INTUITIONISTIC FUZZY IDEALS OF BCK-ALGEBRAS

YOUNG BAE JUN and KYUNG HO KIM

(Received 16 February 2000)

ABSTRACT. We consider the intuitionistic fuzzification of the concept of subalgebras and ideals in BCK-algebras, and investigate some of their properties. We introduce the notion of equivalence relations on the family of all intuitionistic fuzzy ideals of a BCK-algebra and investigate some related properties.

Keywords and phrases. (Intuitionistic) fuzzy subalgebra, (intuitionistic) fuzzy ideal, upper (respectively, lower) *t*-level cut, homomorphism.

2000 Mathematics Subject Classification. Primary 06F35, 03G25, 03E72.

1. Introduction. After the introduction of the concept of fuzzy sets by Zadeh [9] several researches were conducted on the generalizations of the notion of fuzzy sets. The idea of "intuitionistic fuzzy set" was first published by Atanassov [1, 2], as a generalization of the notion of fuzzy set. The first author (together with Hong, Kim, Kim, Meng, Roh, and Song) considered the fuzzification of ideals and subalgebras in BCK-algebras (cf. [3, 4, 5, 6, 7, 8]). In this paper, using the Atanassov's idea, we establish the intuitionistic fuzzification of the concept of subalgebras and ideals in BCK-algebras, and investigate some of their properties. We introduce the notion of equivalence relations on the family of all intuitionistic fuzzy ideals of a BCK-algebra and investigate some related properties.

2. Preliminaries. First we present the fundamental definitions. By a *BCK-algebra* we mean a nonempty set X with a binary operation * and a constant 0 satisfying the following conditions:

(I) ((x * y) * (x * z)) * (z * y) = 0,

(II) (x * (x * y)) * y = 0,

- (III) x * x = 0,
- (IV) 0 * x = 0,

(V) x * y = 0 and y * x = 0 imply that x = y

for all $x, y, z \in X$.

A partial ordering " \leq " on *X* can be defined by $x \leq y$ if and only if x * y = 0. A nonempty subset *S* of a BCK-algebra *X* is called a *subalgebra* of *X* if $x * y \in S$ whenever $x, y \in S$. A nonempty subset *I* of a BCK-algebra *X* is called an *ideal* of *X* if

(i) $0 \in I$,

(ii) $x * y \in I$ and $y \in I$ imply that $x \in I$ for all $x, y \in X$.

By a *fuzzy set* μ in a nonempty set X we mean a function $\mu : X \to [0,1]$, and the complement of μ , denoted by $\bar{\mu}$, is the fuzzy set in X given by $\bar{\mu}(x) = 1 - \mu(x)$ for all $x \in X$. A fuzzy set μ in a BCK-algebra X is called a *fuzzy subalgebra* of X if $\mu(x * y) \ge 1$

 $\min\{\mu(x), \mu(y)\}$ for all $x, y \in X$. A fuzzy set μ in a BCK-algebra X is called a *fuzzy ideal* of X if

(i) $\mu(0) \ge \mu(x)$ for all $x \in X$,

(ii) $\mu(x) \ge \min\{\mu(x * y), \mu(y)\}$ for all $x, y \in X$.

An intuitionistic fuzzy set (briefly, IFS) A in a nonempty set X is an object having the form

$$A = \{ (x, \alpha_A(x), \beta_A(x)) \mid x \in X \},$$
(2.1)

where the functions $\alpha_A : X \to [0,1]$ and $\beta_A : X \to [0,1]$ denote the degree of membership and the degree of nonmembership, respectively, and

$$0 \le \alpha_A(x) + \beta_A(x) \le 1 \quad \forall x \in X.$$
(2.2)

An intuitionistic fuzzy set $A = \{(x, \alpha_A(x), \beta_A(x)) | x \in X\}$ in X can be identified to an ordered pair (α_A, β_A) in $I^X \times I^X$. For the sake of simplicity, we shall use the symbol $A = (\alpha_A, \beta_A)$ for the IFS $A = \{(x, \alpha_A(x), \beta_A(x)) | x \in X\}$.

3. Intuitionistic fuzzy ideals. In what follows, let *X* denote a BCK-algebra unless otherwise specified.

DEFINITION 3.1. An IFS $A = (\alpha_A, \beta_A)$ in *X* is called an *intuitionistic fuzzy subalgebra* of *X* if it satisfies:

(IS1) $\alpha_A(x * y) \ge \min\{\alpha_A(x), \alpha_A(y)\},\$

(IS2) $\beta_A(x * y) \le \max\{\beta_A(x), \beta_A(y)\},\$

for all $x, y \in X$.

EXAMPLE 3.2. Consider a BCK-algebra $X = \{0, a, b, c\}$ with the following Cayley table:

*	0	а	b	С
0	0	0	0	0
а	а	0	0	а
b	b	а	0	b
С	с	С	С	0

Let $A = (\alpha_A, \beta_A)$ be an IFS in *X* defined by

$$\alpha_A(0) = \alpha_A(a) = \alpha_A(c) = 0.7 > 0.3 = \alpha_A(b),$$

$$\beta_A(0) = \beta_A(a) = \beta_A(c) = 0.2 < 0.5 = \beta_A(b).$$
(3.1)

Then $A = (\alpha_A, \beta_A)$ is an intuitionistic fuzzy subalgebra of *X*.

PROPOSITION 3.3. Every intuitionistic fuzzy subalgebra $A = (\alpha_A, \beta_A)$ of X satisfies the inequalities $\alpha_A(0) \ge \alpha_A(x)$ and $\beta_A(0) \le \beta_A(x)$ for all $x \in X$.

PROOF. For any $x \in X$, we have

$$\alpha_A(0) = \alpha_A(x * x) \ge \min\{\alpha_A(x), \alpha_A(x)\} = \alpha_A(x),$$

$$\beta_A(0) = \beta_A(x * x) \le \max\{\beta_A(x), \beta_A(x)\} = \beta_A(x).$$
(3.2)

This completes the proof.

840

DEFINITION 3.4. An IFS $A = (\alpha_A, \beta_A)$ in *X* is called an *intuitionistic fuzzy ideal* of *X* if it satisfies the following inequalities:

(IF1) $\alpha_A(0) \ge \alpha_A(x)$ and $\beta_A(0) \le \beta_A(x)$, (IF2) $\alpha_A(x) \ge \min\{\alpha_A(x \ast y), \alpha_A(y)\}$, (IF3) $\beta_A(x) \le \max\{\beta_A(x \ast y), \beta_A(y)\}$, for all $x, y \in X$.

EXAMPLE 3.5. Let $X = \{0, 1, 2, 3, 4\}$ be a BCK-algebra with the following Cayley table:

*	0	1	2	3	4
0	0	0	0	0	0
1	1	0	1	0	0
2	2	2	0	0	0
3	3	3	3	0	0
4	4	3	4	1	0

Define an IFS $A = (\alpha_A, \beta_A)$ in *X* as follows:

$$\begin{aligned} \alpha_A(0) &= \alpha_A(2) = 1, & \alpha_A(1) = \alpha_A(3) = \alpha_A(4) = t, \\ \beta_A(0) &= \beta_A(2) = 0, & \beta_A(1) = \beta_A(3) = \beta_A(4) = s, \end{aligned}$$
 (3.3)

where $t \in [0,1]$, $s \in [0,1]$, and $t + s \le 1$. By routine calculation we know that $A = (\alpha_A, \beta_A)$ is an *intuitionistic fuzzy ideal* of *X*.

LEMMA 3.6. Let an IFS $A = (\alpha_A, \beta_A)$ in X be an intuitionistic fuzzy ideal of X. If the inequality $x * y \le z$ holds in X, then

$$\alpha_A(x) \ge \min\{\alpha_A(y), \alpha_A(z)\}, \qquad \beta_A(x) \le \max\{\beta_A(y), \beta_A(z)\}.$$
(3.4)

PROOF. Let $x, y, z \in X$ be such that $x * y \le z$. Then (x * y) * z = 0, and thus

$$\alpha_{A}(x) \geq \min \left\{ \alpha_{A}(x \ast y), \alpha_{A}(y) \right\}$$

$$\geq \min \left\{ \min \left\{ \alpha_{A}((x \ast y) \ast z), \alpha_{A}(z) \right\}, \alpha_{A}(y) \right\}$$

$$= \min \left\{ \min \left\{ \alpha_{A}(0), \alpha_{A}(z) \right\}, \alpha_{A}(y) \right\}$$

$$= \min \left\{ \alpha_{A}(y), \alpha_{A}(z) \right\},$$

$$\beta_{A}(x) \leq \max \left\{ \beta_{A}(x \ast y), \beta_{A}(y) \right\}$$

$$\leq \max \left\{ \max \left\{ \beta_{A}((x \ast y) \ast z), \beta_{A}(z) \right\}, \beta_{A}(y) \right\}$$

$$= \max \left\{ \max \left\{ \beta_{A}(0), \beta_{A}(z) \right\}, \beta_{A}(y) \right\}$$

$$= \max \left\{ \beta_{A}(y), \beta_{A}(z) \right\},$$
(3.5)

this completes the proof.

LEMMA 3.7. Let $A = (\alpha_A, \beta_A)$ be an intuitionistic fuzzy ideal of X. If $x \le y$ in X, then

$$\alpha_A(x) \ge \alpha_A(y), \qquad \beta_A(x) \le \beta_A(y), \tag{3.6}$$

that is, α_A is order-reserving and β_A is order-preserving.

PROOF. Let $x, y \in X$ be such that $x \le y$. Then x * y = 0 and so

$$\alpha_{A}(x) \ge \min \left\{ \alpha_{A}(x \ast y), \alpha_{A}(y) \right\} = \min \left\{ \alpha_{A}(0), \alpha_{A}(y) \right\} = \alpha_{A}(y),$$

$$\beta_{A}(x) \le \max \left\{ \beta_{A}(x \ast y), \beta_{A}(y) \right\} = \max \left\{ \beta_{A}(0), \beta_{A}(y) \right\} = \beta_{A}(y).$$
(3.7)

This completes the proof.

THEOREM 3.8. If $A = (\alpha_A, \beta_A)$ is an intuitionistic fuzzy ideal of X, then for any $x, a_1, a_2, ..., a_n \in X$, $(\cdots ((x * a_1) * a_2) * \cdots) * a_n = 0$ implies

$$\alpha_A(x) \ge \min\{\alpha_A(a_1), \alpha_A(a_2), \dots, \alpha_A(a_n)\},$$

$$\beta_A(x) \le \max\{\beta_A(a_1), \beta_A(a_2), \dots, \beta_A(a_n)\}.$$
(3.8)

PROOF. Using induction on n and Lemmas 3.6 and 3.7, the proof is straightforward.

THEOREM 3.9. Every intuitionistic fuzzy ideal of X is an intuitionistic fuzzy subalgebra of X.

PROOF. Let $A = (\alpha_A, \beta_A)$ be an intuitionistic fuzzy ideal of *X*. Since $x * y \le x$ for all $x, y \in X$, it follows from Lemma 3.7 that

$$\alpha_A(x*y) \ge \alpha_A(x), \qquad \beta_A(x*y) \le \beta_A(x), \tag{3.9}$$

so by (IF2) and (IF3),

$$\alpha_A(x * y) \ge \alpha_A(x) \ge \min\{\alpha_A(x * y), \alpha_A(y)\} \ge \min\{\alpha_A(x), \alpha_A(y)\}, \beta_A(x * y) \le \beta_A(x) \le \max\{\beta_A(x * y), \beta_A(y)\} \le \max\{\beta_A(x), \beta_A(y)\}.$$
(3.10)

This shows that $A = (\alpha_A, \beta_A)$ is an intuitionistic fuzzy subalgebra of *X*.

The converse of Theorem 3.9 may not be true. For example, the intuitionistic fuzzy subalgebra $A = (\alpha_A, \beta_A)$ in Example 3.2 is not an intuitionistic fuzzy ideal of *X* since

$$\beta_A(b) = 0.5 > 0.2 = \min\{\beta_A(b*a), \beta_A(a)\}.$$
(3.11)

We now give a condition for an intuitionistic fuzzy subalgebra to be an intuitionistic fuzzy ideal.

THEOREM 3.10. Let $A = (\alpha_A, \beta_A)$ be an intuitionistic fuzzy subalgebra of X such that

$$\alpha_A(x) \ge \min\{\alpha_A(y), \alpha_A(z)\}, \qquad \beta_A(x) \le \max\{\beta_A(y), \beta_A(z)\}$$
(3.12)

for all $x, y, z \in X$ satisfying the inequality $x * y \le z$. Then $A = (\alpha_A, \beta_A)$ is an intuitionistic fuzzy ideal of X.

PROOF. Let $A = (\alpha_A, \beta_A)$ be an intuitionistic fuzzy subalgebra of *X*. Recall that $\alpha_A(0) \ge \alpha_A(x)$ and $\beta_A(0) \le \beta_A(x)$ for all *X*. Since $x * (x * y) \le y$, it follows from the hypothesis that

$$\alpha_A(x) \ge \min\{\alpha_A(x*y), \alpha_A(y)\}, \qquad \beta_A(x) \le \max\{\beta_A(x*y), \beta_A(y)\}.$$
(3.13)

Hence $A = (\alpha_A, \beta_A)$ is an intuitionistic fuzzy ideal of *X*.

LEMMA 3.11. An IFS $A = (\alpha_A, \beta_A)$ is an intuitionistic fuzzy ideal of X if and only if the fuzzy sets α_A and $\bar{\beta}_A$ are fuzzy ideals of X.

PROOF. Let $A = (\alpha_A, \beta_A)$ be an intuitionistic fuzzy ideal of *X*. Clearly, α_A is a fuzzy ideal of *X*. For every $x, y \in X$, we have

$$\bar{\beta}_{A}(0) = 1 - \beta_{A}(0) \ge 1 - \beta_{A}(x) = \bar{\beta}_{A}(x),$$

$$\bar{\beta}_{A}(x) = 1 - \beta_{A}(x) \ge 1 - \max\{\beta_{A}(x * y), \beta_{A}(y)\}$$

$$= \min\{1 - \beta_{A}(x * y), 1 - \beta_{A}(y)\}$$

$$= \min\{\bar{\beta}_{A}(x * y), \bar{\beta}_{A}(y)\}.$$
(3.14)

Hence $\bar{\beta}_A$ is a fuzzy ideal of *X*.

Conversely, assume that α_A and $\bar{\beta}_A$ are fuzzy ideals of *X*. For every $x, y \in X$, we get

$$\alpha_A(0) \ge \alpha_A(x), \qquad 1 - \beta_A(0) = \beta_A(0) \ge \beta_A(x) = 1 - \beta_A(x), \qquad (3.15)$$

that is, $\beta_A(0) \leq \beta_A(x)$; $\alpha_A(x) \geq \min\{\alpha_A(x * y), \alpha_A(y)\}$ and

$$1 - \beta_A(x) = \bar{\beta}_A(x) \ge \min\{\bar{\beta}_A(x * y), \bar{\beta}_A(y)\} = \min\{1 - \beta_A(x * y), 1 - \beta_A(y)\} = 1 - \max\{\beta_A(x * y), \beta_A(y)\},$$
(3.16)

that is, $\beta_A(x) \le \max{\{\beta_A(x \ast y), \beta_A(y)\}}$. Hence $A = (\alpha_A, \beta_A)$ is an intuitionistic fuzzy ideal of *X*.

THEOREM 3.12. Let $A = (\alpha_A, \beta_A)$ be an IFS in X. Then $A = (\alpha_A, \beta_A)$ is an intuitionistic fuzzy ideal of X if and only if $\Box A = (\alpha_A, \overline{\alpha}_A)$ and $\Diamond A = (\overline{\beta}_A, \beta_A)$ are intuitionistic fuzzy ideals of X.

PROOF. If $A = (\alpha_A, \beta_A)$ is an intuitionistic fuzzy ideal of X, then $\alpha_A = \overline{\alpha}_A$ and β_A are fuzzy ideals of X from Lemma 3.11, hence $\Box A = (\alpha_A, \overline{\alpha}_A)$ and $\Diamond A = (\overline{\beta}_A, \beta_A)$ are intuitionistic fuzzy ideals of X. Conversely, if $\Box A = (\alpha_A, \overline{\alpha}_A)$ and $\Diamond A = (\overline{\beta}_A, \beta_A)$ are intuitionistic fuzzy ideals of X, then the fuzzy sets α_A and $\overline{\beta}_A$ are fuzzy ideals of X, hence $A = (\alpha_A, \beta_A)$ is an intuitionistic fuzzy ideal of X. \Box

For any $t \in [0,1]$ and a fuzzy set μ in a nonempty set *X*, the set

$$U(\mu;t) = \{x \in X \mid \mu(x) \ge t\}$$
(3.17)

is called an *upper t-level cut* of μ and the set

$$L(\mu;t) = \{ x \in X \mid \mu(x) \le t \}$$
(3.18)

is called a *lower t-level cut* of μ .

THEOREM 3.13. An IFS $A = (\alpha_A, \beta_A)$ is an intuitionistic fuzzy ideal of X if and only if for all $s, t \in [0,1]$, the sets $U(\alpha_A;t)$ and $L(\beta_A;s)$ are either empty or ideals of X.

PROOF. Let $A = (\alpha_A, \beta_A)$ be an intuitionistic fuzzy ideal of X and $U(\alpha_A; t) \neq \emptyset \neq L(\beta_A; s)$ for any $s, t \in [0, 1]$. It is clear that $0 \in U(\alpha_A; t) \cap L(\beta_A; s)$ since $\alpha_A(0) \ge t$ and $\beta_A(0) \le s$. Let $x, y \in X$ be such that $x * y \in U(\alpha_A; t)$ and $y \in U(\alpha_A; t)$. Then $\alpha_A(x * y) \ge t$ and $\alpha_A(y) \ge t$. It follows that

$$\alpha_A(x) \ge \min\left\{\alpha_A(x*y), \alpha_A(y)\right\} \ge t \tag{3.19}$$

so that $x \in U(\alpha_A;t)$. Hence $U(\alpha_A;t)$ is an ideal of *X*. Now let $x, y \in X$ be such that $x * y \in L(\beta_A;s)$ and $y \in L(\beta_A;s)$. Then $\beta_A(x * y) \le s$ and $\beta_A(y) \le s$, which imply that

$$\beta_A(x) \le \max\left\{\beta_A(x*y), \beta_A(y)\right\} \le s.$$
(3.20)

Thus $x \in L(\beta_A; s)$, and therefore $L(\beta_A; s)$ is an ideal of *X*. Conversely, assume that for each $t, s \in [0,1]$, the sets $U(\alpha_A; t)$ and $L(\beta_A; s)$ are either empty or ideals of *X*. For any $x \in X$, let $\alpha_A(x) = t$ and $\beta_A(x) = s$. Then $x \in U(\alpha_A; t) \cap L(\beta_A; s)$, and so $U(\alpha_A; t) \neq \emptyset \neq L(\beta_A; s)$. Since $U(\alpha_A; t)$ and $L(\beta_A; s)$ are ideals of *X*, therefore $0 \in$ $U(\alpha_A; t) \cap L(\beta_A; s)$. Hence $\alpha_A(0) \ge t = \alpha_A(x)$ and $\beta_A(0) \le s = \beta_A(x)$ for all $x \in X$. If there exist $x', y' \in X$ such that $\alpha_A(x') < \min\{\alpha_A(x' * y'), \alpha_A(y')\}$, then by taking

$$t_0 = \frac{1}{2} (\alpha_A(x') + \min \{ \alpha_A(x' * y'), \alpha_A(y') \}),$$
(3.21)

we have

$$\alpha_A(x') < t_0 < \min\{\alpha_A(x' * y'), \alpha_A(y')\}.$$
(3.22)

Hence $x' \notin U(\alpha_A; t_0)$, $x' * y' \in U(\alpha_A; t_0)$ and $y' \in (\alpha_A; t_0)$, that is, $U(\alpha_A; t_0)$ is not an ideal of *X*, which is a contradiction. Finally, assume that there exist $a, b \in X$ such that

$$\beta_A(a) > \max\left\{\beta_A(a \ast b), \beta_A(b)\right\}.$$
(3.23)

Taking $s_0 := (1/2)(\beta_A(a) + \max\{\beta_A(a * b), \beta_A(b)\})$, then

$$\max\{\beta_A(a*b), \beta_A(b)\} < s_0 < \beta_A(a).$$
(3.24)

Therefore $a * b \in L(\beta_A; s_0)$ and $b \in L(\beta_A; s_0)$, but $a \notin L(\beta_A; s_0)$, which is a contradiction, this completes the proof.

Let Λ be a nonempty subset of [0,1].

THEOREM 3.14. Let $\{I_t \mid t \in \Lambda\}$ be a collection of ideals of X such that (i) $X = \bigcup_{t \in \Lambda} I_t$, (ii) s > t if and only if $I_s \subset I_t$ for all $s, t \in \Lambda$.

Then an IFS $A = (\alpha_A, \beta_A)$ *in X defined by*

$$\alpha_A(x) := \sup \{ t \in \Lambda \mid x \in I_t \}, \qquad \beta_A(x) := \inf \{ t \in \Lambda \mid x \in I_t \}$$
(3.25)

for all $x \in X$ is an intuitionistic fuzzy ideal of X.

PROOF. According to Theorem 3.13, it is sufficient to show that $U(\alpha_A; t)$ and $L(\beta_A; s)$ are ideals of *X* for every $t \in [0, \alpha_A(0)]$ and $s \in [\beta_A(0), 1]$. In order to prove

that $U(\alpha_A;t)$ is an ideal of *X*, we divide the proof into the following two cases:

(i) $t = \sup\{q \in \Lambda \mid q < t\},\$

(ii) $t \neq \sup\{q \in \Lambda \mid q < t\}.$

Case (i) implies that

$$x \in U(\alpha_A; t) \Longleftrightarrow x \in I_q \quad \forall q < t \Longleftrightarrow x \in \cap_{q < t} I_q, \tag{3.26}$$

so that $U(\alpha_A;t) = \bigcap_{q < t} I_q$, which is an ideal of *X*. For the case (ii), we claim that $U(\alpha_A;t) = \bigcup_{q \ge t} I_q$. If $x \in \bigcup_{q \ge t} I_q$, then $x \in I_q$ for some $q \ge t$. It follows that $\alpha_A(x) \ge q \ge t$, so that $x \in U(\alpha_A;t)$. This shows that $\bigcup_{q \ge t} I_q \subseteq U(\alpha_A;t)$. Now assume that $x \notin \bigcup_{q \ge t} I_q$. Then $x \notin I_q$ for all $q \ge t$. Since $t \neq \sup\{q \in \Lambda \mid q < t\}$, there exists $\varepsilon > 0$ such that $(t - \varepsilon, t) \cap \Lambda = \emptyset$. Hence $x \notin I_q$ for all $q > t - \varepsilon$, which means that if $x \in I_q$, then $q \le t - \varepsilon$. Thus $\alpha_A(x) \le t - \varepsilon < t$, and so $x \notin U(\alpha_A;t)$. Therefore $U(\alpha_A;t) \subseteq \bigcup_{q \ge t} I_q$, and thus $U(\alpha_A;t) = \bigcup_{q \ge t} I_q$ which is an ideal of *X*. Next we prove that $L(\beta_A;s)$ is an ideal of *X*. We consider the following two cases:

(iii) $s = \inf\{r \in \Lambda \mid s < r\},\$

(iv) $s \neq \inf \{ r \in \Lambda \mid s < r \}.$

For the case (iii), we have

$$x \in L(\beta_A; s) \Longleftrightarrow x \in I_r \quad \forall s < r \Longleftrightarrow x \in \cap_{s < r} I_r, \tag{3.27}$$

and hence $L(\beta_A; s) = \bigcap_{s < r} I_r$ which is an ideal of *X*. For the case (iv) there exists $\varepsilon > 0$ such that $(s, s + \varepsilon) \cap \Lambda = \emptyset$. We will show that $L(\beta_A; s) = \bigcup_{s \ge r} I_r$. If $x \in \bigcup_{s \ge r} I_r$, then $x \in I_r$ for some $r \le s$. It follows that $\beta_A(x) \le r \le s$ so that $x \in L(\beta_A; s)$. Hence $\bigcup_{s \ge r} I_r \subseteq L(\beta_A; s)$. Conversely, if $x \notin \bigcup_{s \ge r} I_r$, then $x \notin I_r$ for all $r \le s$, which implies that $x \notin I_r$ for all $r < s + \varepsilon$, that is, if $x \in I_r$, then $r \ge s + \varepsilon$. Thus $\beta_A(x) \ge s + \varepsilon > s$, that is, $x \notin L(\beta_A; s)$. Therefore $L(\beta_A; s) \subseteq \bigcup_{s \ge r} I_r$ and consequently $L(\beta_A; s) = \bigcup_{s \ge r} I_r$ which is an ideal of *X*. This completes the proof.

A mapping $f : X \to Y$ of BCK-algebras is called a *homomorphism* if f(x * y) = f(x) * f(y) for all $x, y \in X$. Note that if $f : X \to Y$ is a homomorphism of BCK-algebras, then f(0) = 0. Let $f : X \to Y$ be a homomorphism of BCK-algebras. For any IFS $A = (\alpha_A, \beta_A)$ in Y, we define a new IFS $A^f = (\alpha_A^f, \beta_A^f)$ in X by

$$\alpha_A^f(x) := \alpha_A(f(x)), \quad \beta_A^f(x) := \beta_A(f(x)) \quad \forall x \in X.$$
(3.28)

THEOREM 3.15. Let $f : X \to Y$ be a homomorphism of BCK-algebras. If an IFS $A = (\alpha_A, \beta_A)$ in Y is an intuitionistic fuzzy ideal of Y, then an IFS $A^f = (\alpha_A^f, \beta_A^f)$ in X is an intuitionistic fuzzy ideal of X.

PROOF. We first have that

$$\alpha_A^f(x) = \alpha_A(f(x)) \le \alpha_A(0) = \alpha_A(f(0)) = \alpha_A^f(0),$$

$$\beta_A^f(x) = \beta_A(f(x)) \ge \beta_A(0) = \beta_A(f(0)) = \beta_A^f(0)$$
(3.29)

for all $x \in X$. Let $x, y \in X$. Then

$$\min \{ \alpha_A^f(x * y), \alpha_A^f(y) \} = \min \{ \alpha_A(f(x * y)), \alpha_A(f(y)) \}$$

$$= \min \{ \alpha_A(f(x) * f(y)), \alpha_A(f(y)) \}$$

$$\leq \alpha_A(f(x)) = \alpha_A^f(x),$$

$$\max \{ \beta_A^f(x * y), \beta_A^f(y) \} = \max \{ \beta_A(f(x * y)), \beta_A(f(y)) \}$$

$$= \max \{ \beta_A(f(x) * f(y)), \beta_A(f(y)) \}$$

$$\geq \beta_A(f(x)) = \beta_A^f(x).$$

(3.30)

Hence $A^f = (\alpha_A^f, \beta_A^f)$ is an intuitionistic fuzzy ideal of *X*.

If we strengthen the condition of f, then we can construct the converse of Theorem 3.15 as follows.

THEOREM 3.16. Let $f : X \to Y$ be an epimorphism of BCK-algebras and let $A = (\alpha_A, \beta_A)$ be an IFS in Y. If $A^f = (\alpha_A^f, \beta_A^f)$ is an intuitionistic fuzzy ideal of X, then $A = (\alpha_A, \beta_A)$ is an intuitionistic fuzzy ideal of Y.

PROOF. For any $x \in Y$, there exists $a \in X$ such that f(a) = x. Then

$$\begin{aligned} &\alpha_A(x) = \alpha_A(f(a)) = \alpha_A^f(a) \le \alpha_A^f(0) = \alpha_A(f(0)) = \alpha_A(0), \\ &\beta_A(x) = \beta_A(f(a)) = \beta_A^f(a) \ge \beta_A^f(0) = \beta_A(f(0)) = \beta_A(0). \end{aligned}$$
(3.31)

Let $x, y \in Y$. Then f(a) = x and f(b) = y for some $a, b \in X$. It follows that

$$\begin{aligned} \alpha_A(x) &= \alpha_A(f(a)) = \alpha_A^f(a) \\ &\geq \min \left\{ \alpha_A^f(a * b), \alpha_A^f(b) \right\} \\ &= \min \left\{ \alpha_A(f(a * b)), \alpha_A(f(b)) \right\} \\ &= \min \left\{ \alpha_A(f(a) * f(b)), \alpha_A(f(b)) \right\} \\ &= \min \left\{ \alpha_A(x * y), \alpha_A(y) \right\}, \end{aligned}$$
(3.32)
$$\beta_A(x) &= \beta_A(f(a)) = \beta_A^f(a) \\ &\leq \max \left\{ \beta_A^f(a * b), \beta_A^f(b) \right\} \\ &= \max \left\{ \beta_A(f(a * b)), \beta_A(f(b)) \right\} \\ &= \max \left\{ \beta_A(f(a) * f(b)), \beta_A(f(b)) \right\} \\ &= \max \left\{ \beta_A(x * y), \beta_A(y) \right\}. \end{aligned}$$

This completes the proof.

Let IF(X) be the family of all intuitionistic fuzzy ideals of *X* and let $t \in [0,1]$. Define binary relations U^t and L^t on IF(X) as follows:

$$(A,B) \in U^t \Leftrightarrow U(\alpha_A;t) = U(\alpha_B;t), \qquad (A,B) \in L^t \Leftrightarrow L(\beta_A;t) = L(\beta_B;t), \qquad (3.33)$$

respectively, for $A = (\alpha_A, \beta_A)$ and $B = (\alpha_B, \beta_B)$ in IF(X). Then clearly U^t and L^t are

equivalence relations on IF(*X*). For any $A = (\alpha_A, \beta_A) \in \text{IF}(X)$, let $[A]_{U^t}$ (respectively, $[A]_{L^t}$) denote the equivalence class of *A* modulo U^t (respectively, L^t), and denote by IF(*X*)/ U^t (respectively, IF(*X*)/ L^t) the system of all equivalence classes modulo U^t (respectively, L^t); so

$$\mathrm{IF}(X)/U^{t} := \{ [A]_{U^{t}} \mid A = (\alpha_{A}, \beta_{A}) \in \mathrm{IF}(X) \},$$
(3.34)

respectively,

$$\mathrm{IF}(X)/L^{t} := \{ [A]_{L^{t}} \mid A = (\alpha_{A}, \beta_{A}) \in \mathrm{IF}(X) \}.$$
(3.35)

Now let I(X) denote the family of all ideals of X and let $t \in [0,1]$. Define maps f_t and g_t from IF(X) to $I(X) \cup \{\emptyset\}$ by $f_t(A) = U(\alpha_A; t)$ and $g_t(A) = L(\beta_A; t)$, respectively, for all $A = (\alpha_A, \beta_A) \in IF(X)$. Then f_t and g_t are clearly well defined.

THEOREM 3.17. For any $t \in (0,1)$ the maps f_t and g_t are surjective from IF(X) to $I(X) \cup \{\emptyset\}$.

PROOF. Let $t \in (0,1)$. Note that $\mathbf{0}_{\sim} = (\mathbf{0},\mathbf{1})$ is in IF(*X*), where $\mathbf{0}$ and $\mathbf{1}$ are fuzzy sets in *X* defined by $\mathbf{0}(x) = 0$ and $\mathbf{1}(x) = 1$ for all $x \in X$. Obviously $f_t(\mathbf{0}_{\sim}) = U(\mathbf{0};t) = \emptyset = L(\mathbf{1};t) = g_t(\mathbf{0}_{\sim})$. Let $G(\neq \emptyset) \in I(X)$. For $G_{\sim} = (\chi_G, \bar{\chi}_G) \in \text{IF}(X)$, we have $f_t(G_{\sim}) = U(\chi_G;t) = G$ and $g_t(G_{\sim}) = L(\bar{\chi}_G;t) = G$. Hence f_t and g_t are surjective.

THEOREM 3.18. The quotient sets $IF(X)/U^t$ and $IF(X)/L^t$ are equipotent to $I(X) \cup \{\emptyset\}$ for every $t \in (0,1)$.

PROOF. For $t \in (0,1)$ let f_t^* (respectively, g_t^*) be a map from IF(*X*)/*U*^{*t*} (respectively, IF(*X*)/*L*^{*t*}) to $I(X) \cup \{\emptyset\}$ defined by $f_t^*([A]_{U^t}) = f_t(A)$ (respectively, $g_t^*([A]_{L^t}) = g_t(A)$) for all $A = (\alpha_A, \beta_A) \in \text{IF}(X)$. If $U(\alpha_A; t) = U(\alpha_B; t)$ and $L(\beta_A; t) = L(\beta_B; t)$ for $A = (\alpha_A, \beta_A)$ and $B = (\alpha_B, \beta_B)$ in IF(*X*), then $(A, B) \in U^t$ and $(A, B) \in L^t$; hence $[A]_{U^t} = [B]_{U^t}$ and $[A]_{L^t} = [B]_{L^t}$. Therefore the maps f_t^* and g_t^* are injective. Now let $G(\neq \emptyset) \in I(X)$. For $G_{\sim} = (\chi_G, \overline{\chi}_G) \in \text{IF}(X)$, we have

$$f_t^*([G_{\sim}]_{U^t}) = f_t(G_{\sim}) = U(\chi_G; t) = G, g_t^*([G_{\sim}]_{L^t}) = g_t(G_{\sim}) = L(\bar{\chi}_G; t) = G.$$
(3.36)

Finally, for $\mathbf{0}_{\sim} = (\mathbf{0}, \mathbf{1}) \in \mathrm{IF}(X)$ we get

$$\begin{aligned} f_t^*([\mathbf{0}_{\sim}]_{U^t}) &= f_t(\mathbf{0}_{\sim}) = U(\mathbf{0};t) = \emptyset, \\ g_t^*([\mathbf{0}_{\sim}]_{L^t}) &= g_t(\mathbf{0}_{\sim}) = L(\mathbf{0};t) = \emptyset. \end{aligned}$$
(3.37)

This shows that f_t^* and g_t^* are surjective. This completes the proof.

For any $t \in [0, 1]$, we define another relation R^t on IF(*X*) as follows:

$$(A,B) \in \mathbb{R}^t \iff U(\alpha_A;t) \cap L(\beta_A;t) = U(\alpha_B;t) \cap L(\beta_B;t)$$
(3.38)

for any $A = (\alpha_A, \beta_A)$, $B = (\alpha_B, \beta_B) \in IF(X)$. Then the relation R^t is also an equivalence relation on IF(*X*).

THEOREM 3.19. For any $t \in (0,1)$, the map $\phi_t : \operatorname{IF}(X) \to I(X) \cup \{\emptyset\}$ defined by $\phi_t(A) = f_t(A) \cap g_t(A)$ for each $A = (\alpha_A, \beta_A) \in \operatorname{IF}(X)$ is surjective.

PROOF. Let $t \in (0, 1)$. For $\mathbf{0}_{\sim} = (\mathbf{0}, \mathbf{1}) \in \mathrm{IF}(X)$,

$$\phi_t(\mathbf{0}_{\sim}) = f_t(\mathbf{0}_{\sim}) \cap g_t(\mathbf{0}_{\sim}) = U(\mathbf{0};t) \cap L(\mathbf{1};t) = \emptyset.$$
(3.39)

For any $H \in IF(X)$, there exists $H_{\sim} = (\chi_H, \bar{\chi}_H) \in IF(X)$ such that

$$\phi_t(H_{\sim}) = f_t(H_{\sim}) \cap g_t(H_{\sim}) = U(\chi_H; t) \cap L(\bar{\chi}_H; t) = H.$$
(3.40)

This completes the proof.

THEOREM 3.20. For any $t \in (0,1)$, the quotient set $IF(X)/R^t$ is equipotent to $I(X) \cup \{\emptyset\}$.

PROOF. Let $t \in (0,1)$ and let $\phi_t^* : \operatorname{IF}(X)/R^t \to I(X) \cup \{\emptyset\}$ be a map defined by $\phi_t^*([A]_{R^t}) = \phi_t(A)$ for all $[A]_{R^t} \in \operatorname{IF}(X)/R^t$. If $\phi_t^*([A]_{R^t}) = \phi_t^*([B]_{R^t})$ for any $[A]_{R^t}$, $[B]_{R^t} \in \operatorname{IF}(X)/R^t$, then $f_t(A) \cap g_t(A) = f_t(B) \cap g_t(B)$, that is, $U(\alpha_A; t) \cap L(\beta_A; t) = U(\alpha_B; t) \cap L(\beta_B; t)$, hence $(A, B) \in R^t$. It follows that $[A]_{R^t} = [B]_{R^t}$ so that ϕ_t^* is injective. For $\mathbf{0}_{\sim} = (\mathbf{0}, \mathbf{1}) \in \operatorname{IF}(X)$,

$$\phi_t^*([\mathbf{0}_{\sim}]_{R^t}) = \phi_t(\mathbf{0}_{\sim}) = f_t(\mathbf{0}_{\sim}) \cap g_t(\mathbf{0}_{\sim}) = U(\mathbf{0};t) \cap L(\mathbf{1};t) = \emptyset.$$
(3.41)

If $H \in IF(X)$, then for $H_{\sim} = (\chi_H, \bar{\chi}_H) \in IF(X)$, we have

$$\phi_t^*([H_{\sim}]_{R^t}) = \phi(H_{\sim}) = f_t(H_{\sim}) \cap g_t(H_{\sim}) = U(\chi_H; t) \cap L(\bar{\chi}_H; t) = H.$$
(3.42)

Hence ϕ_t^* is surjective, this completes the proof.

ACKNOWLEDGEMENT. The first author was supported by Korea Research Foundation Grant (KRF-99-005-D00003).

REFERENCES

- K. T. Atanassov, *Intuitionistic fuzzy sets*, Fuzzy Sets and Systems 20 (1986), no. 1, 87-96. MR 87f:03151. Zbl 631.03040.
- [2] _____, New operations defined over the intuitionistic fuzzy sets, Fuzzy Sets and Systems
 61 (1994), no. 2, 137-142. CMP 1 262 464. Zbl 824.04004.
- Y. B. Jun, A note on fuzzy ideals in BCK-algebras, Math. Japon. 42 (1995), no. 2, 333–335.
 CMP 1 356 395. Zbl 834.06018.
- [4] _____, Finite valued fuzzy ideals in BCK-algebras, J. Fuzzy Math. 5 (1997), no. 1, 111-114.
 CMP 1 441 020. Zbl 868.06010.
- [5] _____, Characterizations of Noetherian BCK-algebras via fuzzy ideals, Fuzzy Sets and Systems 108 (1999), no. 2, 231–234. CMP 1 720 432. Zbl 940.06014.
- [6] Y. B. Jun, S. M. Hong, S. J. Kim, and S. Z. Song, *Fuzzy ideals and fuzzy subalgebras of BCK-algebras*, J. Fuzzy Math. 7 (1999), no. 2, 411–418. MR 2000c:06040. Zbl 943.06010.
- [7] Y. B. Jun and E. H. Roh, *Fuzzy commutative ideals of BCK-algebras*, Fuzzy Sets and Systems 64 (1994), no. 3, 401-405. MR 95e:06051. Zbl 846.06011.

- [8] J. Meng, Y. B. Jun, and H. S. Kim, *Fuzzy implicative ideals of BCK-algebras*, Fuzzy Sets and Systems 89 (1997), no. 2, 243–248. MR 98a:06033. Zbl 914.06009.
- [9] L. A. Zadeh, *Fuzzy sets*, Information and Control 8 (1965), 338-353. MR 36#2509. Zbl 139.24606.

Young Bae Jun: Department of Mathematics Education, Gyeongsang National University, Chinju $660\math{-}701, Korea$

E-mail address: ybjun@nongae.gsnu.ac.kr

KYUNG HO KIM: DEPARTMENT OF MATHEMATICS, CHUNGJU NATIONAL UNIVERSITY, CHUNGJU 380-702, KOREA

E-mail address: ghkim@gukwon.chungju.ac.kr