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THE WAVE EQUATION APPROACH TO AN INVERSE EIGENVALUE
PROBLEM FOR AN ARBITRARY MULTIPLY CONNECTED DRUM

IN R2 WITH ROBIN BOUNDARY CONDITIONS
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Abstract. The spectral function µ̂(t)=∑∞j=1 exp(−itµ1/2j ), where {µj}∞j=1 are the eigen-
values of the two-dimensional negative Laplacian, is studied for small |t| for a variety of
domains, where −∞ < t <∞ and i = √−1. The dependencies of µ̂(t) on the connectivity
of a domain and the Robin boundary conditions are analyzed. Particular attention is given
to an arbitrary multiply-connected drum in R2 together with Robin boundary conditions
on its boundaries.
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1. Introduction. The underlying inverse problem is to deduce some geometric

quantities associated with a bounded domain from complete knowledge of the eigen-

values {µj}∞j=1 for the negative Laplace operator−∆=−
∑2

n=1(∂/∂xn)2 in the (x1,x2)-
plane.

Let Ω ⊆ R2 be a simply connected bounded domain with a smooth boundary ∂Ω.
Consider the Robin problem

(∆+µ)u= 0 in Ω,
(
∂
∂n

+γ
)
u= 0 on ∂Ω, (1.1)

where ∂/∂n denotes the differentiation along the inward pointing normal to ∂Ω, γ is a
positive constant (impedance), andu∈ C2(Ω)∩C(Ω̄). Denote its eigenvalues, counted
according to multiplicity, by

0< µ1 ≤ µ2 ≤ µ3 ≤ ··· ≤ µj ≤ ··· �→∞ as j �→∞. (1.2)

The basic problem is to determine some geometrical properties of Ω from the

knowledge of its eigenvalues (1.2).

At the beginning of this century the principal problem was that of investigating the

asymptotic behavior of the eigenvalues (1.2). It is well known (see [1]) that if N(µ) is
the number of these eigenvalues less than µ, then

N(µ)∼ |Ω|
4π

µ as µ �→∞ (Weyl, 1912),

N(µ)= |Ω|
4π

µ+O(µ1/2 logµ) as µ �→∞ (Courant, 1920),
(1.3)

where |Ω| is the area of the domain Ω.
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In order to obtain further information about the geometry of Ω, one studies certain
functions of the spectrum. The most useful to date comes from the heat equation

or the wave equation. Accordingly, let e−t∆ denote the heat operator, then we can
construct the trace function

Θ(t)= tr(e−t∆)= ∞∑
j=1

e−tµj (1.4)

which converges for all positive t.
Let e−it∆1/2 be the wave operator, then an alternative to (1.4) is to study the trace

function

µ̂(t)= tr(e−it∆1/2)= ∞∑
j=1

e−itµ
1/2
j (1.5)

which represents a tempered distribution for −∞< t <∞ and i=√−1.
In the present paper, we shall concentrate our efforts on a study of the tempered

distribution µ̂(t) for small |t|.
Zayed et al. [22] have recently discussed problem (1.1) for small/large impedance

γ, by using the wave equation approach and have determined some geometrical prop-
erties of Ω from the asymptotic expansion of µ̂(t) as |t| → 0.
Zayed [14] has shown that if γ = 0 (Neumann problem), then

µ̂(t)= |Ω|
2πt

H
(|t|)+ |∂Ω|

8
signt+a0|t|+O

(
t2 signt

)
as |t| �→ 0, (1.6)

while, if γ →∞ (Dirichlet problem), then

µ̂(t)= |Ω|
2πt

H
(|t|)− |∂Ω|

8
signt+a0|t|+O

(
t2 signt

)
as |t| �→ 0, (1.7)

where H(|t|) is the Heaviside’s unit function, and

signt =



1, t > 0,

0, t = 0,
−1, t < 0.

(1.8)

An examination of the results (1.6), (1.7) shows that the first term of µ̂(t) determines
the area |Ω| of Ω, and the second term determines the total length |∂Ω| of ∂Ω while
the sign± of the second term of µ̂(t) determines whether we have the Neumann or the
Dirichlet problem. The coefficient a0 has geometric significance, for example, if Ω is
smooth and convex, then a0 = 1/6, and ifΩ is permitted to have a finite number “h” of
smooth convex holes, then a0 = (1−h)/6. Further, the order term O(t2 signt) in (1.6)
and (1.7) is yet undetermined. So, in the present paper, we discuss what geometric

quantities are contained in this order term.

Let Ω be an arbitrary multiply-connected drum in R2 which is bounded internally
by simply connected holes ΩJ with smooth boundaries ∂ΩJ (J = 1, . . . ,m− 1) and
externally by a smooth boundary ∂Ωm. Suppose that the eigenvalues (1.2) are given
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for the Robin problem

(∆+µ)u= 0 in Ω, (1.9)

(
∂

∂nJ
+γJ

)
u= 0 on ∂ΩJ (J = 1, . . . ,m), (1.10)

where ∂/∂nJ denote differentiations along the inward normal to ∂ΩJ , and γJ are pos-
itive constants. The basic problem is that of determining some geometric quantities

associated with the general multiply connected drum Ω in R2, using the asymptotic
expansions of the spectral function µ̂(t) for small |t|.
Note that Zayed et al. [22, 24] have discussed problem (1.9), (1.10) when J = 1 (i.e.,

Ω is a simply connected bounded domain) while Zayed et al. [21] and Zayed [15] have
discussed this problem when J = 1,2 (i.e., Ω is a general annular drum and also Ω is
a circular annulus (r ,θ) such that a ≤ r ≤ b, 0 ≤ θ ≤ 2π ). Therefore, problem (1.9),

(1.10) can be considered as a more general one of that obtained in [15, 21, 22, 24],

which does not seem to have been investigated elsewhere.

2. Statement of the results. Suppose that the boundaries ∂ΩJ (J = 1, . . . ,m) of
the region Ω are given locally by the equations xn = yn(σJ) (n = 1,2) in which σJ

(J = 1, . . . ,m) are the arc-lengths of the counterclock-wise oriented boundaries ∂ΩJ

and yn(σJ) ∈ C∞(∂ΩJ). Let LJ and KJ(σJ) be the lengths and the curvatures of the
boundaries ∂ΩJ (J = 1, . . . ,m), respectively. Then, the results of the main problem
(1.9), (1.10) can be summarized in the following cases.

Case 2.1 (0< γJ � 1 (J = 1, . . . ,k) and γJ � 1 (J = k+1, . . . ,m)).

µ̂(t)= |Ω|
2πt

H
(|t|)+ 1

8




k∑
J=1

LJ−
m∑

J=k+1

[
LJ+2πγ−1J

]signt

+

(2−m)+ 3

π


 #∑
J=1

γJLJ−
k∑

J=#+1
γJLJ





|t|
6

+ 1
512


7

k∑
J=1

∫
∂ΩJ

[
K2J
(
σJ
)− 64

7

(πγJ
LJ

−γ2J
)]

dσJ

+
m∑

J=k+1

∫
∂ΩJ

[
K2J
(
σJ
)−(2π

LJ

)3
γ−1J

]
dσJ


t2 signt

+O(t3 signt) as |t| �→ 0.

(2.1)

Remark 2.2. On setting γJ = 0 (J = 1, . . . ,k) and γJ →∞ (J = k+1, . . . ,m) in (2.1), we
obtain the results of Neumann boundary conditions on ∂ΩJ (J = 1, . . . ,k) and Dirichlet
boundary conditions on ∂ΩJ (J = k+1, . . . ,m).

Case 2.3 (γJ � 1 (J = 1, . . . ,k) and 0 < γJ � 1 (J = k+1, . . . ,m)). In this case, the
asymptotic expansion of µ̂(t) as |t| → 0 has the same form (2.1) with the interchanges
∂ΩJ (J = 1, . . . ,k)↔ ∂ΩJ (J = k+1, . . . ,m) and γJ (J = 1, . . . ,k)↔ γJ (J = k+1, . . . ,m).
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Case 2.4 (γJ � 1 (J = 1, . . . ,m)).

µ̂(t)= |Ω|
2πt

H
(|t|)− 1

8


 m∑
J=1

(
LJ+2πγ−1J

)signt+(2−m)
|t|
6

+ 1
512




m∑
J=1

∫
∂ΩJ

[
K2J
(
σJ
)−(2π

LJ

)3
γ−1J

]
dσJ


t2 signt

+O(t3 signt) as |t| �→ 0.

(2.2)

Remark 2.5. On setting γJ → ∞ (J = 1, . . . ,m) in (2.2), we obtain the results of
Dirichlet boundary conditions on ∂ΩJ (J = 1, . . . ,m).

Case 2.6 (0< γJ � 1 (J = 1, . . . ,m)).

µ̂(t)= |Ω|
2πt

H
(|t|)+ 1

8


 m∑
J=1

LJ


signt

+

(2−m)+ 3

π


 #∑
J=1

γJLJ−
m∑

J=#+1
γJLJ





|t|
6

+ 7
512




m∑
J=1

∫
∂ΩJ

[
K2J
(
σJ
)− 64

7

(πγJ
LJ

−γ2J
)]

dσJ


t2 signt

+O(t3 signt) as |t| �→ 0.

(2.3)

Remark 2.7. On setting γJ = 0 in (2.3), we obtain the results of Neumann boundary
conditions on ∂ΩJ (J = 1, . . . ,m).

With reference to formulae (1.6) and (1.7) and to [15, 22], the asymptotic expansions

(2.1), (2.2), and (2.3) may be interpreted as follows:

(i) Ω is an arbitrary multiply connected drum in R2 and we have the Robin bound-
ary conditions (1.10) with small/large impedances γJ (J = 1, . . . ,m) as indicated in the
specifications of the four respective cases.

(ii) For the first four terms, Ω is an arbitrary multiply connected drum in R2 of
area |Ω|.
In Case 2.1, it has h= {(m−1)−(3/π)(∑#

J=1γJLJ−
∑k

J=#+1γJLJ)} holes, the bound-
aries ∂ΩJ (J = 1, . . . ,k) are of the lengths

∑k
J=1LJ and of curvatures [K2J (σJ) −

(64/7)(πγJ/LJ −γ2J )]1/2 (J = 1, . . . ,k) together with the Neumann boundary condi-
tions, while the boundaries ∂ΩJ (J = k+1, . . . ,m) are of lengths [

∑m
J=k+1(LJ+2πγ−1J )]

and of curvatures [K2J (σJ)− (2π/LJ)3γ−1J ]1/2 together with the Dirichlet boundary
conditions, provided h is a positive integer.
In Case 2.4, it has h = (m−1) holes, the boundaries ∂ΩJ (J = 1, . . . ,m) are of the

lengths
∑m

J=1(LJ+2πγ−1J ) and of curvatures [K2J (σJ)−(2π/LJ)3γ−1J ]1/2 together with
the Dirichlet boundary conditions.

In Case 2.6, it has h = {(m−1)− (3/π)(∑#
J=1γJLJ −

∑m
J=#+1γJLJ)} holes, and the

boundaries ∂ΩJ (J = 1, . . . ,m) are of the lengths
∑m

J=1LJ and of curvatures [K
2
J (σJ)−
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(64/7)(πγJ/LJ −γ2J )]1/2 together with the Neumann boundary conditions, provided
h is a positive integer.
We close this section with the following interesting question: what is the interpre-

tation of Ω if “h” is not integer? The answer of this question is still open, which has
been left for the interested readers.

3. Formulation of themathematical problem. With reference to [14, 15, 21, 22, 24],

it can be easily seen that the spectral function µ̂(t) is given by

µ̂(t)=
∫∫
Ω
G
(
x∼ ,x∼ ;t

)
dx∼ , (3.1)

where G(x1∼ ,x2∼ ;t) is the Green’s function for the wave equation

(
∆− ∂2

∂t2

)
G
(
x1∼ ,x2∼ ;t

)
= 0 in Ω×{−∞< t <∞}, (3.2)

subject to the Robin boundary conditions (1.10) and the initial conditions

lim
t→0

G
(
x1∼ ,x2∼ ;t

)
= 0, lim

t→0

∂G
(
x1∼ ,x2∼ ;t

)
∂t

= δ
(
x1∼ −x2∼

)
, (3.3)

where δ(x1∼ −x2∼ ) is the Dirac delta function located at the source point x1∼ = x2∼ . The
points x1∼ = (x11 ,x

2
1) and x2∼ = (x12 ,x

2
2) belong to the arbitrary multiply-connected

drum Ω. Write
G
(
x1∼ ,x2∼ ;t

)
=G0

(
x1∼ ,x2∼ ;t

)
+)

(
x1∼ ,x2∼ ;t

)
, (3.4)

where

G0
(
x1∼ ,x2∼ ;t

)
=

H
(
|t|−

∣∣∣x1∼ −x2∼
∣∣∣)

2π
√
t2−

∣∣∣x1∼ −x2∼
∣∣∣2

(3.5)

is the “fundamental solution” of the wave equation (3.2) while )(x1∼ ,x2∼ ;t) is the “reg-
ular solution” chosen in such a way that G(x1∼ ,x2∼ ;t) satisfies the Robin boundary
conditions (1.10).

From (3.1), (3.4), and (3.5), we find that

µ̂(t)= |Ω|
2πt

H
(|t|)+K(t), (3.6)

where

K(t)=
∫∫
Ω
)
(
x∼ ,x∼ ;t

)
dx∼ . (3.7)

In what follows, we will use Fourier transforms with respect to −∞< t <∞ and use
−∞< η<∞ as the Fourier transform parameter.
Thus, we define

Ĝ
(
x1∼ ,x2∼ ;η

)
=
∫ +∞
−∞

e−2πiηtG
(
x1∼ ,x2∼ ;t

)
dt. (3.8)
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An application of the Fourier transform to the wave equation (3.2) shows that

Ĝ(x1∼ ,x2∼ ;η) satisfies the reduced wave equation

(
∆+4π2η2)Ĝ(x1∼ ,x2∼ ;η

)
=−δ

(
x1∼ −x2∼

)
in Ω, (3.9)

together with the Robin boundary conditions (1.10).

The asymptotic expansion of K(t), for small |t|, may then be deduced directly from
the asymptotic expansion of K̂(η), for large |η|, where

K̂(η)=
∫∫
Ω
)̂
(
x∼ ,x∼ ;η

)
dx∼ . (3.10)

4. Derivation of our results. It is well known (see [15, 22]) that (3.9) has the fun-

damental solution

Ĝ0
(
x1∼ ,x2∼ ;η

)
=−1

2
Y0
(
2πηrx1∼ x2∼

)
, (4.1)

where rx1∼ x2∼
= |x1∼ −x2∼ | is the distance between the points x1∼ and x2∼ of the region Ω,

while Y0 is the Bessel function of the second kind and of zero order. The existence of
(4.1) enables us to construct integral equations for Ĝ(x1∼ ,x2∼ ;η) satisfying the Robin

boundary conditions (1.10) for small/large impedances γJ (J = 1, . . . ,m). Therefore, if
we consider the main problem (1.9), (1.10) with the case 0< γJ � 1 (J = 1, . . . ,k) and
γJ � 1 (J = k+1, . . . ,m), then Green’s theorem gives the following integral equation:

Ĝ
(
x1∼ ,x2∼ ;η

)
=−1

2
Y0
(
2πηrx1∼ x2∼

)

−1
2

k∑
J=1

∫
∂ΩJ

Ĝ
(
x1∼ ,y∼

;η
)

 ∂
∂nJy∼

+γJ

Y0(2πηry∼x2∼

)dy
∼

−1
2

m∑
J=k+1

∫
∂ΩJ

∂
∂nJy∼

Ĝ
(
x1∼ ,y∼

;η
)

1+γ−1J ∂

∂nJy∼


Y0(2πηry∼x2∼

)dy
∼
.

(4.2)

On applying the iteration method (see [17, 22]) to the integral equation (4.2), we

obtain the Green’s function Ĝ(x1∼ ,x2∼ ;η), which has the following regular part:

)̂
(
x1∼ ,x2∼ ;η

)
= 1
4

k∑
J=1

∫
∂ΩJ

Y0
(
2πηrx1∼ y∼

)

 ∂
∂nJy∼

+γJ

Y0(2πηry∼x2∼

)dy
∼

+1
4

m∑
J=k+1

∫
∂ΩJ

∂
∂nJy∼

Y0
(
2πηrx1∼ y∼

)

1+γ−1J ∂

∂nJy∼


Y0(2πηry∼x2∼

)dy
∼

−1
4

k∑
J=1

∫
∂ΩJ

∫
∂ΩJ

Y0
(
2πηrx1∼ y∼

)
MJ

(
y
∼
,y ′
∼

)

 ∂
∂nJy′∼

+γJ

Y0(2πηry′∼ x2∼

)dy
∼
dy ′
∼

−1
4

m∑
J=k+1

∫
∂ΩJ

∫
∂ΩJ

∂
∂nJy∼

Y0
(
2πηrx1∼ y∼

)
LJ
(
y
∼
,y ′
∼

)
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×



1+γ−1J ∂

∂nJy′∼


Y0(2πηry′∼ x2∼

)dy
∼
dy ′
∼

−1
4

m∑
J=k+1

∫
∂ΩJ




k∑
J=1

∫
∂ΩJ

Y0
(
2πηrx1∼ y∼

)
M-

J

(
y
∼
,y ′
∼

)
dy
∼




×



1+γ−1J ∂

∂nJy′∼


Y0(2πηry′∼ x2∼

)
dy ′∼

−1
4

k∑
J=1

∫
∂ΩJ




m∑
J=k+1

∫
∂ΩJ

∂
∂nJy∼

Y0
(
2πηrx1∼ y∼

)
L-J
(
y
∼
,y ′
∼

)
dy
∼




×



 ∂
∂nJy′∼

+γJ

Y0(2πηry′∼ x2∼

)
dy ′∼ , (4.3)

where for J = 1, . . . ,k, we find that

MJ

(
y
∼
,y ′
∼

)
=

∞∑
υ=0

(−1)υK(υ)
γJ

(
y ′
∼
,y
∼

)
,

M-
J

(
y
∼
,y ′
∼

)
=

∞∑
υ=0

(−1)υ
-
K
(υ)

γJ

(
y ′
∼
,y
∼

)
,

KγJ

(
y ′
∼
,y
∼

)
= 1
2




 ∂
∂nJy∼

+γJ

Y0(2πηry∼y′∼

),
-
KγJ

(
y ′
∼
,y
∼

)
= 1
2




 ∂2

∂nJy∼
∂nJy′∼

+γJ ∂
∂nJy′∼


Y0(2πηry∼y′∼

),

(4.4)

while for J = k+1, . . . ,m, we find that

LJ
(
y
∼
,y ′
∼

)
=

∞∑
υ=0

(−1)υK(υ)
γ−1J

(
y ′
∼
,y
∼

)
,

L-J
(
y
∼
,y ′
∼

)
=

∞∑
υ=0

(−1)υ
-
K
(υ)

γ−1J

(
y ′
∼
,y
∼

)
,

Kγ−1J

(
y ′
∼
,y
∼

)
= 1
2




 ∂
∂nJy′∼

+γ−1J
∂2

∂nJy∼
∂nJy′∼


Y0(2πηry∼y′∼

),
-
Kγ−1J

(
y ′
∼
,y
∼

)
= 1
2




1+γ−1J ∂

∂nJy′∼


Y0(2πηry∼y′∼

).

(4.5)

On using argument similar to that obtained in [10, 20, 21, 22, 24], we deduce,

after some mathematical analysis, that the asymptotic expansion of )̂(x1∼ ,x2∼ ;η) for

small/large impedances γJ (J = 1, . . . ,m) has the form

)̂
(
x1∼ ,x2∼ ;η

)
=

m∑
J=1

)̂J
(
x1∼ ,x2∼ ;η

)
, (4.6)
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where

(a) if x1∼ and x2∼ belong to sufficiently small domains D(IJ) (J = 1, . . . ,k) then

)̂J
(
x1∼ ,x2∼ ;η

)
= 1
4


1−γJ

(
∂
∂ξ21

)−1
Y0(2πηρ12)+O{η−1 exp(−AJηρ12

)}
, (4.7)

(b) if x1∼ ,x2∼ belong to sufficiently small domains D(IJ) (J = k+1, . . . ,m), then

)̂J
(
x1∼ ,x2∼ ;η

)
= 1
4


1−γ−1J

(
∂
∂ξ21

)
Y0(2πηρ12)+O{η−1 exp(−AJηρ12

)}
, (4.8)

where AJ are positive constants, while ρ12 is the distance between the points
ξ
∼1
= (ξ11 ,ξ

2
1) and ξ∼2

= (ξ12 ,−ξ22) of the upper half plane ξ2 > 0 (see [22]).
From [20, 22], it can be seen that for ξ2 3 hJ > 0 (J = 1, . . . ,m) the functions )̂J

(x∼ ,x∼ ;η
)
are of orderO{exp(−2ηAJhJ)} (J = 1, . . . ,m), and the integral of the function

)̂(x∼ ,x∼ ;η) over the multiply connected drum Ω can be approximated in the following
way (see (3.10)):

K̂(η)=
m∑

J=k+1

∫ hJ

ξ2=0

∫ LJ

ξ1=0
)̂J
(
x∼ ,x∼ ;η

){
1−KJ

(
ξ1
)
ξ2
}
dξ1dξ2

−
k∑

J=1

∫ hJ

ξ2=0

∫ LJ

ξ1=0
)̂J
(
x∼ ,x∼ ;η

){
1+KJ

(
ξ1
)
ξ2
}
dξ1dξ2

+
m∑
J=1

O
{
exp

(−2ηAJhJ
)}

as |η| �→∞,

(4.9)

where LJ and KJ (J = 1, . . . ,m) are, respectively, the total lengths and the curvatures
of the boundaries ∂ΩJ (J = 1, . . . ,m) of the multiply connected drum Ω.
If the eλ-expansions of )̂J(x∼ ,x∼ ;η), (cf. [22]) are introduced into (4.9), one obtains

an asymptotic series of the form

K̂(η)=
p∑

n=1
anη−n+O

(
η−p−1

)
as |η| �→∞, (4.10)

where the coefficients an in (4.10) are calculated from the eλ-expansions with the help
of the formula (11.3) in [22, Section 11].

On inverting Fourier transforms to both sides of (4.10) and using (3.6), we arrive at

the result (2.1). Similarly, we can prove the other results (2.2) and (2.3).

5. Discussions and conclusions. The problem of determining some geometric

quantities of the multiply connected bounded drum Ω in R2 from a complete knowl-
edge of its eigenvalues, has been discussed in the present paper by using the wave

equation approach. It is well known that the wave equation methods have given very

strong results; the definitive one is that of Hormander [6]. He has studied the
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distribution tr(e−itP ) near t = 0 for an elliptic positive semidefinite pseudodifferential
operator P in Rn of orderm. Recently, the wave equation methods in solving particu-
lar problems have been discussed by Zayed [14, 15] and Zayed et al. [21, 22, 24] who

have studied the spectral distribution µ̂(t) for small |t| for some bounded domains
with certain boundary conditions. On the other hand, the applications of the heat ker-

nel Θ(t) for small positive t to problem (1.1) and to more general ones can be found
in Kac [8], Pleijel [10], Stewartson and Waechter [13], Sleeman and Zayed [11], Gottlieb

[2, 3, 4], Hsu [7], McKean and Singer [9], Smith [12], Greiner [5], Zayed and Younis

[23], and Zayed [16, 17, 18, 19, 20]. In these references, one can ask a question, is it

possible just by listening with a perfect ear to hear the shape of Ω? This question has
been put nicely by Kac [8], who simply asked, can one hear the shape of a drum? From

these references, one can see the differences between the two different methods in

solving the inverse problems. Of course, the asymptotic expansions of µ̂(t) for small
|t| are different from the asymptotic expansions of Θ(t) for small positive t, but they
both give the same information about the geometry of the domain Ω. In particular,
the present paper provides a useful technique to inverse problem methods via the

spectral distribution of the Laplacian.
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