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OPTIMAL PROBLEM OF COST FUNCTION
FOR THE LINEAR NEUTRAL SYSTEMS

JONG YEOUL PARK and YONG HAN KANG

(Received 24 January 2000)

Abstract.We study the optimal control problem of a system governed by linear neu-
tral type in Hilbert space X. We investigate optimal condition for quadratic cost function
and as applications, we give some examples.
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1. Introduction. Our main concern in this paper is to study the optimal control

problem of the linear neutral type:

d
dt

[
x(t)−

m∑
j=1
Bjx

(
t−hj

)]=A0x(t)+
m∑
j=1
Ajx

(
t−hj

)
, t ≥ 0,

x(0)= g0, x(t)= g1(t), a.e. t ∈ [−h,0),
(1.1)

where (g0,g1)∈X×C([−h,0];X).
The optimal control problem of this type has been extensively studied by many

authors (see [1, 2] and the references therein). In [2], Darko studied the Laplace trans-

form and fundamental solution in (1.1). Chukwu [1] handled time optimal control,

bang-bang control and stability for the neutral type. In fact, in the case of Bj = 0, j =
1,2, . . . ,m in (1.1), Nakagiri [6] studied structural properties of the linear retarded

system and dealt with control problems in a Banach spaces.

In this paper, we obtain the necessary and sufficient condition for the optimal con-

trol problems of the quadratic cost function and deal with the properties of the fun-

damental solution and the adjoint state equations in (1.1). As applications, we will

give some examples.

2. Preliminaries. (1) C denotes the complex plane. R denotes the real numbers, R+

the nonnegative real numbers, and the real interval [0,T ]= I.
(2) The symbol X denotes a given Banach space over the real. However, in some

instances when dealing with Laplace transforms, we have to consider the complex

extension of X which will again be denoted by X. If [−h,0] is an interval in R, the
Banach space of all continuous mapping φ from [−h,0] into X will be denoted by

C([−h,0];X). The norm inC([−h,0];X) is defined to be ‖φ‖=sup{|φ(t)|;t∈[−h,0]},
where ‖·‖ denotes the norm in X. If φ in C([−h,0];X) has a derivative which is also

in C([−h,0];X), this will be denoted by (d/dt)φ(t)= φ̇(t).
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(3) If Y is a given Banach space, the space of continuous linearmappings from Y into

itself will be denoted by LC(Y). If Z is also Banach space, the space of all continuous

linear mappings from Y into Z will be denoted by LC(Y ,Z).
(4) If X and Y be a given Banach space, the space of bounded mappings from X into

Y will be denoted by B(X,Y) and if X = Y , by B(X).
(5) Let A0 : X → X be a closed linear operator which is the infinitesimal generator

of a semigroup, T(t) = eA0t , of class C0 on X. The domain, �(A0), of A0 is dense in

X (cf. [3]) and since T(t) is of class C0 there exist constants M ≥ 1 and α such that

‖T(t)‖ ≤Meαt (again see [3]).

(6) {Aj} and {Bj}, 1 ≤ j ≤ m, are operators in LC(X), for each j we assume

range(Bj) is in �(A0) for each j and B ∈ L∞([0,T ];X).
(7) The numbers 0<h1 <h2 <h3 < ···<hm = h are fixed in R.
Under the above hypotheses, we consider an “integrated” form described by the

equations in (1.1);

x
(
t,0,

(
g0,g1

))= m∑
j=1
Bjx

(
t−hj,0,g

)+T(t)
[
g0−

m∑
j=1
Bjg1

(−hj)
]

+
∫ t
0
T(t−σ)


 m∑
j=1

(
Aj+A0Bj

)
x
(
σ −hj,0,g

)dσ, t ≥ 0,

x(t,0,g)= g1(t), a.e. t ∈ [−h,0],

(2.1)

where g = (g0,g1)∈X×C([−h,0];X).
Here, x(t,0,g) is the solution with initial condition t = 0.

Note that if f ∈ C(I;X), then
d
dt

∫ t
0
T(t−σ)f(σ)dσ =A0

∫ t
0
T(t−σ)f(σ)dσ +f(t) (2.2)

(cf. [2]). Thus we can differentiate (2.1) to obtain

d
dt
x(t,0,g)=

m∑
j=1
Bj
d
dt
x
(
t−hj,0,g

)+ d
dt

[
T(t)

(
g0−

m∑
j=1
Bjg1

(−hj)
)]

+
m∑
j=1

(
Aj+A0Bj

)
x
(
t−hj,0,g

)

+A0

∫ t
0
T(t−σ)

[ m∑
j=1

(
Aj+A0Bj

)
x
(
σ −hj,0,g

)]
dσ.

(2.3)

Since (d/dt)(T(t)g0)=A0T(t)g0, if the derivative exists, and making use of (2.1) we

again obtain from (2.3) the equation

ẋ(t,0,g)−
m∑
j=1
Bjẋ

(
t−hj,0,g

)=A0

(
x(t,0,g)−

m∑
j=1
Bjx

(
t−hj,0,g

))

+
m∑
j=1
Ajx

(
t−hj,0,g

)+A0

m∑
j=1
Bjx

(
t−hj,0,g

)

=A0x(t,0,g)+
m∑
j=1
Ajx

(
t−hj,0,g

)
(2.4)

(cf. [2, Theorem 2]).
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3. Optimality conditions for quadratic cost function. First of all, we consider the

construction of the solution in the following type:

d
dt

[
x(t)−

m∑
j=1
Bjx

(
t−hj

)]=A0x(t)+
m∑
j=1
Ajx

(
t−hj

)+B(t)u(t), t ≥ 0

x(0)= g0, x(t)= g1(t), a.e. t ∈ [−h,0),
(3.1)

where (g0,g1)∈X×C([−h,0];X).
Define the fundamental solution W(t) of (3.1) by

W(t)g0 =

x

(
t;0,

(
g0,0

))
, t ≥ 0,

0, t < 0,
(3.2)

where x(t;u,(g0,g1)) is the general solution of (3.1) (see [1]).

Hence W(t) is the unique solution of

W(t)=T(t)+
m∑
j=1
χ
(
t−hj

)
BjW

(
t−hj

)+
∫ t
0
T
(
t−σ) m∑

j=1
χ
(
σ−hj

)(
Aj+A0Bj

)
W
(
σ−hj

)
dσ,

(3.3)

where χ(σ)= 0 if σ < 0, χ(σ)= I if σ ≥ 0, I identity (cf. [1]).
Note that if g1 ∈ C([−h,0];X) is absolutely continuous, then the solution of (3.1)

can be written as

x
(
t;u,

(
g0,g1

))=
[
W(t)−

m∑
j=1
W
(
t−hj

)
Bj

]
g0

+
m∑
j=1

∫ 0

hj
W
(
t−s−hj

)[
Ajg1(s)+Bjg1(s)

]
ds

+
∫ t
0
W(t−s)B(s)u(s)ds

= x(t;0,(g0,g1))+
∫ t
0
W(t−s)B(s)u(s)ds.

(3.4)

(Cf. [4, page 400]).

In the following, we obtain the properties of the fundamental solution.

Lemma 3.1. Let W(t) be fundamental solution of (3.1). Then we have the following:

d
dt

[
W(t)−

m∑
j=1
BjW

(
t−hj

)]=A0W(t)+
m∑
j=1
AjW

(
t−hj

)
. (3.5)
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Proof. From (3.3) and (d/dt)T(t)=A0T(t),

d
dt

[
W(t)−

m∑
j=1
χ
(
t−hj

)
BjW

(
t−hj

)]

= d
dt

[
T(t)+

∫ t
0
T(t−s)

m∑
j=1
χ
(
s−hj

)(
Aj+A0Bj

)
W
(
s−hj

)
ds
]

=A0T(t)+
∫ t
0
A0T(t−s)

m∑
j=1
χ
(
s−hj

)(
Aj+A0Bj

)
W
(
s−hj

)
ds

+
m∑
j=1
χ
(
t−hj

)(
Aj+A0Bj

)
W
(
t−hj

)

=A0

[
T(t)+

∫ t
0
T(t−s)

m∑
j=1
χ
(
s−hj

)(
Aj+A0Bj

)
W
(
s−hj

)
ds
]

+
m∑
j=1
χ
(
t−hj

)(
Aj+A0Bj

)
W
(
t−hj

)

=A0W(t)−A0

m∑
j=1
χ
(
t−hj

)
BjW

(
t−hj

)+ m∑
j=1
χ
(
t−hj

)(
Aj+A0Bj

)
W
(
t−hj

)

=A0W(t)+
m∑
j=1
χ
(
t−hj

)
AjW

(
t−hj

)
.

(3.6)

Since definition of χ(·),
m∑
j=1
χ
(
t−hj

)
BjW

(
t−hj

)= m∑
j=1
BjW

(
t−hj

)
,

m∑
j=1
χ
(
t−hj

)
AjW

(
t−hj

)= m∑
j=1
AjW

(
t−hj

)
.

(3.7)

Hence this proof is complete.

W∗(t), A∗j , A
∗
0 , and B

∗
j denote the adjoint operators ofW(t), Aj , A0, and Bj , respec-

tively.

A similar method as in Lemma 3.1, we consider Lemma 3.2.

Lemma 3.2. Let W(t) be fundamental solution of (3.1). Then

d
dt

(
W∗(t)−

m∑
j=1
W∗(t−hj)B∗j

)
=A∗0W∗(t)+

m∑
j=1
χ
(
t−hj

)
A∗j W

∗(t−hj). (3.8)

Proof. From (3.3) and A∗0W∗(t) = W∗(t)A∗0 , A
∗
j W∗(t) = W∗(t)A∗j , B

∗
j W∗(t) =

W∗(t)B∗j , we have

W∗(t)−
m∑
j=1
χ
(
t−hj

)
B∗j W

∗(t−hj)=T∗(t)+
∫ t
0
T∗(t−σ)

m∑
j=1

(
A∗j +A∗0 B∗j

)
W∗(σ−hj)dσ.

(3.9)
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Differenting (3.9) and using (d/dt)T∗(t)=A∗0 T∗(t), we have

d
dt

[
W∗(t)−

m∑
j=1
χ
(
t−hj

)
B∗j W

∗(t−hj)
]

=A∗0 T∗(t)+
m∑
j=1
χ
(
t−hj

)(
A∗j +A∗0 B∗j

)
W∗(t−hj)

+
∫ t
0
A∗0 T∗(t−σ)

m∑
j=1
χ
(
σ −hj

)(
A∗j +A∗0 B∗j

)
W∗(σ −hj)dσ

=A∗0
[
T∗(t)+

∫ t
0
T∗(t−σ)

m∑
j=1
χ
(
σ −hj

)(
A∗j +A∗0 B∗j

)
W∗(σ −hj)dσ

]

+
m∑
j=1
χ
(
t−hj

)(
A∗j +A∗0 B∗j

)
W∗(t−hj)

=A∗0
[
W∗(t)−

m∑
j=1
χ
(
t−hj

)
B∗j W

∗(t−hj)
]

+
m∑
j=1
χ
(
t−hj

)(
A∗j +A∗0 B∗j

)
W∗(t−hj)

=A∗0W∗(t)+
m∑
j=1
χ
(
t−hj

)
A∗j W

∗(t−hj).

(3.10)

Since definition of χ(·),
m∑
j=1
χ
(
t−hj

)
B∗j W

∗(t−hj)=
m∑
j=1
B∗j W

∗(t−hj),
m∑
j=1
χ
(
t−hj

)
A∗j W

∗(t−hj)=
m∑
j=1
A∗j W

∗(t−hj).
(3.11)

Hence this proof is complete.

Secondly, we consider the following cost function:

�(u)=
∫ T
0

∥∥Cxu(t)−zd∥∥2X dt+
∫ T
0

(
Nu(t),u(t)

)
dt, (3.12)

where the observation operator C is bounded fromH to another Hilbert spaceX, every
control u∈ L2(0,T ;U) and zd ∈ L2(I;X), I = [0,T ].
Finally, we assume that N is a selfadjoint operator in B(X) such that

(Nu,u)≥ c‖u‖2, c > 0, (3.13)

where B(X) denotes the space of bounded operators on X. Let xu(t) stands for a

solution of (3.1) associated with the control u∈ L2(0,T ;U). Let Uad be a closed convex
subset of L2(0,T ;U).
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Theorem 3.3. Let the operators C and N satisfy conditions (3.12) and (3.13). Then

there exists a unique element u∈Uad such that

�(u)= inf
v∈Uad

�(v). (3.14)

Furthermore, it is hold the following inequality:

∫ T
0

(−Λ−1B(t)∗p(s)+N(s),v(s)−u(s))ds ≥ 0, (3.15)

where p(s) is a solution of adjoint state equation for (3.1) and with the initial condition

p(s)= 0 for s ∈ [T ,T+h] substituting q∗1 by −C∗Λ(Cxu(t)−zd). That is, p(t) satisfies
the following transposed system:

d
dt
p(t)+

m∑
j=1
B∗j
d
dt
p
(
t+hj

)+A∗0p(t)+
m∑
j=1
A∗j p

(
t+hj

)+C∗Λ(zd−Cxu(t))=0, a.e. t∈I,

(3.16)

p(s)= 0 a.e. s ∈ [T ,T +h] (3.17)

in the weak sense. Here, the operator Λ is the canonical isomorphism of U onto U∗.

Proof. Let x(t)= x(t;0,(g0,g1)). Then it holds that

�(v)=
∫ T
0

∥∥Cxv(t)−zd∥∥2dt+
∫ T
0

(
Nv(t),v(t)

)
dt

=
∫ T
0

∥∥C(xv(t)−x(t))+Cx(t)−zd∥∥2dt+
∫ T
0

(
Nv(t),v(t)

)
dt

=π(u,v)−2L(v)+
∫ T
0

∥∥zd−Cx(t)∥∥2dt,
(3.18)

where

π(u,v)=
∫ T
0

(
C
(
xu(t)−x(t)

)
,C
(
xv(t)−x(t)

))
dt+

∫ T
0

(
Nu(t),v(t)

)
dt,

L(v)=
∫ T
0

(
zd−Cx(t),C

(
xv(t)−x(t)

))
dt.

(3.19)

The formπ(u,v) is a continuous bilinear form in L2(0,T ;U) and from the assumption

that the operator N is positive definite, we have

π(v,v)≥ c‖v‖2, v ∈ L2(0,T ;U). (3.20)

Therefore in virtue of Theorem 1.1 of Chapter 1 in [5], there exists a unique u ∈
L2(0,T ;U) such that (3.14) holds.

If u is an optimal control (cf. [5, Theorem 1.3. of Chapter 1]), then

�
′
(u)(v−u)≥ 0, u∈Uad, (3.21)
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where �′(u)v means the Frechet derivative of � at u, applied to v

�′(u)(v−u)=
∫ T
0

(
Cxu(t)−zd,C

∫ t
0
W(t−s)B(s)(v(s)−u(s)))dsdt

+
∫ T
0

(
Nu(t),v(t)−u(t))dt

=
∫ T
0

(
C∗Λ

(
Cxu(t)−zd

)
,
∫ t
0
W(t−s)B(s)(v(s)−u(s))ds)dt.

(3.22)

Note that C∗ ∈ B(X∗,H) and for φ and ψ in H, we have

(
C∗ΛCψ,φ

)= (Cψ,Cφ), (3.23)

where duality pairing is also denoted by (·,·).
From Fubini’s theorem, we have

∫ T
0

∫ t
0

(
C∗Λ

(
Cxu(t)−zd

)
,W(t−s)B(s)(v(s)−u(s))) dsdt+

∫ T
0

(
Nu(t),v(t)−u(t))dt

=
∫ T
0

∫ T
s

(
C∗Λ

(
Cxu(t)−zd

)
,W(t−s)B(s)(v(s)−u(s)))dtds

+
∫ T
0

(
Nu(t),v(t)−u(t))dt

=
∫ T
0

(∫ T
s

(
Λ−1B∗(s)W∗(t−s)C∗Λ(Cxu(t)−zd))dt+Nu(s),v(s)−u(s)

)
ds

=
∫ T
0

(−Λ−1B∗(s)p(s)+Nu(s),v(s)−u(s))ds ≥ 0,

(3.24)

where p(s) is given by (3.14) and (3.16), that is,

p(s)=−
∫ T
s
W∗(t−s)C∗Λ(Cxu(t)−zd)dt. (3.25)

By using Lemma 3.2 and differentiating (3.25) with respect to s, we get (3.16).

Corollary 3.4 (maximal principle). Let u be an optimal solution for �. Then

max
v∈Uad

(
v,Λ−1B∗(s)p(s)

)= (u,Λ−1B∗(s)p(s)), (3.26)

where p(s) is as in Theorem 3.3.

In application, by using Lemmas 3.1 and 3.2, Theorem 3.3, and differentiating p(s)
with respect to s, we obtain some examples.

The cost �1 is given by

�1 =
〈
x(T),ψ∗0

〉+
∫
I

〈
x(t),ψ∗1 (t)

〉
dt, (3.27)

where ψ∗0 ∈X∗ and ψ∗1 ∈ L1(I;X∗).
Then we have the following example.
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Example 3.5 (special linearized Bolza problem). Let (u,x) ∈ Uad ×C(I;X) be an

optimal solution for �1 in (3.27). Then

max
v∈U(t)

〈
B(t)v,p(t)

〉= 〈B(t)u(t),p(t)〉 a.e. t ∈ I, (3.28)

where

p(t)=−W∗(T −t)ψ∗0 −
∫ T
t
W∗(s−t)ψ∗(s)ds, t ∈ I. (3.29)

If X is reflexive, then p(t) in (3.29) belongs to C(I;X∗) and satisfies

d
dt

[
p(t)+

m∑
j=1
B∗j p

(
t−hj

)]+A0p(t)+
m∑
j=1
A∗j p

(
t+hj

)−ψ∗1 (t)= 0 a.e. t ∈ I,

p(T)=−ψ∗0 , p(s)= 0, s ∈ (T ,T +h]
(3.30)

in the weak sense.

Let X be a Hilbert space. As usual we identify X and X∗. The cost �2 is given by

�2 = 1
2

∣∣x(T)−xd∣∣2, xd ∈X. (3.31)

Example 3.6 (terminal value control problem). Let (u,x) ∈ Uad × C(I;X) be an

optimal solution for �2 in (3.31). Then

max
v∈U(t)

(
B(t)v,p(t)

)= (B(t)u(t),p(t)) a.e. t ∈ I, (3.32)

where p(t) is given by

p(t)=W∗(T −t)(xd−x(T)), t ∈ I. (3.33)

The adjoint state p ∈ C(I;X) in (3.33) satisfies

d
dt

[
p(t)+

m∑
j=1
B∗j=1p

(
t+hj

)]+A∗0p(t)+
m∑
j=1
A∗j p

(
t+hj

)= 0 a.e. t ∈ I,

p(T)= xd−x(T), p(s)= 0, s ∈ (T ,T +h]
(3.34)

in the weak sense.

Let X and Y be Hilbert spaces. The cost �3 is given by

�3 =
∫
I

(
λ2|x(t)|2+|u(t)|2Y

)
dt, (3.35)

where λ > 0. Then we have the following example.

Example 3.7 (minimum energy problem). Let (u,x) ∈ Uad×C(I;X) be an optimal

solution for �3 in (3.35). Then

max
v∈U(t)

((
B(t)v,p(t)

)−|v|2Y )= (B(t)u(t),p(t))−|u(t)|2Y a.e. t ∈ I, (3.36)
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where

p(t)=−
∫ T
t
W∗(s−t)(2λ2x(s))ds, t ∈ I. (3.37)

The adjoint state p ∈ C(I;X) in (3.37) satisfies

d
dt

[
p(t)+

m∑
j=1
Bjp

(
t+hj

)]+A∗0p(t)+
m∑
j=1
A∗j p

(
t+hj

)−2λ2x(t)= 0 a.e. t ∈ I,

p(s)= 0, s ∈ [T ,T +h]
(3.38)

in the weak sense.
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