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TRANSIENT PROBABILITIES FOR A SIMPLE
BIRTH-DEATH-IMMIGRATION PROCESS
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Abstract. The transient probabilities for a simple birth-death-immigration process are
considered. Catastrophes occur at a constant rate, and when they occur, reduce the pop-
ulation to size zero.
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1. Introduction. In this note, a simple birth-death-immigration process is consid-
ered, which is influenced by total catastrophes which, when they occur, reduce the
population size to zero. Population processes under the influence of various types
of catastrophes have been studied by Bartoszynski et al. [2], Brockwell et al. [3], and
Kyriakidis [4, 5].
The process is formulated by letting N(t) represent the size of the population at

time t and

Pn(t)= P
[
N(t)=n |N(0)= 0

]
. (1.1)

As in the simple birth-death process, births and deaths occur proportional to the
population size with a birth rate λ > 0 and a death rate µ > 0. Immigration will occur
independent of population size with rate α> 0. Further, the occurrence of a catastro-
phe is also independent of population size and will occur at a rate γ > 0. Thus, the
process can be described by the following transition rates:

Transition Rate

i �→ i+1 λi+α (i≥ 0)

i �→ i−1 µi, (i≥ 1)

i �→ 0 γ (i≥ 1)

The special case of γ = 1 was recently considered by Kyriakidis [4], who obtained
the stationary probabilities for this process. The transient probabilities of a simple
immigration-catastrophe process, where λ= 0 and µ = 0, was obtained by Swift [6]. In
the next section, the transient probabilities for the general case are derived.
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2. The transient probabilities. The standard argument using the forward
Kolmogorov equations shows that Pn(t) satisfies

P ′n(t)= (n+1)µPn+1(t)+
(
(n−1)λ+α)Pn−1(t)−(n(µ+λ)+α+γ)Pn(t), (2.1)

P ′0(t)= γ
∞∑
i=1
Pi(t)+µP1(t)−αP0(t). (2.2)

Now ∞∑
i=1
Pi(t)= 1−P0(t) (2.3)

so that
P ′0(t)= γ+µP1(t)−(α+γ)P0(t). (2.4)

Letting

ψ(s,t)=
∞∑
k=0
Pk(t)sk (2.5)

be the probability generating function (PGF) for the system, it follows from the stan-
dard generating functionmethod, thatψ(s,t) satisfies the partial differential equation

∂ψ(s,t)
∂t

= (λs−µ)(s−1)∂ψ(s,t)
∂s

+α(s−1)ψ(s,t)+γ(1−ψ(s,t)). (2.6)

Since we are considering a process with immigrations, we can assume, for the sake of
simplicity, the initial condition P0(0)= 1. This gives ψ(s,0)= 1.
As in most birth-death processes, the solution of the partial differential equation

(2.6) for ψ(·,·) depends upon the values of the parameters λ and µ. The PGF ψ(·,·)
is given below for three important cases. The method of solution of (2.6) is standard
and indeed, it is interesting to note that these solutions can also be obtained using a
computer algebra system such as Mathematica.

Case 2.1 (λ 
= µ and λ 
= 0). The PDE (2.6) has solution

ψ(s,t)=
(

1
(α+γ)λ−αµ

)

×

γλ((1−s)λ

λ−µ
)γ/(λ−µ)

2F1
(
αλ+γλ−αµ
λ2−λµ ,

λ−µ+γ
λ−µ ,

(λ+α)(λ−µ)+γλ
λ(λ−µ) ,

λs−µ
λ−µ

)

+(s−1)γ/(λ−µ)(λs−µ)−α/λ+γ/(µ−λ)
(

(µ−λ)(λs−µ)
µ−λs+λ(s−1)e(λ−µ)t

)α/λ+γ/(λ−µ)

×
(

(µ−λ)(s−1)
λ(s−1)+(µ−λs)e−(λ−µ)t

)−γ/(λ−µ)

×
((
(α+γ)λ−αµ)−γλ( λ

λ(s−1)+(µ−λs)e−(λ−µ)t
)γ/(λ−µ)

×2F1
(
αλ+γλ−αµ
λ2−λµ ,

λ−µ+γ
λ−µ ,

(λ+α)(λ−µ)+γλ
λ(λ−µ) ,(µ−λs)e−(λ−µ)t

)),
(2.7)
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where 2F1(a,b;c,z) is the hypergeometric function defined by

2F1(a,b;c,z)=
∞∑
k=0

(a)k(b)k
(c)k

zk

k!
(2.8)

(cf. Agarwal [1]).

Case 2.2 (λ= µ and λ 
= 0). In this case, the PDE (2.6) has solution

ψ(s,t)= γe
γ/λ(1−s)

λ(1−s)
∫∞
1
z−α/λe−γz/λ(1−s) dz− e−γt

λ(1−s)
(

1
1+(1−s)tλ

)α/λ

×
(
λ(s−1)+γ(1+γλt(1−s))

∫∞
1
z−α/λe−γ(t+1/λ(1−s))z dz

)
.

(2.9)

Case 2.3 (λ= 0 and µ 
= 0). In this case, the PGF is given as

ψ(s,t)= 1
µ


e−αs/µ

(
γeα/µ

∫∞
1
z−(1+γ/µ)e−α(1−s)z/µ dz

+e−γt
(
µeα(1−(1−s)e

µt)/µ−γeα/µ
∫∞
1
z−(1+γ/µ)e−α(1−s)e

µt/µ dz
)).
(2.10)

Using the PGF, the probability of extinction, P0(t), can be obtained in each of the
above cases.

Case 2.1 (λ 
= µ and λ 
= 0).

P0(t)=ψ(0, t)

= 1
(α+γ)λ−αµ


( λ−µ
λe(λ−µ)t−µ

)α/λ+γ/(λ−µ)( µ−λ
λ−µe(−λ+µ)t

)γ/(µ−λ)

×
(
αµ−(α+γ)λ+γλ

(
λ

λ−µe(−λ+µ)t
)γ/(λ−µ)

×2F1
(
α(λ−µ)+λγ
λ(λ−µ) ,

λ−µ+γ
λ−µ ,

(λ+α)(λ−µ)+γλ
λ(λ−µ) ,

µ
µ−λe(λ−µ)t

))

+γλ
(
λ
λ−µ

)γ/(λ−µ)

×2F1
(
α(λ−µ)+λγ
λ(λ−µ) ,

λ−µ+γ
λ−µ ,

(λ+α)(λ−µ)+γλ
λ(λ−µ) ,

µ
µ−λ

).
(2.11)

Case 2.2 (λ= µ and λ 
= 0).

P0(t)= eγ/λ

( 1

1+λt
)α/λ(

e−γ(1+λt)/λ− 1
λ

(
(γ+γλt)

∫∞
1
z−α/λe−γ(t+1/λ)z dz

))

+ γ
λ

∫∞
1
z−α/λe−(γ/λ)z dz


.

(2.12)
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Case 2.3 (λ= 0 and µ 
= 0).

P0(t)= e
−γt

µ

(
µe−α(e

tµ−1)/µ−γeα/µ
∫∞
1
z−(γ+µ)/µe−(αe

tµ/µ)z dz
)

+ γe
α/µ

µ

∫∞
1
z−(γ+µ)/µe−(α/µ)z dz.

(2.13)

We note here that these expressions for P0(t), as t →∞, with γ = 1, reduce to the
stationary probabilities obtained by Kyriakidis.
The probabilities Pn(t), for n≥ 1 can be obtained by expanding ψ(s,t) as a power

series in s. However, the nature of the representations (2.7), (2.9), and (2.10) forψ(s,t)
makes this a formidable task. Alternatively, P0(t) can be used in (2.4) to obtain P1(t)
then (2.1) can be used recursively, to obtain Pn(t) for n≥ 1.
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