APPROXIMATING FIXED POINTS OF NONEXPANSIVE MAPPINGS

GUIMEI LIU, DENG LEI, and SHENGHONG LI

(Received 27 October 1998 and in revised form 19 April 1999)

AbStract. We consider a mapping S of the form

$$
S=\alpha_{0} I+\alpha_{1} T_{1}+\alpha_{2} T_{2}+\cdots+\alpha_{k} T_{k}
$$

where $\alpha_{i} \geq 0, \alpha_{0}>0, \alpha_{1}>0$ and $\sum_{i=0}^{k} \alpha_{i}=1$. We show that the Picard iterates of S converge to a common fixed point of $T_{i}(i=1,2, \ldots, k)$ in a Banach space when $T_{i}(i=$ $1,2, \ldots, k)$ are nonexpansive.

Keywords and phrases. Fixed point, nonexpansive mapping, iterative process.
2000 Mathematics Subject Classification. Primary 47H10, 54H25.

1. Introduction. Let X be a Banach space and C a convex subset of X. A mapping $T: C \rightarrow C$ is said to be nonexpansive if $\|T x-T y\| \leq\|x-y\|$ for all x, y in C.

Specifically, the iterative process studied by Kirk is given by

$$
\begin{equation*}
x_{n+1}=\alpha_{0} x_{n}+\alpha_{1} T x_{n}+\alpha_{2} T^{2} x_{n}+\cdots+\alpha_{k} T^{k} x_{n} \tag{1.1}
\end{equation*}
$$

where $\alpha_{i} \geq 0, \alpha_{1}>0$ and $\sum_{i=0}^{k} \alpha_{i}=1$.
Kirk [1] has investigated an iterative process for approximating fixed points of nonexpansive mapping on convex subset of a uniformly convex Banach space. Recently, Maiti and Saha [2] improved the result of Kirk.

Let $T_{i}: C \rightarrow C(i=1,2, \ldots, k)$ be nonexpansive mappings, and let

$$
\begin{equation*}
S=\alpha_{0} I+\alpha_{1} T_{1}+\alpha_{2} T_{2}+\cdots+\alpha_{k} T_{k} \tag{1.2}
\end{equation*}
$$

where $\alpha_{i} \geq 0, \alpha_{0}>0, \alpha_{0}>0$ and $\sum_{i=0}^{k} \alpha_{i}=1$.
In this paper, we show that the Picard iterates (1.2) of S converge to a common fixed point of $T_{i}(i=1,2, \ldots, k)$ in a Banach space, without any assumption on convexity of Banach space. This result generalizes the corresponding result of Kirk [1], Maiti and Saha [2], Senter and Dotson [4].

2. Main results

LEMMA 2.1. Let X be a normed space and $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ be two sequences in X satisfying
(i) $\lim _{n \rightarrow \infty}\left\|a_{n}\right\|=d$,
(ii) $\limsup \sin _{n \rightarrow \infty}\left\|b_{n}\right\| \leq d$ and $\left\{\sum_{i=1}^{n} b_{i}\right\}$ is bounded,
(iii) there is a constant t with $0<t<1$ such that $a_{n+1}=(1-t) a_{n}+t b_{n}$ for all $n \geq 1$. Then $d=0$.

Proof. Suppose that $d>0$ and it follows from (ii) that $\sum_{i=n}^{n+m-1} b_{i}$ is bounded for all n and m. Let

$$
\begin{equation*}
M=\sup \left\{\left\|\sum_{i=n}^{n+m-1} b_{i}\right\|: n, m=1,2,3, \ldots\right\} . \tag{2.1}
\end{equation*}
$$

Choose a number N such that

$$
\begin{equation*}
N>\max \left(\frac{2 t M}{d}, 1\right) \tag{2.2}
\end{equation*}
$$

We can choose a positive ε such that

$$
\begin{equation*}
1-2 \varepsilon \exp \left(\frac{N+1}{1-t}\right)>\frac{1}{2} \tag{2.3}
\end{equation*}
$$

By $0<t<1$, there exists a natural k such that

$$
\begin{equation*}
N<k t \leq N+1 . \tag{2.4}
\end{equation*}
$$

Since $\lim _{n \rightarrow \infty}\left\|a_{n}\right\|=d, \limsup _{n \rightarrow \infty}\left\|b_{n}\right\| \leq d$ and ε independent of n, without loss of generality we may assume that, for all $n \geq 1$,

$$
\begin{equation*}
d(1-\varepsilon)<\left\|a_{n}\right\|<d(1+\varepsilon) \quad \text { and } \quad\left\|b_{n}\right\|<d(1+\varepsilon) \tag{2.5}
\end{equation*}
$$

Setting $s=1-t$ from (iii), we obtain by induction

$$
\begin{equation*}
a_{k+1}=s^{k} a_{1}+t s^{k-1} b_{1}+\cdots+t s b_{k-1}+t b_{k}, \quad a_{k+1} \in B:=\operatorname{co}\left\{a_{1}, b_{1}, b_{2}, \ldots, b_{k}\right\} . \tag{2.6}
\end{equation*}
$$

Let $x=(1 / k) \sum_{i=1}^{k} b_{i}$ and

$$
\begin{equation*}
y=\frac{s^{k}}{1-s^{k}}\left\{a_{1}+t\left[s^{-1}-(k t)^{-1}\right] b_{1}+t\left[s^{-2}-(k t)^{-1}\right] b_{2}+\cdots+t\left[s^{-k}-(k t)^{-1}\right] b_{k}\right\} . \tag{2.7}
\end{equation*}
$$

Then it is clear that $x, y \in B$ and $a_{k+1}=s^{k} x+\left(1-s^{k}\right) y$. Therefore,

$$
\begin{equation*}
d(1-\varepsilon)<\left\|a_{k+1}\right\| \leq s^{k}\|x\|+\left(1-s^{k}\right)\|y\| \leq s^{k}\|x\|+\left(1-s^{k}\right) d(1+\varepsilon) . \tag{2.8}
\end{equation*}
$$

Hence, we have

$$
\begin{align*}
\|x\| & >d\left(1-s^{-k}\left(2-s^{k}\right) \varepsilon\right)>d\left(1-2 \varepsilon s^{-k}\right) \\
& =d\left\{1-2 \varepsilon \exp \left[\sum_{i=1}^{k} \log \left(1+\frac{t}{1-t}\right)\right]\right\} \geq d\left[1-2 \varepsilon \exp \left(\sum_{i=1}^{k} \frac{t}{1-t}\right)\right] \tag{2.9}\\
& =d\left[1-2 \varepsilon \exp \left(\frac{k t}{1-t}\right)\right] \geq d\left[1-2 \varepsilon \exp \left(\frac{N+1}{1-t}\right)\right]>\frac{d}{2}
\end{align*}
$$

since $\log (1+u) \leq u$ for $-1<u<\infty$.
On the other hand, we have

$$
\begin{equation*}
\|x\|=\frac{1}{k}\left\|\sum_{i=1}^{k} b_{i}\right\| \leq \frac{M}{k} \leq \frac{d}{2 M} M=\frac{d}{2}, \tag{2.10}
\end{equation*}
$$

arriving at a contradiction. This completes the proof.

LEmmA 2.2. Let C be a subset of a normed space X and $T_{n}: C \rightarrow C$ be a nonexpansive mapping for all $n=1,2, \ldots, k$. If for an arbitrary $x_{0} \in C$ and $\left\{x_{n}\right\}$ is defined by (1.2), then

$$
\begin{equation*}
\left\|x_{n+1}-p\right\| \leq\left\|x_{n}-p\right\| \tag{2.11}
\end{equation*}
$$

for all $n \geq 1$ and $p \in F(T)$, where $F(T)$ denotes the common fixed point set of $T_{i}(i=$ $1,2, \ldots, k)$.

Proof. Since $p=S p$ for all $p \in F(T)$ and $T_{i}(i=1,2, \ldots, k)$ is nonexpansive, we have

$$
\begin{equation*}
\left\|x_{n+1}-p\right\|=\left\|S x_{n}-S p\right\| \leq \sum_{i=1}^{k} \alpha_{i}\left\|T_{i} x_{n}-T_{i} p\right\|=\left\|x_{n}-p\right\| \tag{2.12}
\end{equation*}
$$

for all $n \geq 1$ and all $p \in F(T)$. This completes the proof.
Theorem 2.3. Let C be a nonempty closed convex and bounded subset of a Banach space X and $T_{i}: C \rightarrow C(i=1,2, \ldots, k)$ be nonexpansive mappings. If for an arbitrary $x_{0} \in C$ and $\left\{x_{n}\right\}$ is defined by (1.2), then $\left\|x_{n}-S x_{n}\right\| \rightarrow 0$ as $n \rightarrow \infty$.

Proof. By (1.2) and T_{i} is nonexpansive mapping, we have

$$
\begin{align*}
\left\|x_{n+1}-S x_{n+1}\right\| & \leq\left\|S x_{n}-S x_{n+1}\right\| \\
& \leq \alpha_{0}\left\|x_{n}-x_{n+1}\right\|+\sum_{i=1}^{k} \alpha_{i}\left\|T_{i} x_{n}-T_{i} x_{n+1}\right\| \leq\left\|x_{n}-S x_{n}\right\| . \tag{2.13}
\end{align*}
$$

Hence $\left\|x_{n}-S x_{n}\right\| \rightarrow d$ as $n \rightarrow \infty$.
Set $a_{n}=x_{n}-S x_{n}, b_{n}=1 /\left(1-\alpha_{0}\right) \sum_{i=1}^{k} \alpha_{i}\left(T_{i} x_{n}-T_{i} x_{n+1}\right)$, we have $a_{n+1}=\alpha_{0} a_{n}+$ $\left(1-\alpha_{0}\right) b_{n}$ and

$$
\begin{equation*}
\left\|b_{n}\right\| \leq \frac{1}{1-\alpha_{0}} \sum_{i=1}^{k} \alpha_{i}\left\|T_{i} x_{n}-T_{i} x_{n+1}\right\| \leq \frac{1}{1-\alpha_{0}} \sum_{i=1}^{k} \alpha_{i}\left\|x_{n}-x_{n+1}\right\|=\left\|a_{n}\right\| . \tag{2.14}
\end{equation*}
$$

Since $\lim _{n \rightarrow \infty}\left\|a_{n}\right\|=\lim _{n \rightarrow \infty}\left\|x_{n}-S x_{n}\right\|=d$,

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\|b_{n}\right\| \leq d \tag{2.15}
\end{equation*}
$$

Finally, we have

$$
\begin{align*}
\left\|\sum_{j=1}^{n} b_{j}\right\| & =\left\|\sum_{j=1}^{n}\left[\frac{1}{1-\alpha_{0}} \sum_{i=1}^{k} \alpha_{i}\left(T_{i} x_{j}-T_{i} x_{j+1}\right)\right]\right\| \\
& =\frac{1}{1-\alpha_{0}}\left\|\sum_{i=1}^{k} \alpha_{i}\left[\sum_{j=1}^{n}\left(T_{i} x_{j}-T_{i} x_{j+1}\right)\right]\right\| \tag{2.16}\\
& =\frac{1}{1-\alpha_{0}}\left\|\sum_{i=1}^{k} \alpha_{i}\left(T_{i} x_{1}-T_{i} x_{n+1}\right)\right\| \\
& \leq \frac{1}{1-\alpha_{0}} \sum_{i=1}^{k} \alpha_{i}\left\|T_{i} x_{1}-T_{i} x_{n+1}\right\| \leq\left\|x_{1}-x_{n+1}\right\| .
\end{align*}
$$

Then $\left\|\sum_{j=1}^{n} b_{j}\right\|$ is bounded. Setting $t=1-\alpha_{0}$, then $a_{n+1}=(1-t) a_{n}+t b_{n}$ and $0<t<1$. It follows from Lemma 2.1 that $d=0$, this completes the proof.

Recall that a Banach space X is said to satisfy Opial's condition [3] if the condition $x_{n} \rightarrow x_{0}$ weakly implies

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\|x_{n}-x_{0}\right\|<\limsup _{n \rightarrow \infty}\left\|x_{n}-y\right\| \tag{2.17}
\end{equation*}
$$

for all $y \neq x_{0}$.
Theorem 2.4. Let X be a Banach space which satisfies Opial's condition, C be weakly compact and convex, and let $T_{i}(i=1,2, \ldots, k)$ and $\left\{x_{n}\right\}$ be as in Theorem 2.3. Then $\left\{x_{n}\right\}$ converges weakly to a fixed point of S.

Proof. Due to weak compactness of C, there exists $\left\{x_{n_{j}}\right\}$ of $\left\{x_{n}\right\}$ which converges weakly to a $p \in C$. With standard proof we show that $p=S p$. We suppose that $\left\{x_{n}\right\}$ does not converge weakly to p; then there are $\left\{x_{n_{l}}\right\}$ and $q \neq p$ such that $x_{n_{l}} \rightarrow q$ weakly and $q=S q$. By Theorem 2.3 and Opial's condition of X, we have

$$
\begin{align*}
\lim _{n \rightarrow \infty}\left\|x_{n}-p\right\| & =\lim _{j \rightarrow \infty}\left\|x_{n_{j}}-p\right\|<\lim _{j \rightarrow \infty}\left\|x_{n_{j}}-q\right\| \\
& =\lim _{l \rightarrow \infty}\left\|x_{n_{l}}-q\right\|<\lim _{l \rightarrow \infty}\left\|x_{n_{l}}-p\right\|=\lim _{n \rightarrow \infty}\left\|x_{n}-p\right\|, \tag{2.18}
\end{align*}
$$

a contradiction. This completes the proof.
Let D be a subset of a Banach space X. Mappings $T_{i}: D \rightarrow X(i=1,2, \ldots, k)$ with a nonempty common fixed points set $F(T)$ in D will be said to satisfy condition A $[2,4]$ if there is a nondecreasing function $f:[0, \infty) \rightarrow[0, \infty)$ with $f(0)=0, f(r)>0$ for $r \in(0, \infty)$, such that $\|x-S x\| \geq f(d(x, F(T)))$ for all $x \in D$, where S is defined by (1.2), $d(x, F(T))=\inf \{\|x-z\|: z \in F(T)\}$.

Theorem 2.5. Let X, C, and $\left\{x_{n}\right\}$ be as in Theorem 2.3. Let $T_{i}: C \rightarrow X(i=1,2, \ldots, k)$ be nonexpansive mappings with a nonempty common fixed points set $F(T)$ in C. If T_{i} satisfies condition A, then $\left\{x_{n}\right\}$ converges to a member of $F(T)$.

Proof. By condition A, we have

$$
\begin{equation*}
\left\|x_{n}-S x_{n}\right\| \geq f\left\{d\left[x_{n}, F(T)\right]\right\} \tag{2.19}
\end{equation*}
$$

for all $n \geq 0$. Since $\left\{d\left[x_{n}, F(T)\right]\right\}$ is decreasing by Lemma 2.2, it follows from Theorem 2.3 that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\{d\left[x_{n}, F(T)\right]\right\}=0 . \tag{2.20}
\end{equation*}
$$

We can thus choose a subsequence $\left\{x_{n_{j}}\right\}$ of $\left\{x_{n}\right\}$ such that

$$
\begin{equation*}
\left\|x_{n_{j}}-p_{j}\right\|<2^{-j} \tag{2.21}
\end{equation*}
$$

for all integers $j \geq 1$ and some sequence $\left\{p_{j}\right\}$ in $F(T)$. Again by Lemma 2.2, we have $\left\|x_{n_{j}+1}-p_{j}\right\| \leq\left\|x_{n_{j}}-p_{j}\right\|<2^{-j}$, and hence

$$
\begin{equation*}
\left\|p_{j+1}-p_{j}\right\| \leq\left\|p_{j+1}-x_{n_{j}+1}\right\|+\left\|x_{n_{j}+1}-p_{j}\right\| \leq 2^{-(j+1)}+2^{-j}<2^{-j+1}, \tag{2.22}
\end{equation*}
$$

which show that $\left\{p_{j}\right\}$ is Cauchy and therefore converges strongly to a point p in $F(T)$ since $F(T)$ is closed. Now it is readily seen that $\left\{x_{n_{j}}\right\}$ and hence $\left\{x_{n}\right\}$ itself, by Lemma 2.2, converges strongly to p.

REMARK 2.6. Theorem 2.5 generalizes [2, 4, Theorem 2.3] to a Banach space.
THEOREM 2.7. Let C be a closed convex subset of a Banach space X, and $T_{i}(i=$ $1,2, \ldots, k)$ be nonexpansive mappings from C into a compact subset of X. If $\left\{x_{n}\right\}$ is as in Theorem 2.3, then $\left\{x_{n}\right\}$ converges to a fixed point of S.

Proof. By Theorem 2.3 and the precompactness of $S(C)$, we see that $\left\{x_{n}\right\}$ admits a strongly convergent subsequence $\left\{x_{n_{j}}\right\}$ whose limit we denote by z. Then, again by Theorem 2.3, we have $z=S z$; namely, z is a fixed point of S. Since $\left\|x_{n}-z\right\|$ is decreasing by Lemma $2.1, z$ is actually the strong limit of the sequence $\left\{x_{n}\right\}$ itself.

ACKNOWLEDGEMENT. This research is partially supported by NNSF under grant no. 79790130; ZJPNSFC no. 198013; Zhejiang University Cai Guangbiao Foundation.

REFERENCES

[1] W. A. Kirk, On successive approximations for nonexpansive mappings in Banach spaces, Glasgow Math. J. 12 (1971), 6-9. MR 45\#7553. Zbl 223.47024.
[2] M. Maiti and B. Saha, Approximating fixed points of nonexpansive and generalized nonexpansive mappings, Int. J. Math. Math. Sci. 16 (1993), no. 1, 81-86. MR 93j:47083. Zbl 774.47032.
[3] Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc. 73 (1967), 591-597. MR 35\#2183. Zbl 179.19902.
[4] H. F. Senter and W. G. Dotson, Jr., Approximating fixed points of nonexpansive mappings, Proc. Amer. Math. Soc. 44 (1974), 375-380. MR 49\#11333. Zbl 299.47032.

Guimei Liu: Department of Mathematics, Zhejiang University, Zhejiang 310027, China
Deng Lei: Department of Mathematics, Southwest China Normal University, Beibei, Chongqing 400715, China

Shenghong Li: Department of Mathematics, Zhejiang University, Zhejiang 310027, China
E-mail address: 1sh@math.zju.edu.cn

