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Abstract. We study the solvability of the equation x′′ = f(t,x,x′) subject to Dirichlet,
Neumann, periodic, and antiperiodic boundary conditions. Under the assumption that f
can be suitably decomposed, we prove approximation solvability results for the above
equation by applying the abstract continuation type theorem of Petryshyn on A-proper
mappings.

Keywords and phrases. Boundary value problem, Fredholm operator, A-proper mapping,
feebly a-solvable.

2000 Mathematics Subject Classification. Primary 47H09; Secondary 34B15.

1. Introduction. Let f : [0,1]×R2 → R be a continuous function. The purpose of
this paper is to establish some new existence results on the solvability of second order
ODE’s of the form

x′′ = f
(
t,x,x′

)
(1.1)

subject to one of the following boundary conditions:

x(0)= x(1)= 0, (1.2)

x′(0)= x′(1)= 0, (1.3)

x(0)= x(1), x′(0)= x′(1), (1.4)

x(0)=−x(1), x′(0)=−x′(1). (1.5)

The solvability of (1.1) subject to the above Dirichlet, Neumann, periodic, and an-
tiperiodic boundary conditions has been extensively studied by many authors (see
[1, 2, 3, 5, 6, 7, 9, 10]). In a recent paper [2], a decomposition condition for f is im-
posed to ensure the solvability of (1.1) with the boundary condition (1.2). The theorems
of [2] were proved by using the transversality theorem.
In this paper, under the assumption that f can be suitably decomposed, we shall

apply the abstract continuation type theorem of Petryshyn on A-proper mappings to
prove approximation solvability results for (1.1) with the boundary conditions (1.2),
(1.3), (1.4), and (1.5). Approximation solvability includes the classical Galerkinmethod.
One of our theorems includes the result of [2]. When f is independent of x′′, our
results generalize the results of [9, 10] and show that certain restrictions imposed in
[9, 10] are not needed in this case.
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Some examples show that our theorems permit the treatment of equations to which
the results of [2, 3, 7] do not apply.

2. Preliminaries. We recall the definition of the A-proper mapping which was in-
troduced by Petryshyn (see [8]).

Definition 2.1. Let X, Y be Banach spaces. Suppose that {Xn} ⊂ X and {Yn} ⊂ Y
are sequences of finite dimensional oriented spaces and Qn : Y → Yn is a linear pro-
jection for each n ∈ RN, then the scheme Γ = {Xn,Yn,Qn} is said to be admissi-
ble for maps from X to Y provided that dimXn = dimYn for each n, dist(x,Xn) ≡
inf{‖x−v‖X : v ∈ Xn} → 0 as n→∞ for each x in X, and Qny → y for each y in Y .
For a given map T :D ⊂X → Y the equation

Tx =y (2.1)

is said to be feebly approximation-solvable (a-solvable) relative to Γ if there exists
Ny ∈RN such that the finite dimensional equation

Tn(x)=Qny,
(
x ∈Dn ≡D∩Xn, Tn =QnT |Dn

)
, (2.2)

has a solution xn ∈Dn for each n≥Ny such that xnj → x ∈D in X and Tx =y .

Definition 2.2. T is said to be A-proper relative to Γ if Tn : Dn ⊂ Xn → Yn is
continuous for each n ∈ RN and if {xnj | xnj ∈ Dnj} is any bounded sequence in X
such that Tnj (xnj )→ g for some g in Y , then there is a subsequence {xnk} of {xnj}
and x ∈D such that xnk → x in X and Tx = g.

For (2.1) to be a-solvable relative to a given Γ the operator T has essentially to be
A-proper relative to Γ (see [5]).
Let L :X → Y be a Fredholm operator of index zero. It was shown in [8] that if Y has an

admissible scheme then an admissible scheme ΓL (depending on L) can be constructed
such that L is A-proper relative to ΓL. Suppose that X = ker(L)⊕X1, Y = Y0⊕ im(L),
where dimker(L)= dimY0. Let Q be a projection of Y onto Y0 and assume that there
exists a continuous bilinear form [·,·] on Y ×X mapping (y,x) into [y,x] such that
y ∈ im(L) if and only if [y,x]= 0 for every x ∈ ker(L).
Our results will be proved by applying the following abstract continuation type the-

orem for A-proper mappings.

Theorem 2.3 (see [6, 7]). Let L be a Fredholm operator of index zero and N :X → Y
be a continuous nonlinear map. Suppose there exists a bounded open set G ∈ X with
0∈G such that
(1) L−λN : Ḡ→ Y is A-proper relative to Γ for each λ∈ [0,1] with N(Ḡ) bounded.
(2) Lx ≠ λNx−λy for x ∈ ∂G and λ∈ (0,1].
(3) QNx−Qy ≠ 0 for x ∈ ∂G∩ker(L).
(4) Either [QNx−Qy,x] ≥ 0 or [QNx−Qy,x] ≤ 0 for x ∈ ∂G∩ker(L). Then the

equation

Lx−Nx =y (2.3)
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is feebly a-solvable relative to Γ and in particular it has a solution x ∈ G. If x is the
unique solution in G, then (2.3) is strongly a-solvable.

3. Existence results. We use P1, P2, P3, and P4 to denote (1.1) subject to the bound-
ary condition (1.2), (1.3), (1.4), and (1.5), respectively. Our first three theorems deal
with the simple case (3.1).

Theorem 3.1. Let f : [0,1]×R2 → R be continuous. Consider the following bound-
ary value problem:

x′′ = f(t,x,x′), x(0)= x(1)= 0. (3.1)

Assume that f has the decomposition

f(t,x,p)= g(t,x,p)+h(t,x,p) (3.2)

such that
(1)

∫ 1
0 xg(t,x,x′)dt ≥ 0 for all x ∈ C2[0,1] with x(0)= x(1)= 0,

(2) |h(t,x,p)| ≤ a|x|+b|p|,
where a> 0, b > 0 and a+bπ <π2. Then (3.1) is feebly a-solvable in C2[0,1].

Proof. Let X = C20 = {x ∈ C2[0,1], x(0) = x(1) = 0} endowed with the norm
‖x‖ = max{‖x‖∞,‖x′‖∞,‖x′′‖∞}, where ‖x‖∞ = maxt∈[0,1] |x(t)|. Let ‖ · ‖2 be the
usual norm of L2(0,1) and let L :X → C[0,1] be the linear operator defined by

Lx = x′′, for x ∈X. (3.3)

Define N : C1[0,1]→ C[0,1] to be the nonlinear mapping

Nx(t)= f
(
t,x(t),x′(t)

)
. (3.4)

Let J : C20 → C1[0,1] denote the compact natural embedding. Since NJ is compact,
L−λNJ : C20 → C1[0,1] is A-proper for each λ ∈ [0,1], [5]. Also, L is invertible, so by
Theorem 2.3, the a-solvability of (3.1) follows provided there exists an open bounded
set G ⊂ C20 such that

Lx−λNJx ≠ 0, for (x,λ)∈ (C20 ∩∂G)×(0,1]. (3.5)

This is equivalent to proving the following subset of C20 is bounded:

U = {x ∈ C20 , Lx−λNJx = 0, λ∈ (0,1]
}
. (3.6)

Let x ∈U , then

x′′ = λ
(
g
(
t,x,x′

)+h(t,x,x′)). (3.7)
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Applying Wirtinger’s inequality [4]: ‖x‖2 ≤ (1/π)‖x′‖2, we obtain

‖x′‖22 =−
∫ 1
0
xx′′dt

=−λ
∫ 1
0
xg(t,x,x′)dt−λ

∫ 1
0
xh(t,x,x′)dt

≤−λ
∫ 1
0
xh(t,x,x′)dt

≤ a
∫ 1
0
|x|2dt+b

(∫ 1
0
|x|2dt

)1/2(∫ 1
0
|x′|2dt

)1/2

≤ a+bπ
π2

∥∥x′∥∥22.

(3.8)

By our assumption, a+bπ < π2, so x′ = 0. Since x ∈ C20 , x(t) = 0. This completes
the proof.

Remark 3.2. In the case g(t,x,x′) = r(x)x′, where r is continuous and r(x) ∈
C1[0,1], condition (1) of Theorem 3.1 is always satisfied, since

∫ 1
0 xr(x)x′dt = 0 for

all x ∈ C20 .

We use the following condition (see [2]) and Condition 3.4 for a continuous function
g : [0,1]×R2→R.

Condition 3.3. |g(t,x,p)| ≤ A(t,x)ω(p2) for all (t,x,p) ∈ [0,1] × R2, where
A(t,x) is bounded on each compact subset of [0,1]×R, ω ∈ C(RN,(0,+∞)) is non-
decreasing and satisfies

∫ +∞
0

ds
ω(s)

=∞. (3.9)

Condition 3.4. |g(t,x,p)| ≤ ∑r
i=1Bi(t,x)ωi(p) for all (t,x,p) ∈ [0,1] × R2,

where Bi(t,x) is bounded on compact subsets of [0,1]×R and ωi(p) are functions
such that

∫ 1
0

∣∣x′(t)∣∣2dt ≤M �⇒
∫ 1
0

∣∣ωi
(
x′(t)

)∣∣dt ≤M0, (3.10)

where M,M0 are constants, M0 may depend on M .

The following theorem is a generalization of Theorem 1 in [2].

Theorem 3.5. Let f have the decomposition

f(t,x,p)= g(t,x,p)+h(t,x,p). (3.11)

Assume that
(1)

∫ 1
0 xg(t,x,x′)dt ≥ 0 for all x ∈ C20 ;

(2) |h(t,x,p)| ≤ a|x| + b|p| +∑n
i=1 ci|x|αi +

∑m
j=1dj|p|βj , where a ≥ 0, b ≥ 0,

0≤αi, βj < 1;
(3) g(t,x,p) satisfies Condition 3.3 or Condition 3.4.

Then (3.1) is feebly a-solvable in C2[0,1] provided that a+bπ <π2.
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Proof. By the same argument as in the proof of Theorem 3.1, we only need to
prove that the set

U = {x ∈ C20 , Lx−λNJx = 0, λ∈ (0,1)
}

(3.12)

is bounded. As in the proof of Theorem 3.1, for x ∈U ,

∥∥x′∥∥22 ≤
∫ 1
0

∣∣xh(t,x,x′)∣∣dt
≤
∫ 1
0
|x|

(
a|x|+b∣∣x′∣∣+ n∑

i=1
ci|x|αi+

m∑
j=1

dj
∣∣x′∣∣βj)dt

≤ a‖x‖22+b‖x‖2‖x′‖2+
n∑
i=1

ci‖x‖2
(∫ 1

0
|x|2αi

)1/2
+

m∑
j=1

dj‖x‖2
(∫ 1

0

∣∣x′∣∣2βj)1/2

≤
(
a
π2

+ b
π

)∥∥x′∥∥22+
n∑
i=1

ci
π
∥∥x′∥∥2‖x‖αi2 +

m∑
i=j

dj
π
∥∥x′∥∥2∥∥x′∥∥βj2

≤
(
a
π2

+ b
π

)∥∥x′∥∥22+ 1
π2

n∑
i=1

ci
∥∥x′∥∥1+αi2 + 1

π

m∑
j=1

dj
∥∥x′∥∥1+βj2 . (3.13)

Suppose that ‖x′‖2 ≠ 0, since otherwise x = 0. By our assumption (a+bπ)/π2 < 1,
we have

(
1− a+bπ

π2

)∥∥x′∥∥2 ≤ 1
π2

n∑
i=1

ci
∥∥x′∥∥αi2 + 1π

m∑
j=1

dj
∥∥x′∥∥βj2 . (3.14)

If ‖x′‖2 → ∞, we will have a contradiction since 0 ≤ αi, βi < 1. So there exists a
constant M > 0 such that ‖x′‖2 ≤M . This implies

‖x‖∞ ≤
∫ 1
0

∣∣x′∣∣dt ≤ ∥∥x′∥∥2 ≤M. (3.15)

Suppose that g satisfies Condition 3.3, then

∣∣x′′∣∣≤A1ω
(
x′2

)
+C+b∣∣x′∣∣+ m∑

j=1
dj
∣∣x′∣∣βj , (3.16)

where A1, C are positive constants. Since

∣∣x′∣∣βj ≤ 1
2

(
1+∣∣x′∣∣2βj)≤ 1+∣∣x′∣∣2, (3.17)

we have

∣∣x′′∣∣≤A1ω
(
x′2

)
+C+d

(
1+∣∣x′∣∣2)≤A

(
ω
(
x′2

)
+2+∣∣x′∣∣2) , (3.18)

where A=max{A1,C,d}. As in the proof of Theorem 1 in [2], equation (3.18) implies
that |x′| is bounded (for completeness, we give the proof here). Each t ∈ [0,1] for
which x′(t) ≠ 0 belongs to some interval [s1,s2] ⊂ [0,1] with x′(t) ≠ 0 on (s1,s2)
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and x′(s1)= 0 or x′(s2)= 0. Suppose that x′(s1)= 0 and x′(t) > 0 on (s1,s2). Define
z(t)= x′(t), t ∈ [s1,s2]. Then (3.18) implies that

2z(t)z′(t)
ω
(
z2(t)

)+z2(t)+2 ≤ 2Ax′(t), t ∈ [s1,s2]. (3.19)

By integrating this inequality, we obtain

∫ z2(t)
0

ds
ω(s)+s+2 ≤ 4AM, t ∈ (s1,s2). (3.20)

The assumption ω∈ C(RN,(0,+∞)) is nondecreasing and satisfies
∫ +∞
0

ds
ω(s)

=∞, (3.21)

implies that (see [1]),

∫∞
0

ds
ω(s)+s+2 =∞. (3.22)

This ensures that there exists a constant M1 > 0 such that |x′(t)| ≤ M1, t ∈ [s1,s2].
Considering all the possible cases, we obtain that there exists a constantM1 such that
‖x′‖∞ ≤M1. Let

M2 = sup
t∈[0,1], |x|≤M, |p|≤M1

|f(t,x,p)|, (3.23)

then ‖x‖ ≤max{M,M1M2}. Hence, U is bounded.
If g satisfies Condition 3.4, then there exists A2 > 0 such that

∣∣x′′∣∣≤A2

( r∑
i=1

∣∣ωi
(
x′
)∣∣+∣∣x′∣∣2+1

)
. (3.24)

Hence

∫ 1
0

∣∣x′′∣∣dt ≤A2

( r∑
i=1

∫ 1
0

∣∣ω(x′)∣∣dt+
∫ ∣∣x′∣∣2dt+1

)
≤A2

(
rM0+M+1

)=M3. (3.25)

Suppose that ξ ∈ [0,1] is such that x′(ξ)= 0. Then x′(t)= ∫ tξ x′′(s)ds, and hence
∥∥x′∥∥∞ ≤ ∥∥x′′∥∥1 ≤M3. (3.26)

This follows that U is bounded.

Remark 3.6. Theorem 1 in [2] is the special case of Theorem 3.5 when a= 0, b = 0,
and n=m= 1.

Example 3.7. Consider the following boundary value problem:

x′′ = x2n+1x′2+x′ −(x)1/3, x(0)= x(1)= 0, (3.27)
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where n is a natural number. Let

g(t,x,p)= x2n+1p2, h(t,x,p)= p−x1/3. (3.28)

Then by Theorem 3.5, this boundary value problem is feebly a-solvable in C2[0,1]
and in particular it has a solution in C2[0,1].
Obviously, Theorem 1 in [2] cannot be applied to it. Also, we cannot find constants

M > 0 and a,b ∈R such that

x ≥M �⇒ f(t,x,0) > a while x ≤−M �⇒ f(t,x,0) < b (3.29)

since f(t,x,0)→−∞ as x→∞ and f(t,x,0)→∞ as x→−∞. Hence, Theorem 4.1 in
[3] and Theorem 2.1 in [7] cannot be applied.

Theorem 3.8. Let f ,g,h be as in Theorem 3.5 and instead of conditions (1) and (3),
g satisfies the following condition:

pg(t,x,p)≤ 0, for (t,x,p)∈ [0,1]×R2. (3.30)

Then (3.1) is feebly a-solvable in C2[0,1] provided that a+b < 1/2.

Proof. Again we will prove that U is bounded. Let x ∈ U , there exists ξ ∈ (0,1)
such that x′(ξ)= 0. Hence

1
2

(
x′(t)

)2 =
∫ t
ξ
x′x′′ds ≤ λ

∫ t
ξ
x′h

(
s,x,x′

)
ds ≤

∫ 1
0
|x′||h(t,x,x′)|dt

≤ ∥∥x′∥∥∞
(
a‖x‖∞+b

∥∥x′∥∥∞+
n∑
i=1

ci‖x‖αi∞ +
n∑
j=1

dj
∥∥x′∥∥βj∞

)
.

(3.31)

Suppose that ‖x′‖∞ ≠ 0, otherwise x = 0. Since a+b < 1/2 and

‖x‖∞ ≤
∥∥x′∥∥1 ≤ ∥∥x′∥∥∞, (3.32)

we obtain

(
1
2
−a−b

)∥∥x′∥∥∞ ≤
n∑
i=1

ci‖x‖αi∞ +
m∑
j=1

dj‖x′‖βj∞ . (3.33)

This implies that there exists M > 0 such that ‖x′‖∞ ≤M . By (3.32), ‖x‖∞ ≤M . Let

M′ = sup
t∈[0,1], |x|≤M, |p|≤M

|f(t,x,p)|, (3.34)

then ‖x‖ ≤max{M,M′}. Thus U is bounded.
Now, we consider P2, P3, and P4. These are resonance cases, since the linear part is

noninvertible. In the following, let

Xi =
{
x ∈ C2[0,1] : x satisfies the boundary condition (1.i), i= 2,3, or 4},

Ui =
{
x ∈Xi : x′′ = λf(t,x,x′), λ∈ (0,1]

}
,

(3.35)

thus (1.1) subject to the boundary conditions (1.3), (1.4), and (1.5), respectively.
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Theorem 3.9. Let f : [0,1]×R→R be continuous. Assume that

f(t,x,p)= g(t,x,p)+h(t,x,p), (3.36)

and f , g, and h satisfy the following conditions:
(1) there exists a constant M0 > 0 such that xf(t,x,0) > 0 for |x|>M0;
(2) (a) g satisfies Condition 3.3 or

(b) g satisfies Condition 3.4 and
∫ 1
0 xg(t,x,x′)dt ≥ 0 for all x ∈Xi;

(3) |h(t,x,p)| ≤ C(t,x)+D(t,x)|p|2+∑n
j=1dj(t,x)|p|βj , where C(t,x),D(t,x),

and dj(t,x) are bounded on compact subsets of [0,1]×R and 0≤ βj < 2.
Let M =maxt∈[0,1], |x|≤M0 |D(t,x)|, then (Pi) is feebly a-solvable relative to Γ provided
that M0M < 1.

Proof. Let L : Xi → C[0,1] be the linear operator defined by Lx = x′′. Then it is
easily seen that L is a Fredholm operator of index zero and ker(L) = R. Let Nx =
f(t,x,x′) be the nonlinear map from C1[0,1] to C[0,1] and Ji : Xi → C1[0,1] be
the compact continuous embedding. Then L−λNJi is A-proper for each λ ∈ [0,1].
Moreover, let Qy = ∫ 10 ydt be the projection and

[y,x]=
∫ 1
0
y(t)x(t)dt (3.37)

be the bilinear form on C[0,1]×Xi. For any x ≡ c ∈ ker(L), if c >M0, then by assump-
tion (1), f(t,c,0) > 0 and if c <−M0, then f(t,c,0) < 0. Hence, ‖x‖ = |c|>M0 implies
QNJic ≠ 0. Assumption (1) also ensures that [QNJic,c] ≥ 0 for any c ∈ ker(L) with
|c|>M0. So, by Theorem 2.3, to prove (Pi) is feebly a-solvable, we only need to prove
Ui is bounded.
Suppose that x ∈ Ui, Lemma 2.2 in [7] implies that ‖x‖∞ ≤M0. Suppose g satisfies

2(a), then by assumption (3), we obtain

∣∣x′′(t)∣∣≤A(t,x)ω
((
x′(t)

)2)+C(t,x)+D(t,x)∣∣x′(t)∣∣2+ n∑
j=1

dj(t,x)
∣∣x′(t)∣∣βj

≤A1ω
((
x′(t)

)2)+C1+M∣∣x′(t)∣∣2+
n∑
j=1

dj1
(∣∣x′(t)∣∣2+1)

≤A2
(
ω
(
x′(t)

)2+2+∣∣x′(t)∣∣2) , (3.38)

whereA1 =maxt∈[0,1],|x|≤M0 |A(t,x)|,C1,dj1 are defined similarly andA2 is a constant.
As above, there exists M1 > 0, such that ‖x′‖∞ ≤M1. This implies that Ui is bounded.
Suppose that g satisfies 2(b), then

∥∥x′∥∥22 =−
∫ 1
0
xx′′dt =−λ

∫ 1
0
xg

(
t,x,x′

)
dt−λ

∫ 1
0
xh

(
t,x,x′

)
dt

≤
∫
|x||h(t,x,x′)|dt ≤M0

∫ 1
0

(
|C(t,x)|+D(t,x)∣∣x′∣∣2+ n∑

j=1
dj(t,x)

∣∣x′∣∣βj)dt

≤M0C′ +M0M
∫ 1
0

∣∣x′∣∣2dt+ n∑
j=1

dj ′
∫ 1
0

∣∣x′∣∣βj dt. (3.39)
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Since M0M < 1, and by Holder’s inequality,

∫ 1
0

∣∣x′∣∣βj dt ≤ (
∫ 1
0
|x′|2dt

)βj/2
= ∥∥x′∥∥βj2 , (3.40)

so

(
1−M0M

)∥∥x′∥∥22 ≤M0C′ +
n∑
j=1

dj ′
∥∥x′∥∥βj2 . (3.41)

This implies that there exists M2 > 0 such that ‖x′‖2 ≤ M2 for 0 ≤ βj < 2. Since g
satisfies Condition 3.4, we obtain

∫ 1
0

∣∣x′′(t)∣∣dt ≤A
∫ 1
0

∣∣ω(x′)∣∣dt+C′ +M
∫ 1
0

∣∣x′∣∣2dt+ n∑
j=1

dj ′
∫ 1
0

(∣∣x′(t)∣∣2+1)≤M3.

(3.42)

x ∈Xi implies that there exists ξ ∈ [0,1] such that x′(ξ)= 0, hence
∥∥x′∥∥∞ =

∥∥∥∥
∫ t
ξ
x′′(s)ds

∥∥∥∥∞ ≤
∥∥x′′∥∥1 ≤M3. (3.43)

Thus, we have proved that Ui is bounded, which completes the proof.

Remark 3.10. In assumption (3) of Theorem 3.9, since |p|β ≤ 1+ |p|2, the third
term is included in the first two terms, but it is convenient to make this split since the
bound on the |p|2 term only is important.

Remark 3.11. In [10], the authors obtained the results on the existence of a solu-
tion to the following boundary value problem:

(
p(t)x′

)′ + f̄ (t,x,x′,x′′)=y(t), x′(0)= x′(T)= 0, (3.44)

and in [9] they studied the boundary value problem,

x′′ +g1(x)x′ + f̄
(
t,x,x′,x′′

)=y(t), x(0)= x(1), x′(0)= x′(1). (3.45)

In (3.44), p ∈ C1[0,T ] and p0 =min{p(t) | 0 ≤ t ≤ T} > 0. When f̄ is independent of
x′′, let

h̄
(
t,x,x′

)= f̄
(
t,x,x′

)−y(t), (3.46)

equation (3.44) can be rewritten in the following form (let T = 1):

x′′ = −p
′(t)
p(t)

x′ − h̄(t,x,x′)
p(t)

, x′(0)= x′(1)= 0. (3.47)

To apply Theorem 3.9 to the boundary value problem (3.47), let

g(t,x,p)=−p
′(t)
p(t)

p, h(t,x,p)=− h̄(t,x,p)
p(t)

. (3.48)
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Then g satisfies Condition 3.3 withω(p)= p1/2. Assume that |f̄ (t,x,p)| ≤A+B|x|+
C|p|, since the condition (H4(i)) or (H4(ii)) of [10] implies assumption (1) of Theorem
3.9, we obtain boundary value problem (3.47) is feebly a-solvable provided (H4(i)) or
(H4(ii)) of [10] holds. Thus when f does not depend on x′′, in Theorem 2.1 in [10], the
conditions BT 2+πT(C+p1)≤π2p0 of (H1) and (H2), (H3) are not necessary.
Similarly, when f̄ is independent of x′′, equation (3.45) can be rewritten as

x′′ = −g1(x)x′ − h̄
(
t,x,x′

)
, x(0)= x(1), x′(0)= x′(1). (3.49)

Let

g(t,x,p)=−g1(x)p, h(t,x,p)=−h̄(t,x,p). (3.50)

Then g satisfies Condition 3.4 since
∫ 1
0 xg1(x)x′dt = 0 for any x ∈ X3. Assume that

|f̄ (t,x,p)| ≤ A+ B|x| +C|p|, then condition (H4) of [9] ensures assumption (1) of
Theorem 3.9. Applying Theorem 3.9, we obtain that boundary value problem (3.49) is
feebly a-solvable provided (H4) of [9] holds. Hence in this case, in Theorem 2.1 in [9],
the conditions B+πC < 2π2 of (H1) and (H2), (H3) are not needed.

Theorem 3.12. Let f(t,x,p)= g(t,x,p)+h(t,x,p). Assume that
(1) there exists M0 > 0 such that xf(t,x,0) > 0 for |x|>M0;
(2) pg(t,x,p)≥ 0 or pg(t,x,p)≤ 0 for (t,x,p)∈ [0,1]×R2;
(3) |h(t,x,p)| ≤ C(t,x)+D(t,x)|x′| +∑n

j=1dj(t,x)|x′|αj , where C(t,x),D(t,x),
and dj(t,x) are bounded on compact subsets of [0,1]×R and 0≤αj < 1.

Let M =maxt∈[0,1], |x|≤M0 |D(t,x)|, then (Pi) is feebly a-solvable relative to Γ provided
that M < 1/2 if pg(t,x,p)≤ 0 and M < 1/4 if pg(t,x,p) > 0.

Proof. By the same argument with that in the proof of Theorem 3.9, we only need
to prove Ui is bounded. Let x ∈Ui, then ‖x‖∞ ≤M0 by Lemma 2.3 in [7]. Let ξ ∈ [0,1]
be such that x′(ξ)= 0, and assume that pg(t,x,p) > 0 and M < 1/4. Then

1
2

(
x′(t)

)2 = λ
∫ t
ξ
x′g

(
s,x,x′

)
ds+λ

∫ t
ξ
x′h

(
s,x,x′

)
ds

≤
∫ 1
0
x′g

(
s,x,x′

)
ds+

∫ 1
0

∣∣x′h(s,x,x′)∣∣ds.
(3.51)

Since x ∈Xi, so∫ 1
0
x′x′′dt = λ

∫ 1
0

(
x′g

(
t,x,x′

)+x′h(t,x,x′))dt = 0. (3.52)

Hence,

1
2

(
x′(t)

)2 ≤ 2
∫ 1
0

∣∣x′h(s,x,x′)∣∣dt. (3.53)

Thus

1
4

(
x′(t)

)2 ≤ ∥∥x′∥∥∞
∫ 1
0

(
C(t,x)+D(t,x)∣∣x′∣∣+ n∑

j=1
dj(t,x)

∣∣x′∣∣αj)dt

≤ ∥∥x′∥∥∞
(
C′ +M∥∥x′∥∥∞+

n∑
j=1

d′j
∥∥x′∥∥αj∞

)
.

(3.54)
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Assume that ‖x′‖∞ ≠ 0, then
(
1
4
−M

)∥∥x′∥∥∞ ≤ C′ +
n∑
j=1

d′j
∥∥x′∥∥αj∞ . (3.55)

Since αj < 1, we obtain that there exists M1 > 0 such that ‖x′‖∞ ≤ M1. In the case
pg(t,x,p)≤ 0 and M < 1/2, instead of (3.51), we have

1
2

(
x′(t)

)2 = λ
∫ t
ξ
x′g

(
s,x,x′

)
ds+λ

∫ t
ξ
x′h

(
s,x,x′

)
ds

≤
∫ 1
0

∣∣x′h(s,x,x′)∣∣ds.
(3.56)

So, by the same proof with above, there exists M2 > 0 such that ‖x′‖∞ ≤M2. Thus in
both cases, Ui is bounded.

Example 3.13. We study the following equation:

x′′ = ±x′2n+1+Q(t,x)+∣∣x′∣∣1/2 (3.57)

subject to the boundary conditions (1.3), (1.4), and (1.5), where n is a natural number
andQ(t,x) is a continuous function. Assume that there existsM0 > 0,xQ(t,x) > 0 for
|x| > M0. By Theorem 3.12, the above boundary value problems is feebly a-solvable
since D(t,x)= 0. Since we cannot find A(t,x) such that

∣∣±p2n+1+Q(t,x)+|p|1/2∣∣≤A(t,x)p2+C(t,x), (3.58)

Theorem 2.1 in [7] and Theorem 4.1 in [3] cannot be used.

In our last theorem, we impose a condition which is similar to the condition (H3)
of [10].

Theorem 3.14. Let f(t,x,p)= g(t,x,p)+h(t,x,p). Assume that
(1) there exists M1 > 0 such that either cf(t,c,0)≥ 0 for all |c| ≥M1 or cf(t,c,0)≤

0 for all |c| ≥M1;
(2) there exists M2 > 0 such that

∫ 1
0 f(t,x,x′)dt ≠ 0 for x ∈Xi with |x(t)|>M2 for

t ∈ [0,1];
(3) pg(t,x,p)≥ 0 or pg(t,x,p)≤ 0 for (t,x,p)∈ [0,1]×R2;
(4) |h(t,x,p)| ≤ a|x|+b|p|+c|x|α+d|p|β+e, where 0≤α, β < 1, and a,b,c,d,e

are constants.
Then (Pi) is feebly a-solvable relative to Γ provided that a+b < 1/2 if pg(t,x,p)≤ 0
and a+b < 1/4 if pg(t,x,p) > 0.

Proof. Let L,N,Ji,Q and the bilinear form [y,x] be as in the proof of Theorem 3.9.
For c ∈ ker(L), by assumption (2), QNc ≠ 0 if |c| ≥ M2. Moreover, according to as-
sumption (1), [QNc,c]≥ 0 for all |c| ≥M1 or [QNc,c]≤ 0 for all |c| ≥M1. Hence, by
Theorem 2.3, (Pi) is feebly a-solvable if Ui is bounded.
Let x ∈ Ui and ξ ∈ [0,1] be such that x′(ξ) = 0. By assumptions (3) and (4), using

the same calculation with that in (3.51) and (3.56), we obtain that if pg(t,x,p) > 0,
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then

1
4

∥∥x′∥∥2∞ ≤ ∥∥x′∥∥∞
(
a‖x‖∞+b

∥∥x′∥∥∞+c‖x‖α∞+d∥∥x′∥∥β∞+e
)

(3.59)

and if pg(t,x,p)≤ 0,
1
2

∥∥x′∥∥2∞ ≤ ∥∥x′∥∥∞
(
a‖x‖∞+b

∥∥x′∥∥∞+c‖x‖α∞+d∥∥x′∥∥β∞+e
)
. (3.60)

Assume that ‖x′‖∞ ≠ 0. Since x ∈ Xi, Nx ∈ im(L), so QNx = 0. Assumption (2)
ensures that there exists ζ ∈ [0,1] such that |x(ζ)| ≤M2. Writing x(t)=

∫ t
ζ x′(s)ds+

x(ζ) gives

‖x‖∞ ≤
∥∥x′∥∥1+M2 ≤ ∥∥x′∥∥∞+M2. (3.61)

From the above discussion, in the case pg(t,x,p) > 0, we obtain
(
1
4
−a−b

)∥∥x′∥∥∞ ≤M+c(∥∥x′∥∥∞+M2)α+d∥∥x′∥∥β∞+e. (3.62)

In the case pg(t,x,p) ≤ 0, a similar inequality is obtained. These imply that there
exists M3 > 0 such that in both cases, ‖x′‖∞ ≤ M3. By (3.61), ‖x‖∞ ≤ M3. Thus, we
have proved that Ui is bounded.

Remark 3.15. It is easy to see that in condition (4) of Theorem 3.14, c|x|α
and d|p|β can, respectively, be replaced by ∑n

i=1 ci|x|αi and
∑m

j=1dj|p|βj , where
0≤αi, βj ≤ 1.

Acknowledgement. I would like to express my thanks to Professor J. R. L. Webb
for valuable discussions.
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