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Abstract. We establish the complete convergence for arrays of Banach space valued ran-
dom elements. This result is applied to bootstrapped means of random elements to obtain
their strong consistency and is derived in the spirit of Baum-Katz/Hsu-Robbins/Spitzer
type convergence.
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1. Introduction. The main focus of the present investigation is the determination
of the rates of convergence for strong laws of large numbers for arrays of random
elements. Interestingly, this result will be applied to establish the strong consistency
for bootstrapped means taking values in Banach spaces. More precisely, we present
Chung type strong law of large numbers for arrays of rowwise independent random
elements under conditions similar to those given by Bozorgnia et al. [1]; Hu et al. [3];
and Sung [6]. This result is of interest since it holds for an arbitrary real separable
Banach space without imposing any geometric conditions. Thus, the results of this
paper are more general than those presented in the papers cited above.
Strong laws of large numbers are of practical use in establishing the strong asymp-

totic validity of the bootstrapped mean for random elements. Furthermore, they are
of considerable theoretical and practical interest in investigating the consistency of
bootstrap estimators.
Some results on the consistency of the bootstrapped mean of random elements

in Banach spaces are given in [1]. However, these consistency results impose a geo-
metric condition (Rademacher type p) on the Banach space. Moreover, the random
elements from the original sample are assumed to be independently and identically
distributed (i.i.d.). However, in the present investigation we do not make any assump-
tions regarding the marginal or joint distributions of the random elements forming
the sample and the random elements assuming values in an arbitrary real separable
Banach space. A similar situation was considered for real-valued random variables by
Li et al. [4, Theorem 2.1].
In order to obtain strong consistency for the bootstrapped mean, we assume the

corresponding weak consistency. In this case, the main result of Bozorgnia et al. [1]
can be seen as a special case of the results given in Theorem 3.2 of this paper.

2. Chung’s type strong law of large numbers. First, we state the following recent
theorem which forms the basis of our results.
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Theorem 2.1 (see [2, Theorem 3.2]). Let {kn, n ≥ 1} be a sequence of positive
integers, let {Ynk, 1 ≤ k ≤ kn, n ≥ 1} be an array of rowwise independent random
elements taking values in a real separable Banach space, and let {cn, n ≥ 1} be a
sequence of positive constants. Suppose that E‖Ynk‖q <∞, 1≤ k≤ kn, n≥ 1 for some
0< q ≤ 2.

Moreover, assume that
(1)

∑∞
n=1 cn

∑kn
k=1P{‖Ynk‖> ε}<∞ for all ε > 0,

(2)
∑kn
k=1Ynk

P
�������→ 0,

(3) there exists J ≥ 1 such that

∞∑
n=1

cn


 kn∑
k=1

E
∥∥Ynk∥∥q



J

<∞, (2.1)

(4)
∑kn
k=1P{‖Ynk‖> δ} = o(1) for some δ > 0 as n→∞ if liminfn→∞ cn = 0. Then

∞∑
n=1

cnP



∥∥∥∥∥∥
kn∑
k=1

Ynk

∥∥∥∥∥∥> ε

<∞ ∀ε > 0. (2.2)

Recently, Bozorgnia et al. [1], Hu et al. [3], and Sung [6] proved Chung’s type strong
laws of large numbers for arrays of rowwise independent random variables or random
elements. We now apply Theorem 2.1 to obtain a similar result in a general real sep-
arable Banach space under the assumption that the corresponding weak law of large
numbers holds. Theorem 2.2 is an adaptation of Theorem 2.1.

Theorem 2.2. Let {Znk, 1 ≤ k ≤ kn, n ≥ 1} be an array of rowwise independent
random elements taking values in a real separable Banach space and let {an, n ≥ 1}
and {cn, n ≥ 1} be sequences of positive constants. Suppose that Eψ(‖Znk‖) <∞ and
E‖Znk‖q < ∞ for some 0 < q ≤ 2 and some continuous nondecreasing function ψ :
R+ → R+ such that, for all ε > 0,

sup
n≥1

ψ
(
an
)

ψ
(
εan

) <∞. (2.3)

Then the conditions
(i)

∑∞
n=1(cn/ψ(an))

∑kn
k=1Eψ(‖Znk‖) <∞,

(ii) (1/an)
∑kn
k=1Znk

P
�������→ 0,

(iii) there exists J ≥ 1 such that

∞∑
n=1

cn
aqJn


 kn∑
k=1

E
∥∥Znk∥∥q



J

<∞, (2.4)

(iv) (cn/ψ(an))
∑kn
k=1Eψ(‖Znk‖)= o(1) as n→∞ if liminfn→∞ cn = 0, imply that

∞∑
n=1

cnP



∥∥∥∥∥∥
kn∑
k=1

Znk

∥∥∥∥∥∥> εan

<∞ ∀ε > 0. (2.5)
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Proof. The assumptions of Theorem 2.1 for the array {Ynk = Znk/an, 1≤ k ≤ kn,
n≥ 1} can be rewritten as follows.

(1)
∑∞
n=1 cn

∑kn
k=1P{‖Znk‖> εan}<∞ for all ε > 0,

(2) (1/an)
∑kn
k=1Znk

P
�������→ 0,

(3) There exists J ≥ 1 such that

∞∑
n=1

cn
aqJn


 kn∑
k=1

E
∥∥Znk∥∥q



J

<∞, (2.6)

(4)
∑kn
k=1P{‖Ynk‖> δan} = o(1) as n→∞ if liminfn→∞ cn = 0.

Note that conditions (ii) and (2) are the same and that (iii) is equivalent to (3). For (i)
and (iv), using Markov’s inequality and the assumptions on the function ψ, we have
the following:

P
{∥∥Znk∥∥> εan}≤ 1

ψ
(
εan

) Eψ(∥∥Znk∥∥)≤ C(ε)
ψ
(
an
) Eψ(∥∥Znk∥∥). (2.7)

It should be pointed out that the assumptions on the function ψ(·) seem to be the
most natural and general for the current work.

3. The consistency of the bootstrapped mean. We now outline the bootstrap pro-
cedure. Let {Xn; n ≥ 1} be a sequence of (not necessarily independent or identically
distributed) random elements defined on some complete probability space (Ω,�,P)
which take values in a real separable Banach space. Forω∈Ω and n≥ 1, let Pn(ω)=
n−1

∑n
i=1δXi(ω) denote the empirical measure. For n≥ 1, let {X̂ω

n,j ; 1≤ j ≤ kn} be i.i.d.
random elements with law Pn(ω), where kn is a positive integer. Let X̄n(ω) denote
the sample mean of {Xi(ω); 1≤ i≤n}, n≥ 1, that is, X̄n(ω)= (1/n)

∑n
i=1Xi(ω).

To prove the consistency of bootstrapped mean, we use the following lemma. We
formulated this simple observation as a lemma since it is frequently applied in
the proof.

Lemma 3.1. If s > 0, then for almost every ω∈Ω,

E
∥∥X̂ω

n,1−X̄n(ω)
∥∥s ≤As


 1
n

n∑
i=1

∥∥Xi(ω)∥∥s+∥∥X̄n(ω)∥∥s

, (3.1)

where As = 2s−1 for s ≥ 1 and As = 1 for 0< s < 1.

Proof. For almost every ω∈Ω,

E
∥∥X̂ω

n,j−X̄n(ω)
∥∥s= 1

n

n∑
i=1

∥∥Xi(ω)−X̄n(ω)∥∥s≤As

1
n

n∑
i=1

(∥∥Xi(ω)∥∥s+∥∥X̄n(ω)∥∥s)

, (3.2)

by the cr -inequalities (Loève [5, page 157]).

We can now prove the main application presented in this paper.

Theorem 3.2. Let {Xn, n≥ 1} be a sequence of random elements taking values in a
real separable Banach space and let {an, n≥1}, {bn, n≥1}, {cn, n≥1},and {dn, n≥ 1}
be sequences of positive constants. Suppose that there exists 0 < q ≤ 2 and r ≥ q
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such that
(1) supn≥1(1/dn)‖X̄n‖<∞ a.s. and supn≥1(1/bn)

∑n
i=1‖Xi‖q <∞ a.s.,

(2)
∑∞
n=1(cn/arn)k

r/q
n drn <∞ and

∑∞
n=1(cn/arn)b

r/q
n max{kn/n, (kn/n)r/q}<∞,

(3) The bootstrapped mean is weakly consistent, that is, for almost every ω∈Ω,

1
an

∥∥∥∥∥∥
kn∑
k=1

(
X̂ω
n,k−X̄n(ω)

)∥∥∥∥∥∥
P
�����������������������������������������������→ 0, (3.3)

(4) cn(b
r/q
n kn/arnn)→ 0 and cn(kndrn)/arn→ 0 if liminfn→∞ cn = 0.

Then the bootstrapped mean is strongly consistent, that is, for almost every ω ∈ Ω
and for all ε > 0,

∞∑
n=1

cnP



∥∥∥∥∥∥
kn∑
k=1

(
X̂ω
n,k−X̄n(ω)

)∥∥∥∥∥∥> εan

<∞. (3.4)

Proof. We need only check conditions (i)–(v) of Theorem 2.2 for the array
{Znk = X̂ω

n,k−X̄n(ω), 1≤ k≤ kn, n≥ 1} with ψ(t)= tr , t ≥ 0.
For (i), an application of Lemma 3.1 with s = r yields, for almost every ω∈Ω,
∞∑
n=1

cn
ψ
(
an
) kn∑
k=1

Eψ
(∥∥Znk∥∥)

=
∞∑
n=1

cn
arn

kn∑
k=1

E
∥∥X̂ω

n,k−X̄n(ω)
∥∥r

≤Ar

 ∞∑
n=1

cnkn
arnn

n∑
i=1

∥∥Xi(ω)∥∥r +
∞∑
n=1

cnkn
arn

∥∥X̄n(ω)∥∥r



≤Ar

 ∞∑
n=1

cnknb
r/q
n

arnn


 1
bn

n∑
i=1

∥∥Xi(ω)∥∥q


r/q

+
∞∑
n=1

cnkndrn
arn

[
1
dn

∥∥X̄n(ω)∥∥
]r<∞

(3.5)

by (1) and (2) and since kn ≤ kr/qn .
For (ii), let J = r/q ≥ 1. Another application of Lemma 3.1 with s = q yields, for

almost every ω∈Ω,
∞∑
n=1

cn
aqJn


 kn∑
k=1

E
∥∥X̂ω

n,k−X̄n(ω)
∥∥q


J

≤AJq 2J−1

 ∞∑
n=1

cn
arn

(
kn
n

)r/q n∑
i=1

∥∥Xi(ω)∥∥q


r/q

+
∞∑
n=1

cnk
r/q
n

arn

∥∥X̄n(ω)∥∥r



≤AJq

 ∞∑
n=1

cnb
r/q
n

arn

(
kn
n

)r/q 1
bn

n∑
i=1

∥∥Xi(ω)∥∥q


r/q

+
∞∑
n=1

cnk
r/q
n

(
dn
an

)r( 1
dn

∥∥X̄n(ω)∥∥
)r<∞,

(3.6)

by (1) and (2).
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Since (iii) is the same as (3), it is automatically satisfied. Now, considering (iv), by
another application of the lemma with s = r and by the same argument as in the proof
of (i), we have, for almost every ω∈Ω,

cn
ψ
(
an
) kn∑
k=1

Eψ
(∥∥Znk∥∥)

= cn
arn

kn∑
k=1

E
∥∥X̂ω

n,k−X̄n(ω)
∥∥r

≤Ar

cnkn
arnn

n∑
i=1

∥∥Xi(ω)∥∥r + cnknarn

∥∥X̄n(ω)∥∥r



≤As

cn knb

r/q
n

arnn


 1
bn

n∑
i=1

∥∥Xi(ω)∥∥q


r/q

+cn knd
r
n

arn

(
1
dn

∥∥X̄n(ω)∥∥
)r �→ 0

(3.7)

in case liminfn→∞ cn = 0, by (4) and (1).

It is natural to question whether the conditions of Theorem 3.2 can be easily ver-
ified. We give an example verifying the conditions of Theorem 3.2 by providing an
alternative proof of the main result of Bozorgnia et al. [1, Theorem 3.1]. This proof is
substantially simpler than the original one.
We recall that a Banach space is said to be of type q, 1 ≤ q ≤ 2, if there exists

a constant C > 0 such that, for any sequence X1, . . . ,Xn of independent, mean zero
random elements taking values in the Banach space, the following inequality holds:

E

∥∥∥∥∥∥
n∑
i=1
Xi

∥∥∥∥∥∥
q

≤ C
n∑
i=1
E
∥∥Xi∥∥q. (3.8)

Corollary 3.3. Let {X,Xn, n≥ 1} be i.i.d. random elements taking values in a real
separable Banach space of type q, 1< q ≤ 2 with E‖X‖q <∞ and EX = µ. Then for all
ε > 0 and for almost every ω∈Ω,

∞∑
n=1

P



∥∥∥∥∥∥

n∑
k=1

(
X̂ω
n,k−µ

)∥∥∥∥∥∥> εn

<∞. (3.9)

Proof. The first step is to prove that, for almost every ω∈Ω,
∞∑
n=1

P



∥∥∥∥∥∥

n∑
k=1

(
X̂ω
n,k−X̄n(ω)

)∥∥∥∥∥∥> εn

<∞. (3.10)

In order to establish this fact, we need to prove that the assumptions of Theorem 3.2
are satisfied. To this end, let an = bn = kn =n, cn = dn = 1 and r > (q/q−1). It is easy
then to see that (2) is satisfied. Furthermore, there is no need to check (4). However,
for (1) we note that X̄n(ω)→ µ a.s. by Mourier’s strong law of large numbers in Banach
spaces and (1/n)

∑n
i=1‖Xi‖q → E‖X‖q a.s. by the ordinary (or Kolmogorov) strong law

of large numbers.
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In order to obtain weak consistency (3), we apply the Markov inequality and use the
fact that the Banach space is of type q. So, for almost every ω∈Ω,

P



∥∥∥∥∥∥

n∑
k=1

(
X̂ω
n,k−X̄n(ω)

)∥∥∥∥∥∥> εn

≤ 1

εqnq
E

∥∥∥∥∥∥
n∑
k=1

(
X̂ω
n,k−X̄n(ω)

)∥∥∥∥∥∥
q

≤ C
εqnq

nE
∥∥X̂ω

n,1−X̄n(ω)
∥∥q

≤ CAq
εqnq−1


 1
n

n∑
i=1

∥∥Xi(ω)∥∥q+∥∥X̄n(ω)∥∥q



(3.11)

again by an application of Lemma 3.1 with s = q. So, P{‖∑n
k=1(X̂

ω
n,j−X̄n(ω))‖> εn} →

0 almost every ω∈Ω, by the same argument as in the proof of (1).
The next step is to prove that

∑∞
n=1P{‖

∑n
k=1(X̂

ω
n,k−µ)‖> εn}<∞ for almost every

ω ∈ Ω. It suffices to note that since X̄n(ω) → µ a.s., for almost every ω ∈ Ω, there
exists an integer N = N(ω) such that for all n > N we have ‖X̄n(ω)−µ‖ < ε/2. Let
n>N , then

P



∥∥∥∥∥∥

n∑
k=1

(
X̂ω
n,k−µ

)∥∥∥∥∥∥> εn

= P



∥∥∥∥∥∥

 1
n

n∑
k=1

(
X̂ω
n,k−X̄n(ω)

)+[X̄n(ω)−µ]
∥∥∥∥∥∥> ε




≤ P


∥∥∥∥∥∥

n∑
k=1

(
X̂ω
n,k−X̄n(ω)

)∥∥∥∥∥∥>
εn
2


.

(3.12)

Remark 3.4. (1) Theorems 2.1, 2.2, and 3.2 are trivial in case
∑∞
n=1 cn <∞.

(2) We do not consider the case q = 1 in the corollary since our proof will not cover
this situation.
(3) Finally, we are not able to compare Theorem 3.2 of this paper and Theorem 2.1

of Li et al. [4] since their assumptions concern convergence of partial sums, whereas
we use only boundedness of partial sums.
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