
= Re

[
3− 2(1+2z)

1+4z+9z2
]
>α (3.15)

implies that

Re
[

1+2z
1+4z+9z2

]
= 1
2
+ 4r

(
1−9r 2)cosθ+1−81r 4

2
(
1−2r 2+81r 4+8r(1+9r 2)cosθ+36r 2 cos2θ)

<
3−α
2

,
(3.16)

we have to check that
(
1−9r 2)(1+9r 2+4r cosθ)

1−2r 2+81r 4+8r(1+9r 2)cosθ+36r 2 cos2θ < 2−α. (3.17)

If we let

h(t)=
(
1−9r 2)(1+9r 2+4rt)

1−2r 2+81r 4+8r(1+9r 2)t+36r 2t2 , (3.18)

then, we have

h(t)≤ h(−1)= 1−4r +36r 3−81r 4
1−8r +34r 2−72r 3+81r 4 ≡

g1(r)
g2(r)

. (3.19)
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Noting that 0< g1(r) < 1, and g2(r) > g2(1/13)= 15876/28561, we have

h(t)≤ h(−1) < 1
g2(r)

<
28561
15876

= 2−α, (3.20)

which implies that α= 3191/15876= 0.200 . . . .
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