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STATISTICAL APPLICATIONS FOR EQUIVARIANT MATRICES

S. H. ALKARNI
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Abstract. Solving linear system of equations Ax = b enters into many scientific appli-
cations. In this paper, we consider a special kind of linear systems, the matrix A is an
equivariant matrix with respect to a finite group of permutations. Examples of this kind
are special Toeplitz matrices, circulant matrices, and others. The equivariance property of
Amay be used to reduce the cost of computation for solving linear systems. We will show
that the quadratic form is invariant with respect to a permutation matrix. This helps to
know the multiplicity of eigenvalues of a matrix and yields corresponding eigenvectors at
a low computational cost. Applications for such systems from the area of statistics will be
presented. These include Fourier transforms on a symmetric group as part of statistical
analysis of rankings in an election, spectral analysis in stationary processes, prediction of
stationary processes and Yule-Walker equations and parameter estimation for autoregres-
sive processes.
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1. Introduction. Many problems in science and mathematics exhibit equivariant
phenomena which can be exploited to achieve a significant cost reduction in their
numerical treatment. Recent monographs [16, 17, 21] have shown the efficiency of
applying group theoreticalmethods in the study of various problems having symmetry
properties. Allgower et al. [2, 4] presented some techniques for exploiting symmetry
in the numerical treatment of linear integral equations, with emphasis on boundary
integralmethods in three dimensions. Georg and Tausch [15] introduced a user’s guide
for a software package to solve equivariant linear systems. Definitions for this subject
are introduced first.

1.1. Definitions

Definition 1.1
Group. An ordered pair (Γ ,o) is a group if Γ is a set and o is an operation o : Γ×Γ → Γ

such that
(a) for any γ1,γ2 ∈ S ⇒ γ1oγ2 ∈ Γ ,
(b) there exists e∈ Γ such that eoγ = γ,
(c) (γ1oγ2)oγ3 = γ1o(γ2oγ3),
(d) there exists γ−1 ∈ Γ such that γoγ−1 = e.
Definition 1.2
Equivariant matrices. An n×n matrix A is equivariant with respect to a finite

group G of permutations if, for every s ∈G,
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AΠ(s)=Π(s)A, (1.1)

where Π(s) is the permutation matrix for s ∈ G. For more information on group the-
oretical methods and their applications, see Fässler and Stiefel [14].

Note that (1.1) is equivalent to

A=Π−1(s)AΠ(s). (1.2)

Note also since Π = (eπ(1),eπ(2), . . . ,eπ(n)) for some permutation Π, then ΠTΠ = I.
Therefore, Π−1(s)=ΠT (s).

The product B = AΠ(s) is the matrix whose columns are the permuted columns
of A with respect to the permutation π(s) and ΠB is the matrix whose rows are the
permuted rows of B and also with respect to π .

In addition, note that (1.1) is equivalent to

ajk = aπ(s)(j),π(s)(k) for j = 1, . . . ,n, k= 1, . . . ,n. (1.3)

1.2. Some equivariant matrices

1.2.1. Symmetric Toeplitz matrices. Toeplitz matrices arise in many fields of ap-
plications, such as signal processing, coding theory, speech analysis, probability, and
statistics.

Definition 1.3. An n×n symmetric Toeplitz matrix is characterized by the prop-
erty that it has constant diagonals from top left to the bottom right. The general case is

Tn =




a11 a12 ··· a1n−1 a1n

a12 a11 ··· a1n−2 a1n−1
...

...
. . .

...
...

a1n a1n−1 ··· a12 a11



. (1.4)

Note that π = (n n−1 n−2 ··· 3 2 1) and the corresponding permutation matrix is

Π=



0 ··· 1
...

...
1 ··· 0


 . (1.5)

It is clear that (1.3) holds for Tn. Matrices Tn are equivariant matrices with this cyclic
group of two elements. In fact, this holds also for any symmetric matrix.

1.2.2. Equivariant circulant matrices

Definition 1.4. An n×n matrix Cn is a circulant matrix if it is of the form:

Cn =




c1 c2 c3 ··· cn
cn c1 c2 ··· cn−1

. . .
. . .

. . .
...

c2 c3 c4 ··· c1



. (1.6)
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For the permutation π = (1 2 3 ··· n), obviously (1.3) holds and

Π=




0 0 ··· 0 1
1 0 ··· 0 0
0 1 ··· 0 0

0 0 ··· ...
...

...
... 0 0

0 0 ··· 1 0




. (1.7)

The group here is a special group, the cyclic group of permutations: {e,π,π2, . . . ,πn−1}
group π . Note that Cn has the equivariance of the cyclic group {e,π,π2, . . . ,πn−1} of
order n. Cn commutes with the permutation matrix Π.

If Γ is a finite group,H a finite dimensional vector space, R : Γ → L(H) a linear repre-
sentation (i.e., an action) of Γ on H, and A :H →H a linear operator which commutes
with R (i.e., is equivariant), then it is well known that H splits into a canonical direct
sum

H =
⊕
r,k
Hr,k (1.8)

via the projectors

Pr,k = dimr
|Γ |

∑
g∈Γ
r
(
g−1

)
[k,k]R(g), (1.9)

where r runs through a complete list of irreducible representations of Γ and 1 ≤ ρ ≤
dimr. It is well known that the equivariance of A leads to a splitting

A=
⊕
r,ρ
Ar,ρ, (1.10)

where Ar,ρ :Hr,ρ →Hr,ρ . This can be exploited to solve linear equations or eigenvalue
problems involving A. Hence the linear equations or eigenvalue problems are solved
over each of the subspacesHr,ρ . We call this approach the symmetry reductionmethod.
In [4] methods of implementing the symmetry reduction method are described in
detail.

2. Applications. Equivariantmatrices occur inmany scientific phenomena ofmath-
ematics, physics, engineering, etc. We have chosen statistics to be our target of appli-
cations. In this section, we present some applications for equivariant matrices. The
first one is the well-known Fourier transformation and the second one is the stationary
processes in time series analysis.

2.1. Fourier transforms. Fourier transforms on finite groups have various appli-
cations: Fourier transforms on finite cyclic groups are used for fast polynomial and
integer multiplication [18, 19]. The Fourier transforms corresponding to elementary
abelian 2-groups are called Walsh-Hadamard transforms. They play an important role
in digital image processing and in complexity analysis. Diaconis [12] uses Fourier
transforms on symmetric groups for the variance analysis of ranked data. Further



56 S. H. ALKARNI

applications of Fourier transforms on non-abelian groups to problems in combina-
torics, theoretical computer science, probability theory and statistics are described
by Diaconis in [11].

We have recently had to compute Fourier transforms on the symmetric group Sn
as part of a statistical analysis of rankings in an election. Here n is the number of
candidates, and f(π) is the number of voters choosing the rank orderπ . LetΠ= ρ(π)
be the permutation matrix for π . The entries of Π, say (i,j), are 1 in position (i,j) if
π(i)= j. Hence the Fourier transforms

f̂ (ρ)=
∑
π
f(π)ρ(π) (2.1)

counts how many voters ranked candidate i in position j. Diaconis and Rockmore
[13] derived fast algorithms for computing f̂ (ρ) and developed them for symmetric
groups. The Fourier transform(s) is closely related to the generalized Fourier trans-
form used in [4] for the symmetry reduction method.

2.2. Stationary time series processes

Definition 2.1. A time series {Xt,t ∈ Z}, with index set Z = {0,±1,±2, . . .} is said
to be stationary if

(i) E|Xt|2 <∞ for all t ∈ Z ,
(ii) EXt =m for all t ∈ Z ,
(iii) γX(h)= Cov(Xt+h,Xt) for all t,h∈ Z ,

where E is the expected value for the random series Xt and “Cov” refers to the covari-
ance function between any two random series defined as follows.

Definition 2.2 (expectation). Let X be a random variable. The expected value or
the mean of X denoted by EX is defined by

EX =
∫∞
0

[
1−FX(x)

]
dx−

∫ 0

−∞
FX(x)dx, (2.2)

where FX(·) is the distribution function of the random variable X.

Definition 2.3 (covariance). Let X and Y be any two random variables defined on
the same probability space. The covariance ofX and Y denoted by γX,Y (·) is defined as

γX,Y (·)= Cov(X,Y)= E[(X−EX)(Y −EY)]. (2.3)

Note that this definition is equivalent to saying that for any given time series to be
stationary it has to have a finite second moment, the first moment is constant over
time and the covariance function depends only on the difference of the time. From
this definition we see that the third property implies

Cov
(
Xt,Xt+h

)= Cov
(
Xt−h,Xt

)= Cov
(
Xt,Xt−h

)= γX(h). (2.4)
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In a matrix format, if we have x1,x2, . . . ,xn observed n time series, then

Γn(h)=




γ(0) γ(1) ··· γ(n−1)
γ(1) γ(0) ··· γ(n−2)
...

...
. . .

...
γ(n−1) γ(n−2) ··· γ(0)




(2.5)

which is ann×n symmetric Toeplitzmatrix as it was defined in (1.4) with permutation
π = (n n−1 n−2 ··· 3 2 1). It is well known that a covariance matrix must be a
nonnegative definite matrix and most cases positive definite. This matrix enters in a
linear system as we will see in (2.12) and (2.15).

For more information on stationary time series processes, see any time series book
(cf. [7]).

Since Γn has the equivariance property, we take advantage of this property as
Allgower and Fässler [3] mentioned in their paper to minimize the cost of compu-
tation in solving linear systems of equations in prediction in stationary time series.
This should be effective since usually n is very large, 1000, 3000, etc.

For solving a linear system of the form Ax = b, where A is an n-by-n Toeplitz
matrix and because A is completely specified by 2n−1 numbers, it is desirable to
derive an algorithm for solving Toeplitz systems in less than the O(n3) complexity
for Gaussian elimination for a general matrix. In time series analysis algorithms with
O(n2) complexity have been known for some time and are based on the Levinsion
recursion formula [7]. More recently, even faster algorithms with O(nlog2n) have
been proposed [5, 6] but their stability properties are not yet clearly understood [8].

An alternative is to use iterative methods, based on using matrix-vector products
of the form Aν , which can be computed in O(n logn) complexity via the fast Fourier
transform (FFT). To have any chance of beating the direct methods, such iterations
must converge very rapidly and this naturally leads to the search for good precondi-
tioners for A. Strang [20] proposed using circulant preconditioners, because circulant
systems can be solved efficiently by FFT’s in O(n logn) complexity. In particular if
Γn in stationary processes is positive definite, then a circulant preconditioner S can
be obtained by copying the central diagonals of Γn and “bringing them around” to
complete the circulant.

Chan [9] viewed a preconditioner C for a matrix A in solving a linear system Ax = b
as an approximation to A. He derived an optimal circulant preconditioner C in the
sense of minimizing ‖C−A‖.
2.2.1. A distribution problem in spectral analysis. In connection with stationary

processes, certain results on quadratic forms can be used to solve a distribution prob-
lem in spectral analysis. Let Xt be a real and normally distributed stationary process
with a discrete time parameter and with an absolutely continuous spectrum. One of
the important problems in the theory of time series is to find an estimate f̂ (λ) for the
spectral density f(λ), assuming that the process has been observed for t = 1,2, . . . ,n.
The estimate f̂ (λ) must be a function of x1, . . . ,xn, and there are reasons to require
that this function should be a nonnegative quadratic form (Grenander and Rosenblatt
1957).
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Thus an estimate of the form

f̂ = XTWX (2.6)

is considered, where XT = (X1, . . . ,Xn) andW is nonnegative. The exact distribution or
approximate distribution of f̂ is needed. In almost all important cases,W is a Toeplitz
matrix. It is well known that f̂ can be reduced to the canonical form

f̂ =
r∑
j=1
λjχ2

j , (2.7)

where r is the rank ofW and λj ’s are the eigenvalues ofW and the χ2
j ’s are independent

chi-square random variables with one degree of freedom each. After finding the λj ’s
it becomes easier to find approximation to the distribution of f̂ , see Alkarni [1].

The following result shows that if A is equivariant, then the quadratic form Q(x)=
xTAx is invariant with respect to its permutation group.

Theorem 2.4. Suppose A is real and equivariant matrix with respect to a permu-
tation group Γ , then the quadratic form Q(x) = xTAx is invariant with respect to the
permutation matrix Γ . Moreover, for allπ ∈ Γ if (λ,x) is an eigenvalue-eigenvector pair,
then so is (λ,Πx) and λ has multiplicity equal to dim(sp{Πx :Π∈ Γ}).

Proof. Let Π∈ Γ , then

Q(Πx)= (Πx)TA(Πx)= (xTΠT )A(Πx)= xT (ΠTAΠ)x= xTAx=Q(x). (2.8)

Now suppose Ax= λx, where A is equivariant with respect to a permutation group Γ
then for all Π∈ Γ ,

A(Πx)=Π(Ax)=Π(λx)= λΠx (2.9)

which implies that if (λ,x) is an eigenvalue-eigenvector pair, then (λ,Πx) is also an
eigenvalue-eigenvector pair.

Suppose now that Πx≠ αx for every scalar α≠ 0. Then Πx is another eigenvector,
therefore λ has a multiplicity equal to dim(sp{Πx :Π∈ Γ}).

We conclude that the equivariance property helps to know the multiplicities of
eigenvalues of a matrix and yields corresponding eigenvectors at a low computational
cost. This will reduced the cost of computations.

2.2.2. Prediction of stationary processes

(1) One-step predictors. Let {Xt} be a stationary process with mean zero and
auto covariance functionγ(·). LetHn denote the closed linear subspace sp{X1, . . . ,Xn},
n≥ 1, and let X̂n+1, n≥ 0, denote the one-step predictors defined by

X̂n+1 =


0, if n= 0,

PHnXn+1, if n≥ 1,
(2.10)

where PHnXn+1 is the projection of Xn+1 onto the closed linear subspaceHn. For more
on projection theory see, for example, [10].



STATISTICAL APPLICATIONS FOR EQUIVARIANT MATRICES 59

Since X̂n+1 ∈Hn, n≥ 1, we can write

X̂n+1 =φn1Xn+···+φnnX1, n≥ 1. (2.11)

Using the projection theory, we end up solving the system

ΓnΦn = γn, (2.12)

where Γn = [γ(i− j)]i,j=1,...,n is the covariance matrix in (2.5), γn = (γ(1), . . . ,γ(n))T
and Φn = (φn1, . . . ,φnn)T . The projection theorem guarantees that equation (2.12)
has at least one solution. Although there may be many solutions to (2.12), every one
of them, when substituted into (2.11), must give the same predictor X̂n+1 since by
projection theory X̂n+1 is uniquely defined. There is exactly one solution of (2.12) if
and only if Γn is nonsingular in which case the solution is

Φn = Γ−1n γn. (2.13)

It can be shown that if γ(0) > 0 and γ(h)→ 0 as h→∞, then the covariancematrix Γn is
nonsingular for everyn. For a proof see [7]. Hence our goal is to find a solution of (2.12)
if there are more than one solution or to find the inverse Γ−1n if Γn is nonsingular. In
either case using the equivariant property of Γn will be useful.

(2) The h-step predictors, h ≥ 1. In the same manner the best linear predictor
of Xn+h in terms of X1, . . . ,Xn for any h≥ 1 can be found to be

PHnXn+h =φ(h)
n1 Xn+···+φ(h)

nnX1, n,h≥ 1, (2.14)

where Φ(h)n = (φ(h)
n1 , . . . ,φ

(h)
nn
)T

is any solution (it is unique if Γn is nonsingular) of

ΓnΦ(h)n = γ(h)n , (2.15)

where γ(h)n = (γ(h),γ(h+1), . . . ,γ(n+h−1))T and Γn is as in (2.5).
As was mentioned before, we need to find a solution to the large system in (2.15)

or the unique one if Γn is nonsingular.
The use of the equivariance property will be even more effective if we apply it to the

prediction equation of a well-known class of stationary time series processes, the auto-
regressive moving average or ARMA processes. The use of the equivariant property
becomes effective because of the structure of Γn, the auto covariance function. For the
definition of ARMA and their properties we refer the reader to [7]. We only present
the structure of the auto covariance function.

If we have an ARMA(p,q) model, and if m =max(p,q), then the auto covariance
function is given by

κ(i,j)=




σ−2γX(i−j), 1≤ i, j ≤m,

σ−2
[
γX(i−j)−

p∑
r=1

φrγX
(
r−|i−j|)

]
, min(i,j)≤m<max(i,j)≤ 2m,

q∑
r=0

θrθr+|i−j|, min(i,j) >m,

0, otherwise.
(2.16)
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This structure leads to an n×n block diagonal Toeplitz matrix Γn in which case we
apply an algorithm based on the equivariance property to solve the system in (2.12)
or in (2.15), which is more efficient than the direct computation.

2.2.3. The Yule-Walker equations and parameter estimation for autoregressive
processes. Let {Xt} be the zero-mean causal autoregressive process,

Xt−φ1Xt−1−···−φpXt−p = Zt, {Zt} ∼WN
(
0,σ 2). (2.17)

Our aim is to find estimators of the coefficient vector φ = (φ1, . . . ,φp)T and the
white noise variance σ 2 based on the observations X1, . . . ,Xn. Because of the causality
assumption, that is, Xt can be written as a linear combination of Zt , we end up solving
the linear system

Γ̂pφ̂= γ̂p, (2.18)

σ̂ 2 = γ̂(0)−φ̂T γ̂p. (2.19)

Equations (2.18) and (2.19) are known in time series to be the Yule-Walker estimators
φ̂ and σ̂ 2 of φ and σ 2.

The linear system in (2.18) is an equivariant system under the permutation π =
(n n−1 n−2 ··· 3 2 1).
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