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DETERMINANT INEQUALITIES FOR SIEVED
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Abstract. Paul Turan first observed that the Legendre polynomials satisfy the inequality
P2
n(x)−Pn−1(x)Pn(x) > 0, −1 < x < 1. Inequalities of this type have since been proved

for both classical and nonclassical orthogonal polynomials. In this paper, we prove such
an inequality for sieved orthogonal polynomials of the second kind.
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1. Introduction. It was observed by Paul Turán [9] that the Legendre polynomials

satisfy the determinant inequality

P2
n(x)−Pn+1(x)Pn−1(x) > 0, −1<x < 1, n= 0,1, . . . . (1.1)

G. Szegö [8] gave two very beautiful proofs of Turán’s inequality. In the years since

Szegö’s paper appeared, it has been proved by various authors [5, 6, 7] that inequality

(1.1) is satisfied by the classical orthogonal polynomials. In general, let {Pn(x)} be a

sequence of polynomials orthogonal in an interval [a,b]. Then the polynomials must

satisfy a recursion

Pn+1(x)=
(
Anx+Bn

)
Pn(x)−CnPn−1(x), n= 0,1, . . . , (1.2)

where we define P−1(x)= 0.

We begin with a very simple result shows that, inequalities of Turán type are satis-

fied by any sequence of orthogonal polynomials.

Theorem 1.1. If the polynomials {Pn(x)} are orthogonal on a ≤ x ≤ b, then for

each n there exists cn, a≤ cn ≤ b, such that

P2
n(x)
P2
n
(
cn
) − Pn+1(x)

Pn+1
(
cn
) Pn−1(x)
Pn−1

(
cn
) ≥ 0, a≤ x ≤ b. (1.3)

Proof. Consider the quotient

fn(x)= Pn+1(x)Pn−1(x)P2
n(x)

. (1.4)

Obviously, the roots of Pn(x) are singularities and apart from these points fn(x) is
continuous. Also, for each root xk,n of Pn(x), k= 1,2, . . . ,n, there is an open interval

In centered at xkn in which Pn+1(x)Pn−1(x) < 0. This follows from the recursion (1.2).
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Consequently, fn(x) is bounded above and must take on a positive maximum value

at a point cn ∈ [a,b]. Thus

Pn+1
(
cn
)
Pn−1

(
cn
)

P2
n
(
cn
) ≥ Pn+1(x)Pn−1(x)

P2
n(x)

, a≤ x ≤ b. (1.5)

This proves the theorem.

Although Theorem 1.1 asserts that Turán’s inequality is a simple consequence of

orthogonality, it is generally quite difficult to determine the point cn referred to in

Theorem 1.1. In the case of the classical orthogonal polynomials of Jacobi and their

special case, the Gegenbauer polynomials, the point cn = 1 is an endpoint of the in-

terval of orthogonality [−1,1]. Turán’s inequality for these classical polynomials is

established by using differential identities that are characteristic of classical polyno-

mials. This seems to be the only case that lends itself to that technique.

Obviously, if

δn > max
a≤x≤b

Pn+1(x)Pn−1(x)
P2
n(x)

, (1.6)

then

δnP2
n(x)−Pn+1(x)Pn−1(x) > 0, a≤ x ≤ b. (1.7)

Inequalities of the form (1.7) will be called weak Turán inequalities to distinguish them

from (1.3) which will simply be referred to as Turán inequalities.

2. A weak Turán inequality for sieved ultraspherical polynomials of the second

kind. The sieved ultraspherical polynomials were discovered by Al-Salam et al. [1].

Ismail [2, 4] investigated them at great length. If k ≥ 2 is an integer, then the sieved

ultraspherical polynomials of the second kind, Bλn(x;k), satisfy

Bλn+1(x;k)= 2xBλn(x;k)−Bλn−1(x;k), n+1 	=mk,
mBλmk(x;k)= 2x(m+λ)Bλmk−1(x;k)−(m+2λ)Bλmk−2(x;k), m> 0,

(2.1)

where Bλ0 (x;k)= 1, Bλ1 (x;k)= 2x, k≥ 2.

Charris and Ismail [4] proved the following remarkable formula that is critical in

deriving a weak Turán inequality for these polynomials,

Bλmk+j(x;k)=Uj(x)Cλ+1m
(
Tk(x)

)+Uk−j−2(x)Cλ+1m−1
(
Tk(x)

)
,

j = 0,1, . . . ,k−1; m= 0,1,2, . . . .
(2.2)

In (2.2), Uj(x) and Tk(x) are the Chebychev polynomials of the second kind and the

first kind, respectively, and Cλm(x) are the ultraspherical polynomials. We recall that

if x = cosθ, then

Tk(x)= coskθ, Uj(x)= sin(j+1)θ
sinθ

. (2.3)

We note that U−1(x) = 0 and U−j(x) = −(sin(j−1)θ/sinθ) = −Uj−2(x), j 	= 1. First,

we remark that the sieved ultraspherical polynomials do not in general satisfy∆n(x)=
(Bn(x;k))2 − Bn+1(x;k)Bn−1(x;k) > 0. The inequality fails when n = mk + k − 1
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because a lengthy calculation, which we omit, shows that

∆mk+k−1(1)= (2λ+2)m−1(2λ+1)m+1(2λ−2k+1)
(m+1)!m!

. (2.4)

This last quantity may become negative depending on k and λ. Note that (a)n is

defined by (a)n = a(a+1)···(a+n−1).

Theorem 2.1. Let ∆n=δn[Bλn(x;k)]2−Bλn+1(x;k)Bλn−1(x;k), where k≥2 and δn=1

if n=mk+j, j = 0,1, . . . ,k−2, m= 0,1, . . . , and δmk+k−1 = (m+λ+1)/(m+1). Then

∆n > 0 for −1≤ x ≤ 1, n= 0,1, . . . .

Proof. First, we prove that ∆n > 0 for n=mk+j, j = 0,1, . . . ,k−2. Using elemen-

tary trigonometric identities, we can show that

U2
j −Uj−1Uj+1 = 1, 2UjUk−j−2−Uj+1Uk−j−1−Uj−1Uk−j−3 =−2Tk. (2.5)

Using (2.2), we have

∆mk+j(x)=
(
UjCλ+1m

(
Tk
)+Uk−j−2Cλ+1m−1

(
Tk
))2−(Uj+1Cλ+1m

(
Tk
)+Uk−j−3Cλ+1m−1

(
Tk
))

·(Uj−1Cλ+1m
(
Tk
)+Uk−j−1Cλ+1m−1

(
Tk
))

=(U2
j−Uj−1Uj+1

)(
Cλ+1m

(
Tk
))2+(U2

k−j−2−Uk−j−3Uk−j−1
)(
Cλ+1m−1

(
Tk
))2

+(2UjUk−j−2−Uj+1Uk−j−1−Uj−1Uk−j−3)Cλ+1m
(
Tk
)
Cλ+1m−1

(
Tk
)
.

(2.6)

From (2.5), the above equation yields

∆mk+j(x)=
(
Cλ+1m

(
Tk
))2−2TkCλ+1m

(
Tk
)
Cλ+1m−1

(
Tk
)+(Cλ+1m−1

(
Tk
))2

= (Cλ+1m
(
Tk
)−TkCλ+1m−1

(
Tk
))2+(1−T 2

k
)(
Cλ+1m−1

(
Tk
))2

= (Cλ+1m
(
Tk
)−TkCλ+1m−1

(
Tk
))2+sin2kθ

(
Cλ+1m−1

(
Tk
))2 > 0.

(2.7)

For the case n=mk+k−1, we need the recursion for ultraspherical polynomials

(n+1)Cλn+1(x)= 2(n+λ)xCλn(x)−(n+2λ−1)Cλn−1(x), n≥ 1, (2.8)

where Cλ0 = 1, Cλ1 = 2λx.
Using elementary trigonometric identities, we obtain

Un =Un−2+2Tn, (2.9)(
Un−1

)2−(Un−2)2−2TnUn−2 = 1. (2.10)

Using (2.2), we get the following formulawhen j = k−1, writingθ = (m+λ+1)/(m+1)
for simplicity,

∆mk+k−1(x)= θ
(
Bλmk+k−1

)2−Bλmk+k−2Bλmk+k
=θ(Uk−1Cλ+1m

(
Tk
))2−(Uk−2Cλ+1m

(
Tk
)+Cλ+1m−1

(
Tk
))(
Cλ+1m+1

(
Tk
)+Uk−2Cλ+1m

(
Tk
))

= θ(Uk−1)2(Cλ+1m
(
Tk
))2−Uk−2Cλ+1m

(
Tk
)
Cλ+1m+1

(
Tk
)−(Uk−2)2Cλ+1m

(
Tk
)

−Cλ+1m−1
(
Tk
)
Cλ+1m+1

(
Tk
)−Uk−2Cλ+1m−1

(
Tk
)
Cλ+1m

(
Tk
)
.

(2.11)
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From (2.8), the above equation yields

∆mk+k−1(x)=
{
θ
(
Uk−1

)2−(Uk−2)2}(Cλ+1m
(
Tk
))2−Uk−2Cλ+1m

(
Tk
)

·
{
2(m+λ+1)
m+1

TkCλ+1m
(
Tk
)−m+2λ+1

m+1
Cλ+1m−1

(
Tk
)}

−Cλ+1m−1
(
Tk
)·{2(m+λ+1)

m+1
TkCλ+1m

(
Tk
)−m+2λ+1

m+1
Cλ+1m−1

(
Tk
)}

−Uk−2Cλ+1m−1
(
Tk
)
Cλ+1m

(
Tk
)

=
{
θ
(
Uk−1

)2−(Uk−2)2− 2(m+λ+1)
m+1

TkUk−2
}(
Cλ+1m

(
Tk
))2

+
(

2λ
m+1

Uk−2− 2(m+λ+1)
m+1

Tk
)
Cλ+1m

(
Tk
)
Cλ+1m−1

(
Tk
)

+m+2λ+1
m+1

(
Cλ+1m−1

(
Tk
))2.

(2.12)

Multiplying by (m+1) on both sides and using (2.10), we now have

(m+1)∆mk+k−1(x)

= {(m+λ+1)+λU2
k−2
}(
Cλ+1m

(
Tk
))2+2

{
λUk−2−(m+λ+1)Tk

}
·Cλ+1m

(
Tk
)
Cλ+1m−1

(
Tk
)+(m+2λ+1)

(
Cλ+1m−1

(
Tk
))2

=
{
(m+λ+1)+λU2

k−2
}[
Cλ+1m

(
Tk
)+λUk−2−(m+λ+1)Tk

(m+λ+1)+λU2
k−2

Cλ+1m−1
(
Tk
)]2

+
[{
(m+λ+1)+λU2

k−2
}
(m+2λ+1)−{λUk−2−(m+λ+1)Tk

}2](Cλ+1m−1
(
Tk
))2.

(2.13)

To complete the proof, we show that the last coefficient of
(
Cλ+1m−1(Tk)

)2
must be pos-

itive.

We have{
(m+λ+1)+λ(Uk−2)2}(m+2λ+1)−{λUk−2−(m+λ+1)Tk

}2
= (m+λ+1)(m+2λ+1)+λ(m+2λ+1)

(
Uk−2

)2
−λ2(Uk−2)2+2λ(m+λ+1)Uk−2Tk−(m+λ+1)2

(
Tk
)2

= (m+λ+1)2
(
1−(Tk)2)+λ(m+λ+1)

+λ(m+λ+1)
(
Uk−2

)2+2λ(m+λ+1)Uk−2Tk

= (m+λ+1)2
(
1−(Tk)2)+λ(m+λ+1)

{
1+(Uk−2)2+2Uk−2Tk

}
.

(2.14)

By using (2.10), the above equation yields

(m+λ+1)2
(
1−x2)(Uk−1)2+λ(m+λ+1)

(
Uk−1

)2
= (m+λ+1)

(
Uk−1

)2{(m+λ+1)
(
1−x2)+λ}> 0 (2.15)

(in view of 1− (Tk)2 = (1−x2)(Uk−1)2). This completes the proof of Theorem 2.1.
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Remark 2.2. The factor (m + λ+ 1)/(m + 1) that appears in the statement of

Theorem 2.1 cannot be improved with a smaller number. This is because of the as-

ymptotic relation

lim
|x|→∞

Bλmk+k−2(x)B
λ
mk+k(x)(

Bλmk+k−1(x)
)2 = m+λ+1

m+1
. (2.16)

3. A further determinant of sieved ultraspherical polynomials. In [3], Bustoz and

Savage proved an inequality for ultraspherical polynomials of the form

Cαn(x)C
β
n+1(x)−Cαn+1(x)Cβn(x) > 0, 0<x < 1, 0< β−α≤ 1. (3.1)

This inequality was used to answer a conjecture of Askey and Gasper regarding a

trigonometric kernel. The question arises if a similar inequality might hold for sieved

ultraspherical polynomials. Here, we prove that the analogous inequality does not

hold and we determine the location of sign changes for the corresponding sieved

expression. We begin with some lemmas.

Lemma 3.1. Define ∆n(x) = Cλn(x)Cλ+1n+1(x)−Cλn+1(x)Cλ+1n (x), where {Cλn(x)} are

the ultraspherical polynomials. Then

∆n(x)= anx
[
Cλn(x)

]2+bn∆n−2(x), n≥ 2, (3.2)

where an = (2(n+λ)/λ(n+1)), bn = ((n+2λ−1)(n+2λ−2)/n(n+1)).

Proof. Each side of (3.2) is a polynomial of degree 2n+1. Thus, identity holds in

(3.2) if both sides are equal at 2n+1 points. We prove equality at the roots Cλn(x) =
0, Cλn+1(x) = 0. First, note that (3.2) holds when x = 0. Thus, we may focus on the

nonzero roots of Cλn(x) and C
λ
n+1(x). Let Cλn(a)= 0. The left-hand side of (3.2) reduces

to ∆n(a)=−Pλn+1(a)Pλ+1n (a). We show that the right-hand side of (3.2) has the same

value. From the recursion (2.8), it follows that

Cλn−1(a)=−
(n+1)Cλn+1(a)
n+2λ−1

, Cλn−2(a)=−
2(n+λ−1)(n+1)aCλn+1(a)
(n+2λ−2)(n+2λ−1)

. (3.3)

From the relation

(n+λ)Cλn(x)= λ
[
Cλ+1n (x)−Cλ+1n−2(x)

]
, (3.4)

it follows that

Cλ+1n−2(a)= Cλ+1n (a), (3.5)

and from the recursion (2.8) we get

Cλ+1n−1(a)=
Cλ+1n (a)
a

. (3.6)

Then it follows that the right-hand side of (3.2) reduces to −Cλn+1(a)Cλ+1n (a). Thus,
(3.2) holds at the n roots of Cλn(x). In a very similar fashion, it can be shown that (3.2)

holds at the n+1 roots of Cλn+1(x). This proves the lemma.

By iterating (3.2) we get the following corollary.
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Corollary 3.2.

∆n(x)= anx
[
Cλn(x)

]2+x [n/2]∑
k=1

dk
[
Cλn−2k(x)

]2, λ > 0, n≥ 2, (3.7)

where an = (2(n+λ)/λ(n+1)),

dk = an−2k
k−1∏
j=0
bn−2j , bn = (n+2λ−1)(n+2λ−2)

n(n+1)
. (3.8)

Lemma 3.3. Let {Un(x)} denote the sequence of Chebychev polynomials of the sec-

ond kind. Then

Uj(x)Uk−j−1(x)−Uj−1(x)Uk−j−2(x)=Uk−1(x). (3.9)

Proof. We write x = cosθ so that Un(x)= (sin(n+1)θ/sinθ) and apply trigono-

metric identities.

Theorem 3.4. Let Dmk+j(x) = Bλmk+j−1(x)Bλ+1mk+j(x)−Bλmk+j(x)Bλ+1mk+j−1(x), k ≥ 2,

m≥ 3, and j = 0,1, . . . ,k−1. If λ > 0, then

Dmk+j(x)=Uk−1(x)Tk(x)
{
am−1

[
cλ+1m−1

(
Tk(x)

)]2+ [(m−1)/2]∑
k=1

γk
[
Cλ+1m−1−2k

(
Tk(x)

)]2},
(3.10)

where Tk(x), Uk−1(x) are Chebychev polynomials of the first and second kind,

am−1 = 2(m+λ)
m(λ+1)

, γk = am−2k−1
k−1∏
j=0
bm−2j−1, bm−1 = (m+2λ)(m+2λ−1)

m(m−1)
.

(3.11)

Proof. From Lemma 3.3 after reducing, we get

Dmk+j(x)=Uk−1(x)
[
Cλ+1m−1

(
Tk(x)

)
Cλ+2m

(
Tk(x)

)−Cλ+1m
(
Tk(x)

)
Cλ+2m−1

(
Tk(x)

)]
. (3.12)

Now, apply Corollary 3.2. This gives the statement of the theorem.

It is clear from Theorem 3.4 that the determinants Dmk+j(x) change sign at the

roots of the Chebychev polynomials Tk(x), Uk−1(x).
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