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Abstract. A system of first-order differential equations with linear constraint is studied.
Existence theorems for the solution are proved under some conditions. Some uniqueness
and dependence results for the system are also obtained. Some applications are given.
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1. Introduction. Let Rn denote Euclidean n-space. If x = [xi] = (x1,x2, . . . ,xn)T
denotes an element of Rn, let

‖x‖ ≡
n∑
i=1

∣∣xi∣∣. (1.1)

If B = [bij] is an n×n matrix over R, let ‖B‖ denote the corresponding matrix norm,
that is,

‖B‖ ≡ sup
‖x‖=1

‖Bx‖. (1.2)

The Banach space of continuous functions x(t) mapping [a,b] into Rn under the
norm

‖x‖ ≡max
[a,b]

‖x(t)‖ (1.3)

will be denoted by C[a,b]. If B(t)= [bij(t)] is a continuous matrix function on [a,b],
we define

‖B‖ ≡max
[a,b]

‖B(t)‖. (1.4)

This paper is concerned with problems which consist of an ordinary differential equa-
tion or system of equations together with one or more linear side conditions. The
most general problem considered is, for r ∈Rn,

x′ =A(t)x+f(t,x) (1.5)

together with the linear constraint

Lx = r . (1.6)

We will assume throughout this paper the following assumptions:
(A1) A(t) is a continuous n×n matrix function on [a,b].
(A2) f(t,x) is continuous on D = D(a,b) = {(t,x) : t ∈ [a,b], x ∈ Rn} with values

in Rn.
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(A3) L = L(a,b) is a bounded, linear mapping from C[a,b] into Rn with bound
‖L‖ ≡ sup‖x‖=1‖Lx‖.
By a solution to (1.5) on [a,b] we mean a function x(t) ∈ C[a,b] which has a

continuous derivative on [a,b] and satisfies (1.5) on [a,b].
Many other authors have studied under some conditions the existence and unique-

ness of solutions for systems of first-order differential equations. For example,
Heikkilä [6] derive existence and comparison results for extremal solutions of a first-
order ordinary differential equation in an ordered Banach space. Bobisud and O’Regan
[2] consider the initial value problem for a first-order differential equationy ′ = F(t,y)
and consider hypotheses which ensure the uniqueness for a two-point boundary value
problem. While in [4], representation and approximation of the solutions to the linear
evolution equation

x′(t)+Ax(t)= g(t) (1.7)

are studied. For more research papers, see [7, 8].
In this paper, we use the Schauder fixed point theorem [3] to develop an existence

theory for problem (1.5), (1.6). Though the basic existence result, Theorem 3.1, is close
to a theorem proved by Antosiewicz [1], numerous variations and consequences are
obtained which do not appear in the literature.

2. Preliminary results. We prove a sequence of lemmas which are needed in order
to prove our main result. To illustrate the general results obtained for the problem
in (1.5), (1.6), we from time to time consider the following particular mappings from
C[a,b] into Rn:

L0x ≡ x(a),

L1x ≡
(
x1
(
t1
)
,x2

(
t2
)
, . . . ,xn

(
tn
))
, ti ∈ [a,b],

L2x ≡
∫ b
a
x(s)ds.

(2.1)

Lemma 2.1. The mappings L0, L1, and L2 satisfy (A3), that is, L0,L1,L2 are bounded,
linear mappings from C[a,b] into Rn. In particular, ‖L0‖ = 1, ‖L1‖ ≤ n, and ‖L2‖ =
b−a.

Proof. The linearity of L0, L1, and L2 is immediate. We have

∥∥L0(x)∥∥= ‖x(a)‖ ≤max
[a,b]

‖x(t)‖ = ‖x‖; (2.2)

with equality for x(t)≡ c ∈Rn; that is, ‖L0‖ = 1. We have

∥∥L1(x)∥∥=
n∑
i=1

∣∣xi(ti)∣∣≤n‖x‖; (2.3)

that is, ‖L1‖ ≤n. We have

∥∥L2(x)∥∥=
∥∥∥∥
∫ b
a
x(s)ds

∥∥∥∥≤
∫ b
a
‖x(s)‖ds ≤ (b−a)‖x‖ (2.4)

with equality for x(t)≡ c ∈Rn; that is, ‖L2‖ = (b−a).
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2.1. A variation of the Schauder fixed point theorem. As a basic tool in deter-
mining sufficient conditions for existence of a solution to (1.5), (1.6) we will use the
following fact by Schauder [3].

Lemma 2.2. Let K be a convex, compact subset of a normed linear space X, then any
continuous mapping T from K into K has a fixed point in K.

In order to obtain a more useful form of Lemma 2.2, we state the following lemma.

Lemma 2.3 (see [3]). Let X be a Banach space and C ⊂X be compact, then the closed
convex hull of C is compact.

Lemma 2.4. Let X be a Banach space and let K be a closed convex subset of X. If T
is a continuous map of K into itself such that T(K) is relatively compact, then T has a
fixed point in K.

Proof. Since T(K)⊂K and K is closed we have T(K)⊂K. Let K0 denote the closed
convex hull of T(K). By Lemma 2.3, K0 is compact. Since K0 is the smallest closed
convex set containing T(K), we must have K0 ⊂ K. Thus T(K0) ⊂ T(K) ⊂ T(K) ⊂ K0.
By Lemma 2.2, T has a fixed point in K0 which must also lie in K.

2.2. A general existence theorem. In addition to (A1), (A2), and (A3), we impose
the following condition:
(A4) The linear problem

x′ =A(t)x, Lx = r , (2.5)

has a unique solution for any r ∈Rn; that is, if S denotes the n-dimensional space of
solutions to x′ =A(t)x, then (L | S)−1 exists.

Remark 2.5. Property (A4) is equivalent to the condition that z(t)≡ 0 be the only
element in S such that Lz = 0; that is, the null space of L | S is {0}.
Condition (A4) together with the following lemmas will enable us to define an ap-

propriate mapping for application of Lemma 2.4.

Lemma 2.6. If A(t) satisfies (A1), then the problem

x′ =A(t)x+z(t), x
(
t0
)= r . (2.6)

has a unique solution ω(t) on [a,b) for any t0 ∈ [a,b], z ∈ C[a,b], and r ∈ Rn.
Moreover, for any t,t0 in [a,b],

‖ω(t)‖ ≤ ∥∥ω(t0)∥∥exp
∣∣∣∣
∫ t
t0
‖A(s)‖ds

∣∣∣∣+
∣∣∣∣
∫ t
t0
exp

∣∣∣∣
∫ t
τ
‖A(s)‖ds

∣∣∣∣‖z(τ)‖dτ
∣∣∣∣. (2.7)

The existence and uniqueness of solutions to such initial value problems is well
known (cf. [5]). The estimate may also be found in [5].

Lemma 2.7. If (A1), (A3), and (A4) are satisfied, then the problem

x′ =A(t)x+z(t), Lx = r , (2.8)

has a unique solution w(t) for any r ∈Rn and z ∈ C[a,b].
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Proof. Let
w(t)≡ω0(t)+(L | S)−1

(−Lω0
)+(L | S)−1r , (2.9)

where ω0 is the unique solution to

x′ =A(t)x+z(t), x(a)= 0. (2.10)

It is easily verified by differentiation that w(t) is a solution to (2.8). If w1(t), w2(t)
are two solutions to (2.8), then w1(t)−w2(t) is the unique solution to

x′ =A(t)x, Lx = 0. (2.11)

Hence by property (A4), w1(t) ≡ w2(t); that is, w(t) is the unique solution to (2.8).

Lemma 2.8. Suppose (A1) and (A4) are satisfied. If ŵ0(t) is the unique solution to
(2.8) with r = 0, then

∥∥ŵ0
∥∥≤

∫ b
a

(
exp

∫ b
τ
‖A(s)‖ds

)
‖z(τ)‖dτ(1+∥∥(L | S)−1L∥∥). (2.12)

In particular, ∥∥ŵ0
∥∥≤K1‖z‖, (2.13)

where K1 = (b−a)exp
∫ b
a ‖A(s)‖ds(1+‖(L | S)−1L‖).

Proof. We have from (2.9) that

ŵ0(t)=ω0(t)+(L | S)−1
(−Lω0

)
, (2.14)

where ω0(t) is the unique solution to the initial value problem

x′ =A(t)x+z(t), x(a)= 0. (2.15)

Thus ∥∥ŵ0
∥∥≤ ∥∥ω0

∥∥+∥∥(L | S)−1L∥∥ ∥∥ω0
∥∥≤ ∥∥ω0

∥∥(1+∥∥(L | S)−1L∥∥). (2.16)

From Lemma 2.6 with t0 = a and r = 0, we have

∥∥ω0
∥∥≤

∫ b
a

(
exp

∫ b
τ
‖A(s)‖ds

)
‖z(τ)‖dτ (2.17)

and (2.12) follows.

The following notation will be used extensively in the remainder of this paper. Let
H be a positive number, #H = (H1,H2, . . . ,Hn), where each Hi is positive, and H(t) be
a continuous, positive function for a≤ t ≤ b. Let
ψ(r)=ψ(t;r ,a,b)≡ (L(a,b) | S)−1r ,
C(H)= C(H,r ,a,b)≡ {y ∈ C[a,b] : ‖y−ψ(r)‖ ≤H},
D(H)=D(H,r ,a,b)≡ {(t,y)∈D(a,b) : ‖y−ψ(t;r)‖ ≤H},
D(H,t)=D(H,r ,t)≡ {y ∈Rn : ‖y−ψ(t;r)‖ ≤H},
C
(
H(t)

)= C(H(t),r ,a,b)≡ {y ∈ C[a,b] : ‖y(t)−ψ(t;r)‖ ≤H(t), ∀t ∈ [a,b]},
C
(#H)=C(#H,r ,a,b)≡{y ∈ C[a,b] : ∥∥yi(t)−ψi(t;r)∥∥≤Hi, i= 1,2, . . . ,n; t ∈ [a,b]}.

(2.18)
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Note that C(H), C(H(t)), and C( #H) are closed, convex subsets of C[a,b]. Note also
that if y ∈ C(H), then (t,y(t))∈D(H) and y(t)∈D(H,t) for t ∈ [a,b].
If (A2) is satisfied and y ∈ C[a,b], then f(t,y(t)) is continuous on [a,b]. By

Lemma 2.7, the problem

x′ =A(t)x+f (t,y(t)), Lx = r , (2.19)

has a unique solution. We denote this solution by u(r ,y)=u(t;r ,y). Note that

u(r ,y)=ψ(r)+u(0,y). (2.20)

We now define a mapping T on C[a,b] by

T(y)≡u(r ,y). (2.21)

Note that if Tx = x, then x is a solution to the problem (1.5), (1.6).

Lemma 2.9. If (A1) through (A4) are satisfied, then T(C(H)) is relatively compact in
C[a,b].

Proof. By Lemma 2.8 and (2.20), for y ∈ C(H), we have
‖Ty‖ = ‖u(r ,y)‖ ≤ ‖ψ(r)‖+‖u(0,y)‖

≤ ∥∥(L | S)−1∥∥ ‖r‖+K1max
[a,b]

∥∥f (t,y(t))∥∥
≤ ∥∥(L | S)−1∥∥ ‖r‖+K1max

D(H)
‖f(t,z)‖ ≡ B1;

(2.22)

that is, T(C(H)) is bounded by B1. By Ascoli’s theorem, it is sufficient to show that
T(C(H)) is equicontinuous. For y ∈ C(H), Ty =u(r ,y) and
∥∥u′(t;r ,y)∥∥= ∥∥A(t)u(t;r ,y)+f (t,y(t))∥∥≤ ‖A‖B1+max

D(H)
‖f(t,z)‖ ≡ B2. (2.23)

By the mean value theorem, for t1, t2 ∈ [a,b],
∥∥u(t2;r ,y)−u(t1;r ,y)∥∥≤ B2∣∣t2−t1∣∣. (2.24)

Thus T(C(H)) is equicontinuous.

Lemma 2.10. If (A1) through (A4) are satisfied, then T is continuous on C(H).

Proof. Let ε > 0 be given. Since D(H) is compact, f is uniformly continuous on
D(H). There exists δ > 0 such that if (t1,x1) and (t2,x2) are in D(H) and |t1− t2|+
‖x1−x2‖< δ, then ‖f(t1,x1)−f(t2,x2)‖< ε/K1, where K1 is defined in Lemma 2.8.
If y1, y2 ∈ C(H), then Ty1−Ty2 is the solution to

x′ =A(t)x+f (t,y1(t))−f (t,y2(t)), Lx = 0. (2.25)

By Lemma 2.8, we have

∥∥Ty1−Ty2∥∥≤K1max
[a,b]

∥∥f (t,y1(t))−f (t,y2(t))∥∥. (2.26)
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If ‖y1−y2‖< δ; that is, ‖y1(t)−y2(t)‖< δ for t ∈ [a,b], then
max
[a,b]

∥∥f (t,y1(t))−f (t,y2(t))∥∥< ε
K1
,

∥∥Ty1−Ty2∥∥<K1 εK1 = ε. (2.27)

Hence, T is continuous on C(H).

3. Main results. With the aid of the preceding lemmas we can now prove our main
results.

Theorem 3.1. Suppose (A1) through (A4) are satisfied. If there exists H > 0 such
that

M(H)=M(H,r ,a,b)≡ sup
y∈C(H)

‖u(0,y)‖ ≤H, (3.1)

then problem (1.5), (1.6) has a solution x(t)∈ C(H).
Proof. From (2.20) we have Ty −ψ(r) = u(r ,y)−ψ(r) = u(0,y). Thus, for

y ∈ C(H), (3.1) yields
‖Ty−ψ(r)‖ = ‖u(0,y)‖ ≤H; (3.2)

that is, Ty ∈ C(H), and T(C(H))⊂ C(H). SinceC(H) is closed and convex, we can con-
clude from Lemmas 2.9 and 2.10 and the Schauder theorem in the form of Lemma 2.4
that T has a fixed point x ∈ C(H); that is, problem (1.5), (1.6) has a solution x ∈ C(H).

We may easily obtain some natural generalization of Theorem 3.1.

Theorem 3.2. Suppose (A1) through (A4) are satisfied. If there exists a positive,
continuous function H(t) on [a,b] such that

M
(
t,H(t)

)≡ sup
y∈C(H(t))

‖u(t;0,y)‖ ≤H(t) (3.3)

for t ∈ [a,b], then the problem (1.5), (1.6) has a solution x ∈ C(H(t)).
Proof. We have Ty(t)−ψ(t;r) = u(t;r ,y)−ψ(t;r) = u(t;0,y). The condition

(3.3) implies that, for y ∈ C(H(t)),
‖Ty(t)−ψ(t;r)‖ = ‖u(t;0,y)‖ ≤H(t) (3.4)

for t ∈ [a,b]. Thus Ty ∈ C(H(t)); that is, T(C(H(t)))⊂ C(H(t)). IfH ≡max[a,b]H(t),
then C(H(t)) ⊂ C(H). Moreover, T(C(H(t))) ⊂ T(C(H)). By Lemma 2.9, T(C(H))
is a relatively compact subset of C[a,b]; hence, T(C(H(t))) is relatively compact.
By Lemma 2.10, T is continuous on C(H); hence T is continuous on C(H(t)). Since
C(H(t)) is a closed, convex subset of C[a,b], we may conclude from Lemma 2.4 that
T has a fixed pointx inC(H(t)); that is, problem (1.5), (1.6) has a solutionx ∈ C(H(t)).

Theorem 3.3. Suppose (A1) through (A4) are satisfied. If there exists #H =
(H1,H2, . . . ,Hn) such that

Mi
( #H)= sup

y∈C( #H)

(
max
[a,b]

∣∣ui(t;0,y)∣∣
)
≤Hi (3.5)

for i= 1,2, . . . ,n, then problem (1.5), (1.6) has a solution x ∈ C( #H).
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Proof. From (2.20), we have

(Ty)i(t)−ψi(t;r)=ui(t;r ,y)−ψi(t;r)=ui(t;0,y) (3.6)

for i= 1,2, . . . ,n and t ∈ [a,b]. Condition (3.5) implies that, for y ∈ C( #H),
∣∣(Ty)i(t)−ψi(t;r)∣∣= ∣∣ui(t;0,y)−ψi(t;r)∣∣= ∣∣ui(t;0,y)∣∣≤Hi (3.7)

for i= 1,2, . . . ,n and t ∈ [a,b]. Thus Ty ∈ C( #H); that is, T(C( #H))⊂ C( #H).
If H ≡ nmax1≤i≤nHi, then C( #H) ⊂ C(H). Moreover, T(C( #H)) ⊂ T(C(H)). Since

T(C(H)) is relatively compact, T(C( #H)) must also be relatively compact. Since T is
continuous on C(H), T is continuous on C( #H). Since C( #H) is a closed, convex subset
of C[a,b], we may conclude from Lemma 2.4 that T has a fixed point x ∈ C( #H); that
is, the problem in (1.5), (1.6) has a solution x ∈ C( #H).
In order to give examples illustrating the improvements obtained in Theorems 3.2

and 3.3, we make the following observation.

Lemma 3.4. If L = L0, then (A4) is satisfied for any A(t); that is, the problem

x′ =A(t)x, L0(x)= x(a)= r , (3.8)

has a unique solution on [a,b] for any A(t) and r .

Proof. This is a special case of Lemma 2.6.

4. Examples. Below are two examples indicating the use of our main result.

Example 4.1. Consider the initial value problem

x′ = x, x(a)= 0, a≥ 0, (4.1)

that is, consider the problem (1.5), (1.6) withA(t)≡ 0, f(t,x)= x, r = 0, 0≤ a< b, and
L = L0. Since A(t) and f(t,x) are clearly continuous, (A1) and (A2) are satisfied. Prop-
erty (A3) was established by Lemma 2.1. Property (A4) is an immediate consequence
of Lemma 3.4.
Since ψ(t;0)≡ 0 for problem (4.1), we have

C(H)= {y ∈ C[a,b] : ‖y‖ ≤H}. (4.2)

Moreover, it is easily seen that for problem (4.1),

u(t;r ,y)= r +
∫ t
a
y(s)ds. (4.3)

Since y0(t)≡ (H/n,H/n,. . . ,H/n)∈ C(H), we have

M(H)≡ sup
y∈C(H)

‖u(0,y)‖ ≥max
[a,b]

∥∥∥∥
∫ t
a
y0(s)ds

∥∥∥∥≥ (b−a)H. (4.4)

If b−a> 1, then condition (3.1) is violated for any choice of H. If we define H(t)≡ et ,
we have

C
(
H(t)

)= {y ∈ C[a,b] : ‖y(t)‖ ≤ et, t ∈ [a,b]}. (4.5)
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It follows from (4.3) that

M
(
t,H(t)

)≡ sup
y∈C(H(t))

‖u(t;0,y)‖ = sup
y∈C(H(t))

∫ t
a
‖y(s)‖ds ≤

∫ t
a
es ds = et−a ≤H(t).

(4.6)

Thus condition (3.3) is satisfied for H(t) ≡ et and existence of a solution to (4.1) in
C(H(t)) follows from Theorem 3.2.

Example 4.2. Consider the initial value problem

x′ =
[
1 0
0 1

]
x+

[
x2
α

]
, x(a)= 0, (4.7)

where α> 0; that is, consider problem (1.5), (1.6) with n= 2,

A(t)=
[
1 0
0 1

]
, f (t,x)=

[
x2
α

]
, (4.8)

r = 0, and L = L0. The properties (A1) through (A4) are satisfied as in the first example.
Since r = 0, we have

C(H)= {y ∈ C[a,b] : ‖y‖ ≤H}. (4.9)

It is easily verified that

u(t;r ,y)≡ ret−a+
∫ t
a
exp(t−s)

[
y2(s)
α

]
ds (4.10)

is the unique solution to

x′(t)=
[
1 0
0 1

]
x(t)+

[
y2(t)
α

]
, L0x = x(a)= r . (4.11)

Since

ȳ(t)=
[
0
H

]
(4.12)

is an element of C(H), we have

M(H)≡ sup
y∈C(H)

‖u(0,y)‖ ≥ ‖u(0, ȳ)‖

≥max
[a,b]

∥∥∥∥∥
∫ t
a
exp(t−s)

[
H
α

]
ds

∥∥∥∥∥
≥ (H+α)(exp(b−a)−1).

(4.13)

If b−a > ln2, then M(H) > H for every H > 0; that is, equation (3.1) is violated for
any H > 0. Let H1 ≡ (exp(b−a)−1)2α, H2 ≡ (exp(b−a)−1)α, and #H ≡ (H1,H2).
Since r = 0,

C
( #H)= {y ∈ C[a,b] : ∣∣y1(t)∣∣≤H1,

∣∣y2(t)∣∣≤H2, t ∈ [a,b]
}
. (4.14)
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It follows from (4.10) that

M1
( #H)≡ sup

y∈C( #H)

(
max
[a,b]

∣∣u1(t;0,y)
∣∣)

≤ sup
y∈C( #H)

(
max
[a,b]

∣∣∣∣
∫ t
a
exp(t−s)y2(s)ds

∣∣∣∣
)

≤ sup
y∈C( #H)

(
max
[a,b]

∣∣y2(s)∣∣
∫ b
a
exp(b−s)ds

)

≤H2
(
exp(b−a)−1)=H1,

M2
( #H)≡ sup

y∈C( #H)

(
max
[a,b]

∣∣u2(t;0,y)
∣∣)

≤ sup
y∈C( #H)

(
max
[a,b]

∣∣∣∣
∫ t
a
exp(t−s)αds

∣∣∣∣
)

≤α(exp(b−a)−1)=H2.

(4.15)

Thus (3.5) is satisfied and by Theorem 3.3, equation (4.7) must have a solution inC( #H).
Let

S(H)≡ {y ∈ C[a,b] : ‖y‖ ≤H}. (4.16)

As an alternative to the mapping T employed in the proof of Theorems 3.1, 3.2, and
3.3, we might have considered the mapping

T1 : S(H) �→ C[a,b] (4.17)

defined by
T1z ≡ f

(
t,w(t;r ,z)

)
, (4.18)

where w(t;r ,z)=w(r,z) is the unique solution to

x′ =A(t)x+z(t), Lx = r . (4.19)

Note that if T1z = z for some z ∈ S(H), then

w′(t;r ,z)=A(t)w(t;r ,z)+z(t)=A(t)w(t;r ,z)+f (t,w(t;r ,z)) (4.20)

on [a,b] and Lw(r,z)= r ; that is, w(r,z) is a solution to (1.5), (1.6).
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