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AN ASYMPTOTIC EXPANSION FOR A RATIO
OF PRODUCTS OF GAMMA FUNCTIONS
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Abstract. An asymptotic expansion of a ratio of products of gamma functions is derived.
It generalizes a formula which was stated by Dingle, first proved by Paris, and recently
reconsidered by Olver.
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1. Introduction. Our starting point is the Gaussian hypergeometric function
F(a,b;c;z) and its series representation

1
Γ(c)

F(a,b;c;z)=
∞∑

n=0

(a)n(b)n
Γ(c+n)n! z

n, |z|< 1, (1.1)

which here is written in terms of Pochhammer symbols

(x)n = x(x+1)···(x+n−1)= Γ(x+n)Γ(x)
. (1.2)

The hypergeometric series appears as one solution of the Gaussian (or hypergeomet-
ric) differential equation, which is characterized by its three regular singular points
at z = 0,1,∞. The local series solutions at zero and 1 of this differential equation are
connected by the continuation formula [1],

1
Γ(c)

F(a,b;c;z)= Γ(c−a−b)
Γ(c−a)Γ(c−b) F(a,b;1+a+b−c;1−z)

+ Γ(a+b−c)
Γ(a)Γ(b)

(1−z)c−a−bF(c−a,c−b;1+c−a−b;1−z),
(|arg(1−z)|<π).

(1.3)

Here we want to show that (1.3) implies an interesting asymptotic expansion for a
ratio of products of gamma functions, of which only a special case was known before.
By applying the method of Darboux [5, 9] to (1.3), we derive in Section 2 the formula

in question. The behaviour of this and a related formula is discussed in Section 3 and
illustrated by a few numerical examples.
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2. Derivation of an asymptotic expansion for a ratio of products of gamma
functions. It is well known that the asymptotic behaviour of the Taylor series coef-
ficients contains information about the nearest singular point of the expanded func-
tion [4, 5, 9]. (An enlightening more recent paper [3] gives some deeper insight into the
interplay between coefficient asymptotics and the behaviour of the expanded function
in situations more general than needed for our purpose.) In this respect we want to
analyze the continuation formula (1.3). The second term, R, on the right-hand side,
which may be written as

R = Γ(a+b−c)Γ(1+c−a−b)
Γ(a)Γ(b)

∞∑

m=0

(c−a)m(c−b)m
Γ(1+c−a−b+m)m! (1−z)

c−a−b+m, (2.1)

gives the singular expansion of the function around z = 1, which is the singularity
closest to the origin. By means of the binomial theorem in its hypergeometric-series-
form, we may expand the power factor

(1−z)c−a−b+m =
∞∑

n=0

Γ(a+b−c−m+n)
Γ(a+b−c−m)n! z

n. (2.2)

Interchanging the order of summation and simplifying by means of the reflection
formula of the gamma function, we arrive at

R = 1
Γ(a)Γ(b)

∞∑

n=0

∞∑

m=0
(−1)m (c−a)m(c−b)m

m!
Γ(a+b−c−m+n)

n!
zn. (2.3)

This is to be compared with the left-hand side, L, of (1.3), which is

L= 1
Γ(a)Γ(b)

∞∑

n=0

Γ(a+n)Γ(b+n)
Γ(c+n)n! zn. (2.4)

Comparison of the coefficients of these two power series, which according to Darboux
[5] and Schäfke and Schmidt [9] should agree asymptotically as n→∞, then yields

Γ(a+n)Γ(b+n)
Γ(c+n) =

M∑

m=0
(−1)m (c−a)m(c−b)m

m!
Γ(a+b−c−m+n)

+O(Γ(a+b−c−M−1+n)).
(2.5)

By means of

O
(
Γ(a+b−c−M−1+n))= Γ(a+b−c+n)O(n−M−1) (2.6)
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and the reflection formula of the gamma function, the relevant formula (2.5) may also
be written as

Γ(a+n)Γ(b+n)
Γ(c+n)Γ(a+b−c+n) = 1+

M∑

m=1

(c−a)m(c−b)m
m!(1+c−a−b−n)m +O

(
n−M−1

)
. (2.7)

The asymptotic expansion for a ratio of products of gamma functions in this form (2.7)
or the other (2.5) seems to be new. It is only the special case when c = 1which is known.
This special case was stated by Dingle [2], first proved by Paris [8], and reconsidered
recently by Olver [6], who has found a simple direct proof. His proof, as well as the
proof of Paris, can be adapted easily to the more general case when c is different
from 1. Still another proof is available [7] which includes an integral representation
of the remainder term. Our derivation of (2.5) or (2.7) is significantly different from
all the earlier proofs of the case when c = 1.

3. Discussion and numerical examples. We now want to discuss our result in the
form (2.7). First we observe that the substitution c → a+b− c leads to the related
formula

Γ(a+n)Γ(b+n)
Γ(c+n)Γ(a+b−c+n) = 1+

M∑

m=1

(a−c)m(b−c)m
m!(1−c−n)m +O(n−M−1). (3.1)

Which of (2.7) or (3.1) is more advantageous numerically depends on the values of the
parameters, and in this respect the two formulas complement each other.
For finite n and M → ∞ the series on the right-hand side of (2.7) converges if

Re(1− c −n) > 0. The same is true for (3.1) if Re(1+ c −a− b−n) > 0. Then, in
both cases, the Gaussian summation formula yields

Γ(1−c−n)Γ(1+c−a−b−n)
Γ(1−a−n)Γ(1−b−n) , (3.2)

which, bymeans of the reflection formula of the gamma function, is seen to be equal to

Γ(a+n)Γ(b+n)
Γ(c+n)Γ(a+b−c+n)

sin
(
π[a+n])sin(π[b+n])

sin
(
π[c+n])sin(π[a+b−c+n]) . (3.3)

Otherwise (2.5), (2.7), and (3.1) are divergent asymptotic expansions as n→∞.
Although in our derivation n is a sufficiently large positive integer, the asymptotic

expansions (2.5), (2.7), and (3.1) are expected to be valid in a certain sector of the
complex n-plane, and in fact, the proofs of Paris [8] and of Olver [7] apply to complex
values of n.
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Table 3.1. Values of the right-hand sides of (2.7) and (3.1) for the parameters
a=−11.7, b =−11.2, c =−11.4.

M right-hand side of (2.7) right-hand side of (3.1)

n= 10 1 0.976000 0.975000

2 0.972434 0.971912

3 0.971341 0.971037

4 0.970882 0.970687

5 0.970651 0.970517

6 0.970520 0.970423

7 0.970440 0.970367

8 0.970388 0.970331

9 0.970352 0.970307

10 0.970326 0.970290

exact value of (2.7) or (3.1): 1.94045281

exact value of (3.3): 0.97022640 ←�
n= 20 1 1.008000 1.007895

2 1.007360 1.007392

3 1.007521 1.007504

4 1.007438 ←� 1.007452 ←�
5 1.007515 ←� 1.007497 ←�
6 1.007385 1.007426

7 1.007839 1.007650

8 1.002201 1.005398

9 0.921096 0.965891

10 0.478588 0.740024

exact value of (2.7) or (3.1): 1.00747290 ←�
exact value of (3.3): 0.50373645

If the series in (2.7) or (3.1) converge, their sums are equal to (3.3), which generally
(if neither c−a nor c−b is equal to an integer) is different from the left-hand side of
(2.7) or (3.1). Therefore (2.7) and (3.1) can be valid only in the half-planes in which the
series do not converge. This means that (2.7) is an asymptotic expansion as n → ∞
in the half-plane Re(c−1+n) ≥ 0, and (3.1) is an asymptotic expansion as n→∞ in
the half-plane Re(a+b−c−1+n) ≥ 0. Otherwise the series on the right-hand sides
represent a different function, namely (3.3).
A few numerical examples may serve for demonstration of these facts. In Table 3.1,

the series converge to (3.3) for n= 10, and therefore (2.7) and (3.1) are not valid. For
n= 20, on the other hand, the series diverge and so (2.7) and (3.1) hold. The transition
between the two regions is at the line Re(n)= 12.4 in case of (2.7) or Re(n)= 12.5 in
case of (3.1). In Table 3.2, we see convergence for n=−15 and divergence for n=−5,
the transition between the two regions being at the line Re(n)=−10.4 in case of (2.7)
or Re(n)=−10.5 in case of (3.1).
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Table 3.2. Values of the right-hand sides of (2.7) or (3.1) for the parameters
a= 11.7, b = 11.2, c = 11.4.

M right-hand side of (2.7) right-hand side of (3.1)

n=−15 1 0.986667 0.986957

2 0.985648 0.985745

3 0.985453 0.985492

4 0.985397 0.985415

5 0.985376 0.985386

6 0.985368 0.985373

7 0.985363 0.985367

8 0.985361 0.985363

9 0.985360 0.985361

10 0.985359 0.985360

exact value of (2.7) or (3.1): 1.97071532

exact value of (3.3): 0.98535766 ←�
n=−5 1 1.010909 1.011111

2 1.009891 1.009798

3 1.010254 ←� 1.010331 ←�
4 1.009940 ←� 1.009818 ←�
5 1.010589 1.011015

6 1.005300 0.998322

7 0.951894 0.887892

8 0.737202 0.459630

9 0.134729 −0.725230
10 −1.243041 −3.418810
exact value of (2.7) or (3.1): 1.01011438 ←�
exact value of (3.3): 0.50505719
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