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2000 Mathematics Subject Classification. Primary 54H15.

1. Preliminaries. By a transformation semigroup (X,S,ρ) (or simply (X,S)) we
mean a compact Hausdorff topological space X, a discrete topological semigroup S
with identity e, and a continuous map ρ : X × S → X (ρ(x,s) = xs∀x ∈ X,∀s ∈ S),
such that

(1) xe= x ∀x ∈X;
(2) x(st)= (xs)t ∀x ∈X, ∀s,t ∈ S.

In the transformation semigroup (X,S), for each s ∈ S defineπs :X →X byπs(x)=
xs (∀x ∈ X). We assume the semigroup S acts effectively on X, that is, for each
s,t ∈ S, s ≠ t if and only if πs ≠πt . The closure of {πs | s ∈ S} in XX (with pointwise
convergence topology) is called the enveloping semigroup (or Ellis semigroup) of (X,S)
and is denoted by E(X,S) (or simply E(X)), E(X) has a semigroup structure [1]. A
nonempty subset I of E(X) is called a right ideal of E(X) if IE(X)⊆ I, moreover, if the
right ideal I of E(X) does not have any proper subset which is a right ideal of E(X),
then I is called a minimal right ideal of E(X), the set of all minimal right ideals of
E(X) is denoted by Min(E(X)). An element u of E(X) is called idempotent if u2 = u.
For p ∈ E(X) and a ∈ X the maps Lp : E(X) → E(X) and θa : E(X) → X defined by
Lp(q) = pq and θa(q) = aq (q ∈ E(X)), respectively, are continuous [2, Propositions
3.2 and 3.3]. Let I be a right ideal of E(X), B ⊆ E(X), C ⊆ X (B,C ≠ ∅) and a ∈ X.
Standing notations:

S(I)= {p ∈ I | Lp : I → I is surjective
}
, F(a,B)= {p ∈ B | ap = a},

I(I)= {p ∈ I | Lp : I → I is injective
}
, F(C,B)=

⋂
c∈C

F(c,B),

B(I)= {p ∈ I | Lp : I → I is bijective
}
, F(C,B)= {p ∈ B | Cp = C},

J(B)= {u∈ B |u2 =u}.

(1.1)

A nonempty subset Z of X is called invariant if ZS ⊆ Z , moreover, a closed invari-
ant subset Z of X is called minimal if it does not have any proper closed invariant
subset. Also a ∈ X is called almost periodic if aS = aE(X) is a minimal subset of X
[3, Theorems 1.15 and 1.17]. Let K be a closed right ideal of E(X), then K is called
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an A-minimal set if for each b ∈ A, bK = bE(X) and K does not contain any closed
right ideal L of E(X) such that K ≠ L and for each b ∈A, bL= bE(X), also K is called

an A-minimal set if AK = AE(X) and K does not contain any closed right ideal L of
E(X) such that K ≠ L and AL=AE(X); the collection of all A-minimal sets is denoted
by M(X,S)(A) or simply M(A) and the collection of all A-minimal sets is denoted by

M(X,S)(A) or simply M(A); we use M(X,S)(a) (or simply M(a)) instead of M(X,S)({a})
and its elements are called a-minimal sets; in addition we introduce the following sets:

�(X,S)= {D ⊆X |D ≠∅, ∀K ∈M(D) J(F(D,K))≠∅},
�(X,S)= {D ⊆X |D ≠∅, M(D)≠∅, ∀K ∈M(D) J(F(D,K))≠∅}, (1.2)

the transformation semigroup (X,S) is calledA(−)distal (or simplyA-distal) if for each

b ∈A, E(X)∈M(b), and it is calledA(M)distal (respectively,A(M)distal) if E(X)∈M(A)
(respectively, E(X)∈M(A)).

Let (X,S) and (Y ,S) be transformation semigroups, then the continuous map ϕ :
(X,S)→ (Y ,S) is called a homomorphism if ϕ(xs) =ϕ(x)s (∀x ∈ X, ∀s ∈ S), if ϕ
is onto, then there exists a unique induced homomorphism ϕ̂ : (E(X),S)→ (E(Y),S)
which is onto and for each x ∈X, the following diagram commutes:

(
E(X),S

)

θx
��

ϕ̂ �� (E(Y),S)

θx(x)
��

(X,S)
ϕ �� (Y ,S)

(1.3)

moreover, ϕ̂ is a semigroup homomorphism; if ϕ is onto and one-to-one, it is called
an isomorphism, and ϕ̂ is an isomorphism too [2, Proposition 3.8]. An equivalence
relation � on X is called invariant if � is an invariant subset of the transformation
semigroup (X ×X,S). Let � be an equivalence relation on X, then π� : X → X/�
(π�(x)= [x]� (∀x ∈X)) is the natural canonical map.

For the remainder of this paper (X,S) is a fixed transformation semigroup, with e
as the identity element of S and ∆A = {(x,x) | x ∈A}.

Definition 1.1. Let A be a nonempty subset of X and let


={� |� is a closed invariant equivalence relation on X such that(
X/�,S) is distal

}
,


0 =
{� |� is a closed invariant equivalence relation on X such that

(
X/�,S)

is [A]�-distal
}
,


1 =
{� |� is a closed invariant equivalence relation on X such that

(
X/�,S)

is [A]� (M) distal
}
,


2 =
{� |� is a closed invariant equivalence relation on X such that

(
X/�,S)

is [A]� (M) distal
}
,

(1.4)
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then
⋂
�∈
�,

⋂
�∈
0�,

⋂
�∈
1�, and

⋂
�∈
2� are called, respectively, proximal struc-

ture relation, A(−)proximal structure relation (or simply A-proximal structure rela-

tion), A(M)proximal structure relation, and A(M)proximal structure relation (on X),
for a ∈ X, instead of “{a}-proximal structure relation” we simply use “a-proximal
structure relation”; and the sets

P(X,S)= {(x,y)∈X×X | ∃I ∈Min(E(X)) ∀p ∈ I xp =yp}
(or simply P(X) or P),

PA(X,S)=
{
(x,y)∈X×X | ∃b ∈A ∃I ∈M(b) ∀p ∈ I xp =yp}(

or simply PA(X) or PA
)
,

PA(X,S)=
{
(x,y)∈X×X | ∃I ∈M(A) ∀p ∈ I xp =yp}(

or simply PA(X) or PA
)
,

PA(X,S)=
{
(x,y)∈X×X | ∃I ∈M(A) ∀p ∈ I xp =yp}

(
or simply PA(X) or PA

)
,

(1.5)

are called, respectively, proximal relation,A(−)proximal relation (or simplyA-proximal

relation), A(M)proximal relation, and A(M)proximal relation (on X), if a ∈ X, then in-
stead of “{a}-proximal relation” (respectively, “P{a}(X)”) we simply use “a-proximal
relation” (respectively, “Pa(X)”).

Theorem 1.2. Let A be a nonempty subset of X, then by Definition 1.1, we have
(a) (i) if {�α}α∈Γ is a nonempty collection in 
, then

⋂
α∈Γ�α ∈
,

(ii) if {�α}α∈Γ is a nonempty collection in 
0, then
⋂
α∈Γ�α ∈
0,

(iii) if {�α}α∈Γ is a nonempty collection in 
1 such that for Z = {([xα]�α)α∈Γ |
x ∈ X} ⊆∏α∈Γ X/�α we have {([a]�α)α∈Γ | a ∈ A} ∈�(Z,S), then

⋂
α∈Γ

�α ∈
1,
(iv) if {�α}α∈Γ is a nonempty collection in 
2 such that for Z = {([xα]�α)α∈Γ |

x ∈ X} ⊆ ∏α∈Γ X/�α we have {([a]�α)α∈Γ | a ∈ A} ∈ �(Z,S), then
⋂
α∈Γ

�α ∈
2,
(b) (i) X×X ∈
∩
0∩
1∩
2,

(ii)
⋂
�∈
�∈ 
,

⋂
�∈
0�∈
0,

(c) (i) (X,S) is distal if and only if ∆X ∈
,
(ii) (X,S) is A-distal if and only if ∆X ∈
0,
(iii) (X,S) is A(M)distal if and only if ∆X ∈
1,

(iv) (X,S) is A(M)distal if and only if ∆X ∈
2.

Proof. (a) (ii) Let {�α}α∈Γ be a nonempty collection in 
0, then for each α ∈ Γ ,
(X/�α,S) is [A]�α-distal, thus (

∏
α∈Γ X/�α,S) is {([a]�α)α∈Γ | a ∈ A}-distal (since

{([a]�α)α∈Γ | a ∈ A} ⊆ ∏α∈Γ [A]�α ), but {([a]�α)α∈Γ | a ∈ A} ⊆ {([x]�α)α∈Γ | x ∈
X} and {([x]�α)α∈Γ | x ∈ X} is a closed invariant subset of

∏
α∈Γ X/�α, therefore

({([x]�α)α∈Γ | x ∈ X},S) is {([a]�α)α∈Γ | a ∈ A}-distal [4, Theorem 1.23(c)]. On the
other hand,ϕ : (X/∩α∈Γ�α,S)→ ({([x]�α)α∈Γ | x ∈X},S) defined byϕ([x]⋂α∈Γ �α)=
([x]�α)α∈Γ (∀x ∈ X) is an isomorphism and ({([x]�α)α∈Γ | x ∈ X},S) is
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ϕ([A]⋂α∈Γ �α)-distal, therefore (X/
⋂
α∈Γ�α,S) is [A]⋂α∈Γ �α -distal and

⋂
α∈Γ�α ∈
0.

(iii) Let {�α}α∈Γ be a nonempty collection in 
1, then for each α ∈ Γ , (X/�α,S)
is [A]�α

(M)distal, thus for each α ∈ Γ , J(F([A]�α ,E(X/�α))) = {e}, therefore
J(F({([a]�α)α∈Γ | a∈A},E(

∏
α∈Γ X/�α)))= {e}, but {([x]�α)α∈Γ | x ∈X} is a closed

invariant subset of
∏

α∈Γ X/�α, and by the hypothesis {([a]�α)α∈Γ | a ∈ A} ∈
�({([x]�α)α∈Γ | x ∈ X},S), thus ({([x]�α)α∈Γ | x ∈ X},S) is {([a]�α)α∈Γ | a∈ A} (M)
distal [4, Theorem 1.23(d)]. On the other hand, ϕ : (X/

⋂
α∈Γ�α,S) → ({([x]�α)α∈Γ |

x ∈ X},S) defined by ϕ([x]⋂α∈Γ �α) = ([x]�α)α∈Γ (∀x ∈ X) is an isomorphism, and

({([x]�α)α∈Γ | x ∈ X},S) is ϕ([A]capα∈Γ�α)
(M)distal, therefore (X/

⋂
α∈Γ�α,S) is

[A]⋂α∈Γ �α
(M)distal and

⋂
α∈Γ�α ∈
1.

(iv) The proof is similar to (iii).
(b) Let � = X ×X, then X/� is singleton, thus it is clear that (X/�,S) is distal,

[A]�-distal, [A]� (M)distal, and [A]� (M)distal, thus X×X = � ∈ 
∩
0∩
1∩
2. On
the other hand, by (a) ((i) and (ii)) we have

⋂
�∈
�∈ 
 and

⋂
�∈
0�∈
0.

(c) (ii) Let�=∆X , then the canonical mapπ� : (X,S)→ (X/�,S) is an isomorphism,
thus (X,S) is A-distal if and only if (X/�,S) is [A]�-distal if and only if ∆X =�∈
0.

Note 1.3. Let A be a nonempty subset of X, then
(a) (i) P(X) is a reflexive and symmetric relation on X,

(ii) PA(X) is a reflexive and symmetric relation on X,
(iii) PA(X) is a reflexive and symmetric relation on X,
(iv) if M(A)≠∅, then PA(X) is a reflexive and symmetric relation on X,

(b) if S is abelian, then P(X), PA(X), PA(X), and PA(X) (this latter case whenM(A)≠
∅) are invariant relations on X,

(c) (i) for each nonempty subset B ofAwehave PA(X)⊆ PB(X)⊆ PB(X)⊆ PA(X)⊆
P(X),

(ii) PA(X)=∪a∈APa(X),
(iii) PA(X)⊆ P(X),

(d) (i) if all of the points of A are almost periodic, then PA(X)= PA(X)= PA(X)=
P(X),

(ii) PA(X)=∆X � (∀a∈A Pa(X)=∆X),
(iii) PA(X)=∆X ⇒ (∀a∈A ∀K ∈M(a) J(F(a,K))= J(S(K))= {e}),
(iv) PA(X)=∆X ⇒ (∀K ∈M(A) J(F(A,K))⊆ J(S(K))⊆ {e}),
(v) PA(X)=∆X ⇒ (∀K ∈M(A) J(F(A,K))⊆ J(S(K))⊆ {e}).

Proof. (a) and (b) are clear.
(c) (i) Let B be a nonempty subset of A, then for each (x,y)∈X×X we have

(x,y)∈ PA(X)

�⇒∃K ∈M(A) ∀p ∈K, xp =yp
�⇒∃K ∈M(A) ∃L∈M(B) ∀p ∈K, (xp =yp∧L⊆K) (by [4, Corollary 1.3])

�⇒∃L∈M(B) ∀p ∈ L, xp =yp
�⇒ (x,y)∈ PB(X)
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(x,y)∈ PB(X)

�⇒∃L∈M(B) ∀p ∈ L, xp =yp
�⇒∃L∈M(B) ∀b∈B ∃K∈M(b) ∀p ∈ L

(xp =yp∧K ⊆ L) (by [4, Corollary 1.3])

�⇒∀b ∈ B ∃K ∈M(b) ∀p ∈K, xp =yp
�⇒∃b ∈ B ∃K ∈M(b) ∀p ∈K, xp =yp
�⇒ (x,y)∈ PB(X)

(x,y)∈ PB(X)

�⇒∃b ∈ B ∃K ∈M(b) ∀p ∈K, xp =yp
�⇒∃a∈A ∃K ∈M(a) ∀p ∈K, xp =yp
�⇒ (x,y)∈ PA(X)

(x,y)∈ PA(X)

�⇒∃a∈A ∃K ∈M(a) ∀p ∈K, xp =yp
�⇒∃a∈A ∃K ∈M(a) ∃L∈Min(E(X)) ∀p ∈K, (xp =yp∧L⊆K)
�⇒∃L∈Min(E(X)) ∀p ∈ L, xp =yp
�⇒ (x,y)∈ P(X). (1.6)

(ii) It is clear by Definition 1.1.
(iii) It is clear by Definition 1.1 and the fact that each closed right ideal of E(X)

contains at least one element of Min(E(X)).
(d) (i) If all of the points of A are almost periodic, then for each a ∈ A, M(a) =

M(A)=M(A)=Min(E(X)) [4, Note 1.12], thus PA(X)= PA(X)= PA(X)= P(X).
(ii) Since for each a ∈ A, ∆X ⊆ Pa(X) ⊆ PA(X) = ∪b∈APb(X) (use (c) (ii)), thus

PA(X)=∆X if and only if for each a∈A, Pa(X)=∆X .
(iv) Let PA(X)=∆X andK ∈M(A), then J(F(A,K))⊆ J(S(K)) [4, Corollary 1.5(Table

1.3)], if u ∈ J(S(K)), then uK = K and for each x ∈ X, (xu)u = xu, thus for each
p ∈K, (xu)up = xup, that is, for each q ∈K, (xu)q = xq and (xu,x)∈ PA(X)=∆X ,
therefore for each x ∈X, xu= x and u= e.

Considering (ii), (iii) is a special case of (iv). The proof of (v) has a similar argument.

Theorem 1.4. Let A be a nonempty subset of X, then:
(a) (i) (X,S) is distal if and only if P(X)=∆X ,

(ii) (X,S) is A-distal if and only if PA(X)=∆X ,
(iii) if A∈�(X,S), then (X,S) is A(M)distal if and only if PA(X)=∆X ,

(iv) if A∈�(X,S), then (X,S) is A(M)distal if and only if PA(X)=∆X ,
(b) if (x,y)∈X×X, then:

(i) the following statements are equivalent:
(1) (x,y)∈ P(X),
(2) ∃u∈ J(E(X)), xu=yu,
(3) ∃p ∈ E(X), xp =yp,
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(ii) the following statements are equivalent:
(1) (x,y)∈ PA(X),
(2) ∃a∈A ∃u∈ J(F(a,E(X))), xu=yu,
(3) ∃a∈A ∃p ∈ F(a,E(X)), xp =yp,

(iii) if A∈�(X,S), then the following statements are equivalent:
(1) (x,y)∈ PA(X),
(2) ∃u∈ J(F(A,E(X))), xu=yu,
(3) ∃p ∈ F(A,E(X)), xp =yp.

Proof. In each case for the sake of brevity we prove (iii).
(a) (iii) If (X,S) if A(M)distal, then M(A) = {E(X)}, and if (x,y) ∈ PA(X), then for

each p ∈ E(X), xp = yp, thus x = xe = ye = y and PA(X) ⊆ ∆X , therefore PA(X) =
∆X . On the other hand, let A ∈ �(X,S) and PA(X) = ∆X , take K ∈ M(A) and u ∈
J(F(A,K))(≠∅), then uK = K and for each x ∈ X and p ∈ K, xp = x(up) = (xu)p,
so (x,xu) ∈ PA(X) = ∆X , that is, for each x ∈ X, xu = x and u = e so K = E(X),
therefore (X,S) is A(M)distal.

(b) (iii) We have

(1) �⇒∃K ∈M(A) ∀p ∈K, xp =yp
�⇒∃K ∈M(A) ∃u∈ J(F(A,K)), xu=yu (since A∈�(X,S))
�⇒ (2),

(3) �⇒∃p ∈ F(A,E(X)) ∀q ∈ pE(X), xq =yq
�⇒∃p ∈ F(A,E(X)) ∃L∈M(A) ∀q ∈ pE(X),

(xq =yq∧L⊆ pE(X)) (by [4, Corollary 1.3])
�⇒∃L∈M(A) ∀q ∈ L, xq =yq
�⇒ (1).

(1.7)

Theorem 1.5. Let A be a nonempty subset of X, then
(a) (i) the following statements are equivalent:

(1) Min(E(X)) is singleton,
(2) P(X) is a transitive relation on X,
(3) P(X) is an equivalence relation on X,

(ii) if A∈�(X,S), then the following statements are equivalent:
(1) M(A) is singleton,
(2) PA(X) is a transitive relation on X,
(3) PA(X) is an equivalence relation on X,

(iii) if A∈�(X,S), then the following statements are equivalent:
(1) M(A) is singleton,
(2) PA(X) is a transitive relation on X,
(3) PA(X) is an equivalence relation on X,

(b) if S is an abelian semigroup, then:
(i) if P(X) is a closed relation on X, then P(X) is an equivalence relation on X,
(ii) if A∈�(X,S) and PA(X) is a closed relation on X, then PA(X) is an equiva-

lence relation on X,
(iii) if A∈�(X,S) and PA(X) is a closed relation on X, then PA(X) is an equiva-

lence relation on X.
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Proof. (a) (ii) By Note 1.3(a), it is enough to show that (3) implies (1). Let PA(X)
be an equivalence relation on X, K,L ∈ M(A) and u ∈ J(F(A,K)), there exists v ∈
J(F(A,L)) such that uv =u and vu= v [4, Theorem 7.1(a)], moreover, uE(X)=uK =
K, vE(X)= vL= L [4, Corollary 1.5(Table 3)], and for each x ∈X, p ∈K and q ∈ L we
have: (xu)p = x(up) = xp and (xv)q = x(vq) = xq. Therefore (xu,x),(x,xv) ∈
PA(X) and by the transitivity of PA(X), (xu,xv)∈ PA(X), thus there exists N ∈M(A)
such that for each l∈N , xul= xvl. We know there exists w ∈ J(F(A,N)), such that
uw = u and vw = (vu)w = v(uw) = vu = v [4, Theorem 1.7(a)] thus xu = xuw =
xvw = xv (for each x ∈ X), so u = v and K = uE(X) = vE(X) = L. Therefore M(A)
is singleton.

(b) (ii) LetA∈�(X,S) and PA(X) be a closed relation onX, then for each (x,y),(y,z)
∈ PA(X), there exists K ∈M(A) such that for each p ∈K, xp =yp. Let u∈ J(F(A,K))
(≠ ∅), then xu = yu. Now by Note 1.3(b), we have (yu,zu) ∈ PA(X). Choose L ∈
M(A) such that for each q ∈ L, yuq = zuq. There exists v ∈ J(F(A,L)), such that
uv = u [4, Theorem 1.7(a)] thus xu = yu = yuv = zuv = zu, by Theorem 1.4(iii),
(x,z) ∈ PA(X) and PA(X) is a transitive relation on X, thus by (a (ii)) PA(X) is an
equivalence relation on X.

Note 1.6. Let A be a nonempty subset of X, letϕ : (X,S)→ (Y ,S) be an onto homo-
morphism. Define ϕ×ϕ : X×X → Y ×Y by ϕ×ϕ(x,y) = (ϕ(x),ϕ(y)) (∀(x,y) ∈
X×X), using Definition 1.1, we have

(a) if K ∈M(A), then there exists L∈M(ϕ(A)) such that L⊆ ϕ̂(K),
(b) (i) ϕ×ϕ(P(X))⊆ P(Y),

(ii) ϕ×ϕ(PA(X))⊆ Pϕ(A)(Y),
(iii) ϕ×ϕ(PA(X))⊆ Pϕ(A)(Y),

(c) (i) P(X)⊆⋂�∈
�,
(ii) PA(X)⊆

⋂
�∈
0�,

(iii) PA(X)⊆
⋂
�∈
1�.

Proof. (a) IfK ∈M(A), then ϕ̂(K) is a closed right ideal of E(Y). On the other hand,
for each a∈A, aK = aE(X) thus ϕ(a)ϕ̂(K)=ϕ(aK)=ϕ(aE(X))=ϕ(a)ϕ̂(E(X))=
ϕ(a)E(Y), therefore there exists L∈M(ϕ(A)) such that L⊆ ϕ̂(K) [4, Corollary 1.3(b)].

(b) Let (x,y)∈X×X.
(ii) If (x,y)∈ PA(X), then there exists a∈A and K ∈M(a) such that for each p ∈K,

xp = yp and ϕ(x)ϕ̂(p)=ϕ(y)ϕ̂(p), by (a) there exists L∈M(ϕ(a)) such that L⊆
ϕ̂(K), so for each q ∈ L, ϕ(x)q = ϕ(y)q, therefore, ϕ×ϕ(x,y) = (ϕ(x),ϕ(y)) ∈
Pϕ(A)(Y).

(iii) If (x,y)∈ PA(X), then there exists K ∈M(A) such that for each p ∈K, xp =yp
and ϕ(x)ϕ̂(p)=ϕ(y)ϕ̂(p), by (a) there exists L∈M(ϕ(A)) such that L⊆ ϕ̂(K), so
for each q ∈ L, ϕ(x)q =ϕ(y)q, therefore, ϕ×ϕ(x,y)= (ϕ(x),ϕ(y))∈ Pϕ(A)(Y).

(c) (ii) Let �∈
0, then

�∈
0 �⇒
(
X
� ,S

)
is [A]�-distal

�⇒ P[A]�

(
X
�
)
=∆X/�
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�⇒π�×π�(PA(X))⊆ Pπ�(A)

(
X
�
)
= P[A]�

(
X
�
)
=∆X/�

�⇒π�×π�(PA(X))=∆X/�
�⇒∀(x,y)∈ PA(X), [x]� = [y]�
�⇒∀(x,y)∈ PA(X), (x,y)∈�
�⇒ PA(X)⊆� (1.8)

so PA(X)⊆
⋂
�∈
0�.

Definition 1.7. Let ϕ : (X,S) → (Y ,S) be an onto homomorphism, R(ϕ) =
{(x,y) ∈ X ×X | ϕ(x) = ϕ(y)}, and let A be a nonempty subset of X, and let B
be a nonempty subset of Y , then

(a) (Y ,S) is a distal factor of (X,S) (under ϕ) if R(ϕ)∩P(X)=∆X ,
(b) (Y ,S) is an A(−)distal (or simply A-distal) factor of (X,S) (under ϕ) if R(ϕ)∩

PA(X)=∆X ,
(c) (Y ,S) is an A(M)distal factor of (X,S) (under ϕ) if R(ϕ)∩PA(X)=∆X ,
(d) (Y ,S) is an A(M)distal factor of (X,S) (under ϕ) if R(ϕ)∩PA(X)=∆X ,
(e) (X,S) is a distal extension of (Y ,S) (under ϕ) if R(ϕ)∩P(X)=∆X ,
(f) (X,S) is a B (−)distal (or simply B-distal) extension of (Y ,S) (underϕ) if R(ϕ)∩

Pϕ−1(B)(X)=∆X ,
(g) (X,S) is a B (M)distal extension of (Y ,S) (under ϕ) if R(ϕ)∩Pϕ−1(B)(X)=∆X ,
(h) (X,S) is a B (M)distal extension of (Y ,S) (under ϕ) if R(ϕ)∩Pϕ−1(B)(X)=∆X ,
(a)′ (Y ,S) is a proximal factor of (X,S) (under ϕ) if R(ϕ)⊆ P(X),
(b)′ (Y ,S) is an A(−)proximal (or simply A-proximal) factor of (X,S) (under ϕ) if

R(ϕ)⊆ PA(X),
(c)′ (Y ,S) is an A(M)proximal factor of (X,S) (under ϕ) if R(ϕ)⊆ PA(X),

(d)′ (Y ,S) is an A(M)proximal factor of (X,S) (under ϕ) if R(ϕ)⊆ PA(X),
(e)′ (X,S) is a proximal extension of (Y ,S) (under ϕ) if R(ϕ)⊆ P(X),
(f)′ (X,S) is a B (−)proximal (or simply B-proximal) extension of (Y ,S) (underϕ) if

R(ϕ)⊆ Pϕ−1(B)(X),
(g)′ (X,S) is a B (M)proximal extension of (Y ,S) (under ϕ) if R(ϕ)⊆ Pϕ−1(B)(X),

(h)′ (X,S) is a B (M)proximal extension of (Y ,S) (under ϕ) if R(ϕ)⊆ Pϕ−1(B)(X).

Theorem 1.8. Letϕ : (X,S)→ (Y ,S) be an onto homomorphism, letA be a nonempty
subset of X, let B be a nonempty subset of Y , and consider the following statements:
(π1) (Y ,S) is a distal factor of (X,S) under ϕ,
(π2) (Y ,S) is an A-distal factor of (X,S) under ϕ,
(π3) (Y ,S) is an A(M)distal factor of (X,S) under ϕ,

(π4) (Y ,S) is an A(M)distal factor of (X,S) under ϕ (by the assumption M(A)≠∅),
(ρ1) (X,S) is a distal extension of (Y ,S) under ϕ,
(ρ2) (X,S) is a B-distal extension of (Y ,S) under ϕ,
(ρ3) (X,S) is a B (M)distal extension of (Y ,S) under ϕ,

(ρ4) (X,S) is a B (M)distal extension of (Y ,S) underϕ (by the assumptionM(ϕ−1(B))
≠∅),
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(π ′1) (Y ,S) is a proximal factor of (X,S) under ϕ,
(π ′2) (Y ,S) is an A-proximal factor of (X,S) under ϕ,

(π ′3) (Y ,S) is an A(M)proximal factor of (X,S) under ϕ,

(π ′4) (Y ,S) is an A(M)proximal factor of (X,S) under ϕ (by the assumption M(A)≠
∅),

(ρ′1) (X,S) is a proximal extension of (Y ,S) under ϕ,
(ρ′2) (X,S) is a B-proximal extension of (Y ,S) under ϕ,

(ρ′3) (X,S) is a B (M)proximal extension of (Y ,S) under ϕ,

(ρ′4) (X,S) is a B (M)proximal extension of (Y ,S) under ϕ (by the assumption

M(ϕ−1(B))≠∅),
then we have the following tables:

Table 1.1. The mark “
√

” indicates that for the corresponding case we have:
“(πi ⇒πj)∧(ρi ⇒ ρj)”

j
1 2 3 4i

1
√ √ √ √

2
√ √

3
√

4
√

Table 1.2. The mark “
√

” indicates that for the corresponding case we have:
“(π ′i ⇒π ′j)∧(ρ′i ⇒ ρ′j)”

j
1 2 3 4i

1
√

2
√ √

3
√ √ √

4
√ √

Proof. We have the following conditional statements:
(
π1
)
�⇒ R(ϕ)∩P(X)=∆X
�⇒ (R(ϕ)∩PA(X)⊆ R(ϕ)∩PA(X)⊆ R(ϕ)∩P(X)=∆X
∧R(ϕ)∩PA(X)⊆ R(ϕ)∩P(X)=∆X) (by Note 1.3(c))

�⇒ (R(ϕ)∩PA(X)= R(ϕ)∩PA(X)=∆X∧R(ϕ)∩PA(X)⊆∆X)
�⇒ (

π2∧π3∧π4
)
,(

ρ1
)
�⇒ R(ϕ)∩P(X)=∆X
�⇒ (R(ϕ)∩Pϕ−1(B)(X)⊆ R(ϕ)∩Pϕ−1(B)(X)⊆ R(ϕ)∩P(X)=∆X
∧R(ϕ)∩Pϕ−1(B)(X)⊆ R(ϕ)∩P(X)=∆X) (by Note 1.3(c))

�⇒ (R(ϕ)∩Pϕ−1(B)(X)= R(ϕ)∩Pϕ−1(B)(X)=∆X
∧R(ϕ)∩Pϕ−1(B)(X)⊆∆X)
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�⇒ (ρ2∧ρ3∧ρ4),(
π2
)
�⇒ R(ϕ)∩PA(X)=∆X
�⇒ R(ϕ)∩PA(X)⊆ R(ϕ)∩PA(X)=∆X (by Note 1.3(c))

�⇒ R(ϕ)∩PA(X)=∆X
�⇒ (

π3
)
,(

ρ2
)
�⇒ R(ϕ)∩Pϕ−1(B)(X)=∆X
�⇒ R(ϕ)∩Pϕ−1(B)(X)⊆ R(ϕ)∩Pϕ−1(B)(X)=∆X (by Note 1.3(c))

�⇒ R(ϕ)∩Pϕ−1(B)(X)=∆X
�⇒ (

ρ3
)

(1.9)

these complete the proof of Table 1.1, also
(
π ′3
)
�⇒ R(ϕ)⊆ PA(X)

�⇒ R(ϕ)⊆ PA(X)⊆ PA(X) (by Note 1.3(c))

�⇒ (
π ′2
)

�⇒ R(ϕ)⊆ PA(X)⊆ P(X) (by Note 1.3(c))

�⇒ (
π ′1
)
,(

ρ′3
)
�⇒ R(ϕ)⊆ Pϕ−1(B)(X)

�⇒ R(ϕ)⊆ Pϕ−1(B)(X)⊆ Pϕ−1(B)(X) (by Note 1.3(c))

�⇒ (
ρ′2
)

�⇒ R(ϕ)⊆ Pϕ−1(B)(X)⊆ P(X) (by Note 1.3(c))

�⇒ (
ρ′1
)
,

(
π ′4
)
�⇒ R(ϕ)⊆ PA(X)

�⇒ R(ϕ)⊆ PA(X)⊆ P(X) (by Note 1.3(c))

�⇒ (
π ′1
)
,

(
ρ′4
)
�⇒ R(ϕ)⊆ Pϕ−1(B)(X)

�⇒ R(ϕ)⊆ Pϕ−1(B)(X)⊆ P(X) (by Note 1.3(c))

�⇒ (
ρ′1
)
,

(1.10)

these complete the proof of Table 1.2.

Theorem 1.9. Letϕ : (X,S)→ (Y ,S) be an onto homomorphism and∅≠ C ⊆A⊆X,
and ∅≠D ⊆ B ⊆ Y , then

(a) if (Y ,S) is an A-distal factor of (X,S), then (Y ,S) is a C-distal factor of (X,S),
(b) if (Y ,S) is a C (M)distal factor of (X,S), then (Y ,S) is an A(M)distal factor of

(X,S),
(c) if (X,S) is a B-distal extension of (Y ,S), then (X,S) is a D-distal extension of

(Y ,S),
(d) if (X,S) is a D(M)distal extension of (Y ,S), then (X,S) is a B (M)distal extension

of (Y ,S),
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(e) if (Y ,S) is a C-proximal factor of (X,S), then (Y ,S) is an A-proximal factor of
(X,S),

(f) if (Y ,S) is an A(M)proximal factor of (X,S), then (Y ,S) is a C (M)proximal factor
of (X,S)

(g) if (X,S) is a D-proximal extension of (Y ,S), then (X,S) is a B-proximal extension
of (Y ,S),

(h) if (X,S) is a B (M)proximal extension of (Y ,S), then (X,S) is a D(M)proximal
extension of (Y ,S),

the factors and extensions are under ϕ.

Proof. (a) (Y ,S) is an A-distal factor of (X,S)

�⇒ R(ϕ)∩PA(X)=∆X
�⇒ R(ϕ)∩PC(X)⊆ R(ϕ)∩PA(X)=∆X (by Note 1.3(c))

�⇒ R(ϕ)∩PC(X)=∆X
�⇒ (Y ,S) is a C-distal factor of (X,S),

(1.11)

(b) (Y ,S) is a C (M)distal factor of (X,S)

�⇒ R(ϕ)∩PC(X)=∆X
�⇒ R(ϕ)∩PA(X)⊆ R(ϕ)∩PC(X)=∆X (by Note 1.3(c))

�⇒ R(ϕ)∩PA(X)=∆X

�⇒ (Y ,S) is an A
(M)

distal factor of (X,S),

(1.12)

(e) (Y ,S) is a C-proximal factor of (X,S)

�⇒ R(ϕ)⊆ PC(X)

�⇒ R(ϕ)⊆ PC(X)⊆ PA(X) (by Note 1.3(c))

�⇒ (Y ,S) is an A-proximal factor of (X,S),
(1.13)

(f) (Y ,S) is an A(M)proximal factor of (X,S)

�⇒ R(ϕ)⊆ PA(X)

�⇒ R(ϕ)⊆ PA(X)⊆ PC(X) (by Note 1.3(c))

�⇒ (Y ,S) is a C
(M)

proximal factor of (X,S).

(1.14)

Theorem 1.10 (associative and inheritance laws). Let ϕ : (X,S) → (Y ,S) and ψ :
(Y ,S)→ (Z,S) be two onto homomorphisms, and let A be a nonempty subset of X, and
B be a nonempty subset of Y , then we have

(a) Associative laws.

(i) (((Z,S) is a distal factor of (Y ,S) (under ψ)) ∧ ((Y ,S) is a distal factor of (X,S)
(under ϕ))) ⇒ ((Z,S) is a distal factor of (X,S) (under ψ◦ϕ)),

(ii) (((Z,S) is a ϕ(A)-distal factor of (Y ,S) (under ψ)) ∧ ((Y ,S) is an A-distal factor
of (X,S) (under ϕ))) ⇒ ((Z,S) is an A-distal factor of (X,S) (under ψ◦ϕ)),
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(iii) (((Z,S) is a ϕ(A) (M)distal factor of (Y ,S) (under ψ)) ∧ ((Y ,S) is an A(M)distal

factor of (X,S) (under ϕ))) ⇒ ((Z,S) is an A(M)distal factor of (X,S) (under
ψ◦ϕ)),

(i)′ (((X,S) is a distal extension of (Y ,S) (under ϕ)) ∧ ((Y ,S) is a distal extension of
(Z,S) (under ψ))) ⇒ ((X,S) is a distal extension of (Z,S) (under ψ◦ϕ)),

(ii)′ (((X,S) is a ψ−1(B)-distal extension of (Y ,S)(under ϕ)) ∧ ((Y ,S) is a B-distal
extension of (Z,S) (under ψ))) ⇒ ((X,S) is a B-distal extension of (Z,S) (under
ψ◦ϕ)),

(iii)′ (((X,S) is aψ−1(B) (M)distal extension of (Y ,S) (underϕ))∧ ((Y ,S) is a B (M)distal

extension of (Z,S) (under ψ)))⇒ ((X,S) is a B (M)distal extension of (Z,S) (under
ψ◦ϕ)),

(b) Inheritance laws.

(i) ((Z,S) is a distal factor of (X,S) (under ψ ◦ϕ)) ⇒ ((Y ,S) is a distal factor of
(X,S) (under ϕ)),

(ii) ((Z,S) is an A-distal factor of (X,S) (under ψ◦ϕ))⇒ ((Y ,S) is an A-distal factor
of (X,S) (under ϕ)),

(iii) ((Z,S) is an A(M)distal factor of (X,S) (under ψ◦ϕ)) ⇒ ((Y ,S) is an A(M)distal
factor of (X,S) (under ϕ)),

(iv) ((Z,S) is an A(M)distal factor of (X,S) (under ψ◦ϕ)) ⇒ ((Y ,S) is an A(M)distal
factor of (X,S) (under ϕ)),

(v) ((Z,S) is a proximal factor of (X,S) (under ψ◦ϕ))⇒ ((Y ,S) is a proximal factor
of (X,S) (under ϕ)),

(vi) ((Z,S) is an A-proximal factor of (X,S) (under ψ◦ϕ))⇒ ((Y ,S) is an A-proximal
factor of (X,S) (under ϕ)),

(vii) ((Z,S) is an A(M)proximal factor of (X,S) (under ψ◦ϕ)) ⇒ ((Y ,S) is an A(M)

proximal factor of (X,S) (under ϕ)),

(vii) ((Z,S) is an A(M)proximal factor of (X,S) (under ψ◦ϕ)) ⇒ ((Y ,S) is an A(M)

proximal factor of (X,S) (under ϕ)),

(i)′ ((X,S) is a distal extension of (Z,S) (under ψ◦ϕ))⇒ ((X,S) is a distal extension
of (Y ,S) (under ϕ)),

(ii)′ ((X,S) is a B-distal extension of (Z,S) (under ψ◦ϕ))⇒ ((X,S) is a ψ−1(B)-distal
extension of (Y ,S) (under ϕ)),

(iii)′ ((X,S) is a B (M)distal extension of (Z,S) (under ψ◦ϕ))⇒ ((X,S) is a ψ−1(B) (M)

distal extension of (Y ,S) (under ϕ)),

(iv)′ ((X,S) is a B (M)distal extension of (Z,S) (under ψ◦ϕ))⇒ ((X,S) is a ψ−1(B) (M)

distal extension of (Y ,S) (under ϕ)),

(v)′ ((X,S) is a proximal extension of (Z,S) (under ψ◦ϕ)) ⇒ ((X,S) is a proximal
extension of (Y ,S) (under ϕ)),

(vi)′ ((X,S) is a B-proximal extension of (Z,S) (under ψ◦ϕ)) ⇒ ((X,S) is a ψ−1(B)-
proximal extension of (Y ,S) (under ϕ)),

(vii)′ ((X,S) is a B (M)proximal extension of (Z,S) (under ψ ◦ ϕ)) ⇒ ((X,S) is a

ψ−1(B) (M)proximal extension of (Y ,S) (under ϕ)),
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(viii)′ ((X,S) is a B (M)proximal extension of (Z,S) (under ψ ◦ ϕ)) ⇒ ((X,S) is a

ψ−1(B) (M)proximal extension of (Y ,S) (under ϕ)).

Proof. (a) (ii) Let (Z,S) be aϕ(A)-distal factor of (Y ,S) under ψ, and let (Y ,S) be
an A-distal factor of (X,S) under ϕ, then R(ψ)∩Pϕ(A)(Y) = ∆Y and R(ϕ)∩PA(X) =
∆X . Moreover, using the symbols of Note 1.6, we have ϕ×ϕ(R(ψ ◦ϕ)) ⊆ R(ψ) so
ϕ×ϕ(R(ψ◦ϕ)∩PA(X))⊆ R(ψ)∩Pϕ(A)(Y)=∆Y , thusϕ×ϕ(R(ψ◦ϕ)∩PA(X))=∆Y ,
that is, R(ψ ◦ϕ)∩ PA(X) ⊆ R(ϕ), thus R(ψ ◦ϕ)∩ PA(X) ⊆ R(ϕ)∩ PA(X), therefore
R(ψ◦ϕ)∩PA(X)=∆X and (Z,S) is an A-distal factor of (X,S) (under ψ◦ϕ).

(b) Use R(ϕ)⊆ R(ψ◦ϕ).

Theorem 1.11. Let B be a nonempty subset of X, let Σ= {ϕα |α∈ Γ} be a nonempty
collection of the extensions of (X,S), α0 ∈ Γ , ×ΣXα = {(xα)α∈Γ ∈

∏
α∈Γ Xα | ∀α ∈

Γ ϕα(xα) = ϕα0(xα0)}, for each γ ∈ Γ let πγ : ×ΣXα → Xγ be the projection map
on the γth coordinate, and ϕ :×ΣXα→X be such that ϕ((xα)α∈Γ )=ϕα0(xα0), then

(a) for each γ ∈ Γ , the following diagram commutes:

(×ΣXα,S
)

ϕ

��

πδ �� (Xγ,S
)

ϕγ������������

(X,S)

(1.15)

(b) (i) if for each α ∈ Γ , (Xα,S) is a distal extension of (X,S) (under ϕα), then
(×ΣXα,S) is a distal extension of (X,S) (under ϕ),

(ii) if for each α ∈ Γ , (Xα,S) is a B-distal extension of (X,S) (under ϕα), then
(×ΣXα,S) is a B-distal extension of (X,S) (under ϕ),

(iii) if for each α∈ Γ , (Xα,S) is a B (M)distal extension of (X,S) (under ϕα), then

(×ΣXα,S) is a B (M)distal extension of (X,S) (under ϕ).

Proof. (b) (ii) By the definition of ×ΣXα, we have

R(ϕ)= {((xα)α∈Γ ,
(
yα
)
α∈Γ

)∈ (×ΣXα
)×(×ΣXα

) | ∀α∈ Γ(xα,yα
)∈ R

(
ϕα

)}
= {((xα)α∈Γ ,

(
yα
)
α∈Γ

)∈ (×ΣXα
)×(×ΣXα

) | ∃α∈ Γ(xα,yα
)∈ R

(
ϕα

)}
,

(1.16)

moreover, for each ((xα)α∈Γ ,(yα)α∈Γ )∈ Pϕ−1(B)(×ΣXα) and γ ∈ Γ , we have (xγ,yγ)∈
Pϕ−1γ (B)(Xγ), so if ((xα)α∈Γ ,(yα)α∈Γ )∈ R(ϕ)∩Pϕ−1(B)(×ΣXα),then (xγ,yγ)∈ R(ϕγ)∩
Pϕ−1γ (B)(Xγ), this will give the desired result, that is, if for each α ∈ Γ , R(ϕα) ∩
Pϕ−1α (B)(Xα) =∆Xα , then R(ϕ)∩Pϕ−1(B)(×ΣXα)= (∆×ΣXα).
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