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Abstract. We discuss the conditions under which bounded solutions of the evolution
equation x′(t) = Ax(t)+f(t) in a Banach space are almost automorphic whenever f(t)
is almost automorphic and A generates a C0-group of strongly continuous operators. We
also give a result for asymptotically almost automorphic solutions for the more general
case of x′(t)=Ax(t)+f(t,x(t)).
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1. Introduction. Let A generate a C0-group of strongly continuous operators T(t),
t ∈ R on a Banach space X. Let f ∈ L∞(R;X). A basic unsolved problem is: what is
the structure of bounded (on R) mild solutions of x′(t) = Ax(t)+f(t)? Classically
results go back to Ordinary Differential Equations (when dimension of X is finite),
and one sought solutions x(t) such that x(t)−y(t)→ 0 as t →∞, when either y(t)
is a constant or a periodic function of time. In the evolution context of x′ = Ax+f ,
much has been written on asymptotically constant or periodic solutions. Several au-
thors extended these ideas to almost periodic solutions (when f is almost periodic).
Our main result (Theorem 1.6) is inspired by the interesting work of Goldstein [3]. We
are actually concerned with the more general case of almost automorphic, and when
bounded solutions are almost automorphic. We also give a new result (Theorem 1.7)
concerning mild solutions of the equation x′(t)=Ax(t)+f(t,x(t)) which approach
almost automorphic functions at infinity under specific conditions on the function
f(t,x). See also [6] for another comparable situation.
Let X be a Banach space equipped with the topology norm and R= (−∞,∞) the set

of real numbers. Let us first recall some definitions.

Definition 1.1 (Bochner). A continuous function f :R→X is said to be almost au-
tomorphic if and only if, from any sequence of real numbers (s′n)

∞
n=1, we can subtract a

subsequence (sn)∞n=1 such that: limn→∞f(t+sn)= g(t) exists for each real number t,
and limn→∞g(t−sn)= f(t) for each t.

Definition 1.2 [4]. A continuous function f :R+ →X is said to be asymptotically
almost automorphic if and only if there exists an almost automorphic function g :
R → X and a continuous function h : R+ → X with limt→∞‖h(t)‖ = 0 and such that
f(t)= g(t)+h(t) for each t ∈R+.
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Definition 1.3. A Banach spaceX is said to be perfect if and only if every bounded
function u :R→X with an almost automorphic derivative u′(t) is necessarily almost
automorphic.

Remark 1.4. Uniformly convex Banach spaces are nice examples of perfect Banach
spaces (see [10, Theorem 1.4]).

We consider the evolution equation

x′(t)=Ax(t)+f(t), t ∈R. (1.1)

Theorem 1.5. Let X be a perfect Banach space. Let A be a bounded linear operator
X → X and f : R → X an almost automorphic function. Then any bounded strong
solution of (1.1) is almost automorphic if we assume that there exists a finite-dimensional
subspace X1 of X such that
(α) Ax(0)∈X1,
(β) (etA−I)f (s)∈X1 for any s,t ∈R,
(γ) etAu∈X1 for any t ∈R and for any u∈X1.
Proof. Let P be the projection of X onto X1; such P always exists (cf. [7]) and

possesses the following properties:
(1) X =X1⊕ker(P), where ker(P) is the kernel of the operator P ,
(2) P is bounded on X.

If we put Q = I−P , then it is easy to verify that Q2 = Q on X and Qu = 0 for any
u∈X1. Now if x(t) is a bounded solution of (1.1), then we can write it as

x(t)= x1(t)+x2(t) (1.2)

with x1(t)= Px(t)∈X1 and x2(t)=Qx(t)∈ ker(P).
Since x(t) is bounded on R, it is clear that both x1(t) and x2(t) are also bounded

on R. On the other hand, we have

x′(t)= x′1(t)+x′2(t)=Ax1(t)+Ax2(t)+Pf(t)+Qf(t), t ∈R. (1.3)

But x(t) has the well-known Lagrange representation:

x(t)= etAx(0)+
∫ t
0
e(t−s)Af (s)ds

= etAx(0)+
∫ t
0
f(s)ds+

∫ t
0

(
e(t−s)A−I)f(s)ds.

(1.4)

By assumption (β), we deduce that
∫ t
0(e(t−s)A− I)f (s)ds is in X1, so that if we apply

Q to both sides of (1.4), we get

x2(t)=QetAx(0)+Q
∫ t
0
f(s)ds =QetAx(0)+

∫ t
0
Qf(s)ds, (1.5)

consequently

x′2(t)=QetAAx(0)+Qf(t)=Qf(t) (1.6)

using conditions (α) and (γ).
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It is clear thatQf(t) and thus x′2(t) is almost automorphic (see [9, page 586]). Since
x2(t) is bounded, then it is almost automorphic for we are in a perfect Banach space.
Now if we apply P to both sides of (1.3), we get in the finite-dimensional space X1

the differential equation

x′1(t)= PAx1(t)+PAx2(t)+P2f(t)+PQf(t), t ∈R. (1.7)

Since the function g(t)≡ P2f(t)+PQf(t) is almost automorphic and PA is a bounded
linear operator, we deduce that x1(t) is almost automorphic [9, Theorem 3]. Finally,
x(t) is almost automorphic as the sum of two almost automorphic functions.

Theorem 1.5 can be generalized to the case of unbounded operator A as follows.

Theorem 1.6. In a perfect Banach space X, let A generate a C0-group of strongly
continuous linear operators T(t), t ∈ R. Assume that there exists a finite-dimensional
subspace X1 of X such that:
(α) Ax(0)∈X1,
(β′) (T(t)−I)f (s)∈X1 for any s,t ∈R,
(γ) T(t)u∈X1 for any t ∈R and any u∈X1.

Then every bounded solution of (1.1) is almost automorphic.

Proof. We just follow the proof of Theorem 1.5 with the appropriate modifica-
tions. Here solutions are written as x(t)= T(t)x(0)+∫ t0 T(t−s)f (s)ds.
We return now to a general (not necessarily perfect) Banach space X. We state and

prove the following theorem.

Theorem 1.7. Let A be a (possibly unbounded) linear operator which is the gen-
erator of a C0-group of strongly continuous linear operators T(t), t ∈ R such that
T(t)x :R→X is almost automorphic for each x ∈X. Consider the differential equation

x′(t)=Ax(t)+f (t,x(t)), (1.8)

where f(t,x) :R×X →X is strongly continuous with respect to jointly t and x and such
that ‖f(t,x)−f(t,y)‖ ≤ L‖x−y‖ for any t ∈R, x,y ∈X, and

∫∞
0 ‖f(t,0)‖dt <∞.

Then every mild solution x(t) of (1.8) with
∫∞
0 ‖x(t)‖dt <∞ is asymptotically almost

automorphic.

Proof. Let x :R+ →X be a mild solution of (1.8). Then we have

x(t)= T(t)x(0)+
∫ t
0
T(t−s)f (s,x(s))ds. (1.9)

We claim that
∫∞
0 T(−s)f (s,x(s))ds exists inX (in Bochner’s sense). Indeed, since T(t)

is almost automorphic for each x ∈X, then

sup
t∈R

‖T(t)x‖<∞ for each x ∈X. (1.10)

Consequently

sup
t∈R

‖T(t)‖ =M <∞, (1.11)
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by the uniform boundedness principle. Let us write

∫∞
0
T(−s)f (s,x(s))ds =

∫∞
0
T(−s)(f (s,x(s))−f(s,0))ds+

∫∞
0
T(−s)f (s,0)ds,

(1.12)

then we get the inequality

∥∥∥∥
∫∞
0
T(−s)f (s,x(s))ds

∥∥∥∥≤M
(
L
∫∞
0
‖x(s)‖ds+

∫∞
0

∥∥f(s,0)∥∥ds
)
<∞. (1.13)

Now the continuous function F :R→X defined by

F(t)=
∫∞
0
T(t−s)f (s,x(s))ds = T(t)

∫∞
0
T(−s)f (s,x(s))ds (1.14)

is almost automorphic; therefore V(t)= T(t)x(0)+F(t) is also almost automorphic.
Let us consider the continuous function W :R+ →X

W(t)=−
∫∞
t
T (t−s)f (s,x(s))ds. (1.15)

If we use the same computation as for F(t) in (1.14), we get

‖W(t)‖ ≤M
(
L
∫∞
t
‖x(s)ds‖+

∫∞
t

∥∥f(s,0)ds∥∥
)

(1.16)

which shows that limt→∞‖W(t)‖ = 0.
Finally x(t)= V(t)+W(t), t ∈R+ is asymptotically almost automorphic.
Remark 1.8. (1) An example of Theorem 1.5 (occurring in Sturm-Liouville theory,

for instance) is when X is a Hilbert space and Aϕn = λnϕn for {ϕn : n = 1,2, . . .} an
orthonormal basis and |Re(λn)| ≤ M for all n. For X1, one may take X1 =
span{ϕ1, . . . ,ϕN} (for any N) and assume f ∈ L∞(R,X1).
(2) An example of operator A satisfying the hypothesis of Theorem 1.7 is the above

example with A∗ = −A, i.e., M = 0.
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