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Abstract. The wave packet method, one form of the WKB technique, recently has been
employed to investigate the evolution of long planetary wave packets in relation to the
complex climate variability in the world oceans. However, such a method becomes invalid
near the caustics. Here, the Lagrange manifold formalism is used to extend this analysis
to include the caustic regions. We conclude that even though the wave packet method fails
near the caustics, the equations derived from this method away from caustics are identical
to the ones from the Lagrange manifold formalism near caustics.
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1. Introduction. Recently, wave packet theory has been used by Yang [10, 11] in
two studies to analyze the evolution of long planetary wave packets. In the first study,
the evolution of long planetary wave packets in a continuously stratified ocean with
exponentially decaying stratification and mean zonal current was considered. The
analysis successfully explained all major features of long planetary Rossby waves
recently observed in the Topex/Poseidon satellite data in the global ocean. In the sec-
ond study, the evolution of three-dimensional wave packets in a subtropical gyre was
studied. This analysis led to a rudimentary theory for ocean climate variability on the
inter-annual to decadal time scale observed in the sea surface height changes and the
ocean temperature changes and provided insight of dynamical process of complex
ocean climate variability. The ocean response may undergo transition between dif-
ferent regimes. The transition of regime may be one more reason that the observed
climate variability in the ocean is so complicated with a variety of time scales between
interannual and decadal. These predictions are consistent with observations in the
North Pacific and other analytic and numerical model results. These results were also
further discussed in [12]. While the focus of each investigation was the development
of analytical solutions, wave packet theory enabled an analysis of the structural evo-
lution of the wave packet associated with each setting [9].
Wave packet theory is based on the WKB formalism, originally developed for water

waves but primarily associated with quantum mechanics [4]. Near caustic or turn-
ing points the classical WKB approach is not valid [6], for example, physically in
regimes, where the phase velocity of the wave packet coincides with the velocity of
the large-scale current. A related approach that does apply in such regimes is the
Lagrange manifold formalism developed by Maslov [7] and Arnol’d [1]. Here, we use
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the Lagrange manifold formalism, as adapted to geophysical models [2, 3], to study
wave phenomena near caustics for those environments considered by Yang. Our pur-
pose is to complement his results and to illustrate how the approach may be used to
study the caustic curve itself. For completeness, we include a summary of the models
considered and an outline of the basic algorithm.

2. Potential vorticity equation in the zonal current. The linearized nondimen-
sional equation governing the potential vorticity in a stratified three-dimensional
quasi-geostrophic baroclinic ocean for large-scale motion can be written as

(
∂
∂t
+U(z) ∂

∂x

)
q′ +B ∂ψ

′

∂x
= 0, (2.1)

where q′ is the perturbation potential vorticity, defined as

q′ = ∂2ψ′

∂x2
+ ∂

2ψ′

∂y2
+ ∂
∂z

(
1
S
∂ψ′

∂z

)
. (2.2)

In these equations, x, y , and z are eastward, northward, and upward coordinates,
respectively, B is the meridional gradient of the mean potential vorticity, Q,

B = ∂Q
∂y

= β− ∂
∂z

(
1
S
∂U
∂z

)
; (2.3)

and S is the nondimensional stratification parameter, defined as

S = N2D2

L2f 20
. (2.4)

Here,N is the Brunt-Väisälä frequency; L andD are the horizontal and vertical charac-
teristic scales, respectively; f0 is the Coriolis parameter; β is the meridional gradient
of the Coriolis parameter; U(z) is the mean zonal ocean current [8, 9].
We assume that the stratification parameter may be modeled by an exponential

function of z with a depth scale H, namely

S = S0 ez/H, (2.5)

where S0 is the value of the stratification parameter at z = 0. Exponential stratification
is a commonly-used, realistic model for the global subsurface ocean. We also assume
that the mean zonal ocean circulation takes the form

U =Usez/2H cos(kπz), (2.6)

where k is the vertical wave number of the mean zonal ocean current and Us is the
zonal mean current at the sea surface (at the top of the thermocline). A recent discus-
sion of these assumptions is provided in [5, 10, 11].
We begin by introducing the transformation

ψ′ = ez/2Hψ (2.7)
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which allows us to rewrite the perturbation equation (2.1) as(
∂
∂t
+U(z) ∂

∂x

)
q+B ∂ψ

∂x
= 0, (2.8)

where

q =− ψ
4H2S

+ ∂
2ψ
∂x2

+ 1
S
∂2ψ
∂z2

, B = β+ 1+4H
2k2π2

4H2S
U, (2.9)

and the perturbation is now assumed independent of y , the northward coordinate,
for the planetary waves.

3. Lagrange manifold algorithm. Following Yang, we assume that the mean zonal
current U , the stratification parameter S, and the potential vorticity parameter B are
slowly varying with respect to space. We rescale our independent variables

εr̄ = ε(x,z) �→ (x,z), εt �→ t, (3.1)

where ε is a small parameter, for example, physically the ratio of the characteristic
horizontal scale of the wave packet to the horizonal scale of the ocean basin. Then (2.8)
becomes

ε3
(
∂
∂t
+U(z) ∂

∂x

)(
∂2ψ
∂x2

+ 1
S
∂2ψ
∂z2

− 1
ε24H2S

ψ
)
+εB ∂ψ

∂x
= 0, (3.2)

where B is now the rescaled B, that is, B(x,z) = B(εx,εz). Near caustics, we assume
that (3.2) has a solution of the form

ψ(x,z,t)=
∫
A
(
r̄ , p̄,t,ε

)
eiφ/ε dp̄. (3.3)

In (3.3), r̄ = (x,z) are coordinates and p̄ = (m,l) are the corresponding wave-vectors.
The amplitude

A
(
r̄ , p̄,t,ε

)∼ ∑
k=0

Ak
(
r̄ , p̄,t

)( i
ε

)k
(3.4)

and its derivatives are assumed bounded and

φ
(
r̄ , t, p̄,ω

)= r̄ · p̄−ωt−Θ(p̄,ω), (3.5)

where Θ(p̄,ω)may be regarded as a phase. Then substituting (3.3) into (3.2), and, fol-
lowing Yang, introducing into the resulting equation wave-vector, p̄, and frequency,ω,

p̄ =∇φ, ω=−∂φ
∂t

(3.6)

leads to∫ {[
Bm+

(
m2+ l

2

S
+ 1
4H2S

)
(ω−Um)

]
A

×iε
[(
2ωm+B−U

(
3m2− 1

4H2S

))
∂A
∂x

+ 2
S
(ω−2Ul)∂A

∂z
−
(
m2+ l

2

S
+ 1
4H2S

)
∂A
∂t

]

×(iε)2
[
(3Um−ω)∂

2A
∂x2

+ 3Ul
2−ω
S

∂2A
∂z2

+2
(
m

∂2A
∂x∂t

+ 1
S
∂2A
∂z∂t

)]

+(iε)3
[(

∂
∂t
+U ∂

∂x

)(
∂2A
∂x2

+ 1
S
∂2A
∂z2

)]}
eiψ/εdp̄ ∼ 0.

(3.7)
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Here, the coefficient of the (iε)0 term is the Hamiltonian

H
(
r̄ , p̄

)= (m2+ l
2

S
+ 1
4H2S

)
(ω−Um)+Bm. (3.8)

On the caustics, the integral is evaluated at any point (x,z) using the stationary phase
condition [∇pφ= 0], which obtains the Lagrange manifold

r̄ =∇pΘ
(
p̄,ω

)
(3.9)

and turns the Hamiltonian into an eikonal equation [2, 3],

(
m2+ l

2

S
+ 1
4H2S

)
(ω−Um)+Bm= 0. (3.10)

We determine the phase from Hamilton’s equations. First, the equations are solved to
obtain

r̄ = r̄(γ,σ̄), p̄ = p̄(γ,σ̄), t = t(γ,σ̄), ω=ω(γ,σ̄), (3.11)

where γ is an arbitrary ray-path parameter and σ̄ an initial condition, for example,
direction cosines. Then the inversion of the wave-vector and time transformations,
followed by substitution into the coordinate space map determines the Lagrange man-
ifold explicitly

r̄ = r̄(γ(p̄,ω), σ̄(p̄,ω))=∇pΘ
(
p̄,ω

)
. (3.12)

Integration along the trajectories determines

Θ
(
p̄,ω

)=
∫ p̄
p̄0
r̄ ·dp̄ (3.13)

and hence, the phase

φ
(
r̄ , t, p̄,ω

)= r̄ · p̄−ωt−Θ(p̄,ω). (3.14)

We obtain a transport equation for the amplitudes by Taylor-expanding, the Hamil-
tonian near the Lagrange manifold

H
(
r̄ , p̄

)=H(∇pΘ, p̄
)+(r̄ −∇pΘ

)·D̄ = (r̄ −∇pΘ
)·D̄, (3.15)

where

D̄ =
∫ 1
0
∇rH

(
ζ
(
r̄ −∇pΘ

)+∇pΘ, p̄
)
dζ. (3.16)

Next, substituting (3.15) into (3.7), performing a partial integration and introducing
the non-Hamiltonian flow

¯̇r = (ẋ, ż)= (B+2ωm−3Um2− U
4H2S

,
2(ω−Um)l

S

)
,

ṫ =−
(
m2+ l

2

S
+ 1
4H2S

)
, ¯̇p =−D̄,

(3.17)
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where the differentiations are with respect to the ray-path parameter, determines a
transport equation in a neighborhood of the Lagrange manifold

dAk
dt

−∇p ·D̄Ak+(3Um−ω)∂
2Ak−1
∂x2

+ (Um−ω)
S

∂Ak−1
∂z2

+2
(
m
∂2Ak−1
∂x∂t

+1
S
∂2Ak−1
∂z∂t

+ml
S
∂2Ak−1
∂z∂x

)
+
(
∂
∂t
+U ∂

∂x

)(
∂2Ak−2
∂x2

+ 1
S
∂2Ak−2
∂z2

)
= 0.
(3.18)

The k = 0 equation corresponds to equation (2.21) in [10]. With the amplitudes de-
termined, ψ(x,z,t) in (3.3) may now be determined at any point on the caustic curve
through conventional asymptotic evaluation of the integral. A detailed treatment with
an example appears in [2].
We conclude by noting that, in this approach the entire caustic curve, or locus of

turning points, may be determined by setting the Hessian determinant of the phase
to zero

det
(
∂2φ
∂m∂l

)
= 0. (3.19)

Each real p̄ = (m,l) satisfying this equation specifies a caustic point in wave-vector
space. The corresponding point in configuration space may be obtained by substitut-
ing this wave-vector into the Lagrangemanifold, (3.9). The locus of these configuration
space points is the caustic curve.

4. Analysis I. Since the Lagrange manifold formalism is essentially an integral rep-
resentation of theWKB approach, wemay use it to study wave packet properties on the
caustics in a manner analogous to that used by Yang to study wave packet properties
away from the caustics. (The corresponding equations cited here appear in [10].)
By solving the eikonal equation for ω, we obtain the same dispersion equation on

the caustics that Yang determines away from the caustics, equation (see [10, equa-
tion (2.19)]),

ω= σ =U(z)m− Bm
K2

, (4.1)

where

K2 =m2+ l
2

S
+ 1
4H2S

. (4.2)

(Yang uses σ rather than ω.) Further, from (3.12), we determine phase velocities

Cx = ω
m
=U− B

K2
, Cz = ω

l
= Um

l
− Bm
lK2

(4.3)

and group velocities

Cgx = ∂ω
∂m

=U(z)−
(
K2−2m2

)
B

K4
, Cgz = ∂ω

∂l
= 2mlB

SK4
(4.4)

on the caustics identical to those determined by Yang away from the caustics, equa-
tions (see [10, equations (2.22)–(2.25)]). We note that, Cgx and Cgz also may be deter-
mined from Hamilton’s equations if we replace the ray-path parameter γ with t. Then,
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Hamilton’s equations (cf. [10, equations (2.16) and (2.17)]) become

dx
dt

= ∂H/∂m
−∂H/∂ω = Cgx, dz

dt
= ∂H/∂l
−∂H/∂ω = Cgz,

dσ
dt

= ∂H/∂γ
−∂H/∂ω = 0, dm

dt
= −∂H/∂x
−∂H/∂ω = 0,

dl
dt
= −∂H/∂z
−∂H/∂ω =−m∂U

∂z
−
(
1+4H2l2)mB
4H3SK4ε

− m
K2

∂B
∂z
,

dt
dt
= −∂H/∂ω−∂H/∂ω = 1.

(4.5)

The equations for dσ/dt, dm/dt, and dl/dt match Yang’s equations (cf. [10, equa-
tions (2.26)–(2.28)]). We conclude by noting that the various simplifying approxima-
tions considered by Yang, for example, long planetary wave approximation, lead to
corresponding simplifications in his modeling equations away from the caustics. Iden-
tical equations may be derived on the caustics. For brevity we do not present them
here.

5. Potential vorticity equation in the general ocean circulation. The linearized
nondimensional equation governing the potential vorticity in a stratified three-
dimensional quasi-geostrophic baroclinic ocean for large-scale motion can be writ-
ten as (

∂
∂t
+U(x,y,z) ∂

∂x
+V(x,y,z) ∂

∂y

)
q′ +B1 ∂ψ

′

∂x
−B2 ∂ψ

′

∂y
= 0, (5.1)

where q′ is the perturbation potential vorticity, defined as

q′ = ∂2ψ′

∂x2
+ ∂

2ψ′

∂y2
+ ∂
∂z

(
1
S
∂ψ′

∂z

)
, (5.2)

in the domain (0 ≤ x ≤ xe, 0 ≤ y ≤ 1, −1 ≤ z ≤ 0), where xe is the location of the
eastern boundary. As above, x, y , and z are the eastward, northward, and upward
coordinates. U(x,y,z) and V(x,y,z) are the eastward and northward components
of the mean ocean currents. B1 and B2 are, respectively, the meridional and zonal
gradients of the mean potential vorticity, Q, that is,

B1 = ∂Q
∂y

, B2 = ∂Q
∂x

, (5.3)

where

Q= βy+∇2Φ+ ∂
∂z

(
1
S
∂Φ
∂z

)
. (5.4)

∇2 is the horizontal Laplacian operator, S is the nondimensional stratification param-
eter defined above, and Φ is the stream function for the mean ocean current defined
so that the wind-driven circulation satisfies the Sverdrup relation with the transport
function ∫ z=0

z=−1
Φdz =− ∂τ

∂y
(
xe−x

)
, (5.5)
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where τ is the zonal wind stress, specified so that the mean ocean circulation repre-
sents the subtropical ocean gyre. As above in (2.5), we assume that the vertical strat-
ification parameter is exponential with scale H. We further assume that the vertical
dependence of the mean zonal circulation takes the form

F(z)= 1
A
ez/2H cos(kπz), (5.6)

where k is the vertical wave number of the mean ocean circulation and A is a normal-
ization constant so that the vertically integrated transport is equal to the Sverdrup
transport [11].
Analogous to the above, we begin by introducing a transformation

ψ′ = ez/2Hψ, (5.7)

which allows us to rewrite the perturbation equation (5.1) as(
∂
∂t
+U ∂

∂x
+V ∂

∂y

)
q+B1 ∂ψ∂x −B2

∂ψ
∂x

= 0, (5.8)

where

q = ∂2ψ
∂x2

+ ∂
2ψ
∂y2

+ 1
S
∂2ψ
∂z2

− ψ
4H2S

,

B1 = ∂Q
∂y

= β+ 1+4H
2π2

(
k2+S)

4H2S
U,

B2 = ∂Q
∂x

=−1+4H
2π2

(
k2+S)

4H2S
V.

(5.9)

The Lagrange manifold procedure developed above may be applied here to deter-
mine an asymptotic solution near the caustics. An integral solution of the form ap-
pearing in (3.2), (3.3), (3.4), and (3.5) is assumed, the only difference coming from the
added dimension considered in coordinate space. Consequently, the amplitude A and
the phaseφ are now functions of three coordinate space variables and their conjugate
wave-vectors, that is, r̄ = (x,y,z) then, p̄ = (m,n,l), and hence, dp̄ = dmdndl.
Then substituting the assumed integral solution into (5.7), introducing wave-vector

and frequency, (cf. (3.6)), and following the procedure above leads to the Hamiltonian

H
(
r̄ , p̄

)= (m2+n2+ l
2

S
+ 1
4H2S

)
(ω−Um−Vn)+B1m−B2n. (5.10)

Proceeding through the algorithm, we obtain the transport equation

dAk
dt

−∇·D̄Ak+(3Um+Vn−ω)∂
2Ak−1
∂x2

+(3Vn+Um−ω)∂
2Ak−1
∂y2

+ (Um+Vn−ω)
S

∂2Ak−1
∂z2

+2
(
m
∂2Ak−1
∂x∂t

+n∂
2Ak−1
∂y∂t

+ l
S
∂2Ak−1
∂z∂t

)

+2(Um+Vn)∂
2Ak−1
∂x∂y

+ l
S

(
U
∂2Ak−1
∂x∂z

+V ∂
2Ak−1
∂y∂z

)

+
(
∂
∂t
+U ∂

∂x
+V ∂

∂y

)(
∂2Ak−2
∂x2

+ ∂
2Ak−2
∂y2

+ l
S
∂2Ak−2
∂z2

)
= 0,

(5.11)
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where D̄ is defined as in (3.16). The k = 0 equation corresponds to equation (2.28)
in [11].

6. Analysis II. We parallel the treatment above and begin by noting that if the
eikonal equation is solved forω, we obtain Yang’s dispersion equation (2.26) in [11],

ω= σ =U(x,y,z)m+V(y,z)n− B1m
K2

− B2n
K2

, (6.1)

where

K2 =m2+n2+ l
2

S
+ 1
4H2S

. (6.2)

From (6.1), we determine identical phase velocities (cf. [11, equations (2.29)–(2.31)]),

Cx = ω
m
=U+V n

m
− B1
K2
+ n
mK2

B2,

Cy = ω
n
=Um

n
+V − m

nK2
B1+ 1

K2
B2,

Cz = ω
l
=Um

l
+V n

l
− m
lK2

B1+ n
lK2

B2,

(6.3)

and group velocities (cf. [11, equations (2.32)–(2.34)]),

Cgx = ∂σ
∂m

=U−
(
K2−2m2

)
B1+2mnB2
K4

,

Cgy = ∂σ
∂n

= V + 2mnB1+
(
K2−2n2)B2
K4

,

Cgz = ∂σ
∂l
= 2l
SK4

(
mB1−nB2

)
,

(6.4)

on the caustics to those determined away from the caustics.
In this setting, the corresponding Hamilton’s equations become

dx
dt

= ∂H/∂m
−∂H/∂ω = Cgx, dy

dt
= ∂H/∂n
−∂H/∂ω = Cgy,

dz
dt

= ∂H/∂l
−∂H/∂ω = Cgz, dσ

dt
= ∂H/∂γ
−∂H/∂ω = 0,

dm
dt

= −∂H/∂x
−∂H/∂ω =−m∂U

∂x
−n∂V

∂x
+ m
K2

∂B1
∂x

− n
K2

∂B2
∂x

,

dn
dt

= −∂H/∂y
−∂H/∂ω =−m∂U

∂y
−n∂V

∂y
+ m
K2

∂B1
∂y

− n
K2

∂B2
∂y

,

dl
dt
= −∂H/∂z
−∂H/∂ω = m

K2
∂B1
∂z

− n
K2

∂B2
∂z

−m∂U
∂z
−n∂V

∂z
−
(
1+4H2l2)(mB1−nB2

)
4H3SK4ε

,

dt
dt
= −∂H/∂ω−∂H/∂ω = 1.

(6.5)

The equations for dσ/dt, dm/dt, dn/dt, and dl/dt match Yang’s equations
(2.35)–(2.38) of [11]. Again, we conclude by noting that the various simplifying ap-
proximations considered by Yang, for example, long planetary wave approximation,
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lead to corresponding simplifications in his modeling equations away from the caus-
tics. Identical equations may be derived on the caustics.
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