Internat. J. Math. & Math. Sci.
Vol. 23, No. 5 (2000) 361-365
S0161171200001988
© Hindawi Publishing Corp.

ALMOST AUTOMORPHIC SOLUTIONS OF SOME DIFFERENTIAL
EQUATIONS IN BANACH SPACES

GASTON MANDATA N’GUEREKATA

(Received 12 November 1997 and in revised form 2 March 1998)

ABSTRACT. We discuss the conditions under which bounded solutions of the evolution
equation x’(t) = Ax(t) + f(t) in a Banach space are almost automorphic whenever f(t)
is almost automorphic and A generates a Cy-group of strongly continuous operators. We
also give a result for asymptotically almost automorphic solutions for the more general
case of x'(t) = Ax(t) + f(t,x(t)).

Keywords and phrases. Almost automorphic functions, mild solutions, generator of a Cp-
group, linear operators.

2000 Mathematics Subject Classification. Primary 34G10.

1. Introduction. Let A generate a Cy-group of strongly continuous operators T(t),
t € R on a Banach space X. Let f € L®(R;X). A basic unsolved problem is: what is
the structure of bounded (on R) mild solutions of x'(t) = Ax(t) + f(t)? Classically
results go back to Ordinary Differential Equations (when dimension of X is finite),
and one sought solutions x(t) such that x(t) — y(t) — 0 as t — oo, when either y(t)
is a constant or a periodic function of time. In the evolution context of x’ = Ax + f,
much has been written on asymptotically constant or periodic solutions. Several au-
thors extended these ideas to almost periodic solutions (when f is almost periodic).
Our main result (Theorem 1.6) is inspired by the interesting work of Goldstein [3]. We
are actually concerned with the more general case of almost automorphic, and when
bounded solutions are almost automorphic. We also give a new result (Theorem 1.7)
concerning mild solutions of the equation x'(t) = Ax(t) + f(t,x(t)) which approach
almost automorphic functions at infinity under specific conditions on the function
f(t,x). See also [6] for another comparable situation.

Let X be a Banach space equipped with the topology norm and R = (—o0, o) the set
of real numbers. Let us first recall some definitions.

DEFINITION 1.1 (Bochner). A continuous function f: R — X is said to be almost au-
tomorphic if and only if, from any sequence of real numbers (s;,);,_;, we can subtract a
subsequence (sy);,_; such that: lim,,_. f(t+s,) = g(t) exists for each real number t,

and lim,_. g(t—sy,) = f(t) for each t.

DEFINITION 1.2 [4]. A continuous function f: R* — X is said to be asymptotically
almost automorphic if and only if there exists an almost automorphic function g :
R — X and a continuous function h : Rt — X with lim;_ [|h(t)]| = 0 and such that
ft)y=g(t)+h(t) foreacht € R".
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DEFINITION 1.3. A Banach space X is said to be perfect if and only if every bounded
function u : R — X with an almost automorphic derivative u’(t) is necessarily almost
automorphic.

REMARK 1.4. Uniformly convex Banach spaces are nice examples of perfect Banach
spaces (see [10, Theorem 1.4]).

We consider the evolution equation
x'(t) =Ax(t)+ f(t), teR. (1.1)

THEOREM 1.5. Let X be a perfect Banach space. Let A be a bounded linear operator
X - X and f : R — X an almost automorphic function. Then any bounded strong
solution of (1.1) is almost automorphic if we assume that there exists a finite-dimensional
subspace X, of X such that

(x) Ax(0) € X3,
(B) (et*=I)f(s) € X for anys,t €R,
(y) et4u € X; foranyt € R and for any u € X;.

PROOF. Let P be the projection of X onto Xi; such P always exists (cf. [7]) and
possesses the following properties:

(1) X = X; @ker(P), where ker(P) is the kernel of the operator P,

(2) P is bounded on X.
If we put Q =1 - P, then it is easy to verify that Q% = Q on X and Qu = 0 for any
u € X;. Now if x(t) is a bounded solution of (1.1), then we can write it as

x(t) = x1(t) +x2(¢) (1.2)

with x1(t) = Px(t) € X; and x2(t) = Qx(t) € ker(P).
Since x(t) is bounded on R, it is clear that both x;(t) and x> (t) are also bounded
on R. On the other hand, we have

X' (1) = x| (1) +x5(t) = Ax1 () + Ax2 (1) + PF (1) +QF (1), tER. (1.3)

But x(t) has the well-known Lagrange representation:

t
x(t) = e x(0) +J =94 £ (5 ds
0

, (1.4)
0

t
= etAx(O)+JOf(s)ds+J (e=9A_T)f(s)ds.

By assumption (f), we deduce that fot(e“*S)A —I)f(s)ds is in X1, so that if we apply
Q to both sides of (1.4), we get

t t
x2(0) = Qex(0)+Q [ f(5)1ds = Qe tx(0)+ [ afds, 1.5)
consequently

x5(t) = Qe Ax (0) +Qf (1) = Qf (1) (1.6)

using conditions (x) and (y).
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It is clear that Q f (t) and thus x5 (t) is almost automorphic (see [9, page 586]). Since
x> (t) is bounded, then it is almost automorphic for we are in a perfect Banach space.

Now if we apply P to both sides of (1.3), we get in the finite-dimensional space X,
the differential equation

X1 (t) = PAx; (t) +PAx>(t) + P2 f(t) +PQf(L), tER. 1.7)

Since the function g(t) = P?f(t) + PQ f (t) is almost automorphic and PA is abounded
linear operator, we deduce that x; (t) is almost automorphic [9, Theorem 3]. Finally,
x(t) is almost automorphic as the sum of two almost automorphic functions. O

Theorem 1.5 can be generalized to the case of unbounded operator A as follows.

THEOREM 1.6. In a perfect Banach space X, let A generate a Cy-group of strongly
continuous linear operators T(t), t € R. Assume that there exists a finite-dimensional
subspace X, of X such that:

(x) Ax(0) € X,

(B) (Tt)-1)f(s) € X, foranys,t €R,

(y) T(t)ue X, foranyt € R and any u € X;.
Then every bounded solution of (1.1) is almost automorphic.

PROOF. We just follow the proof of Theorem 1.5 with the appropriate modifica-
tions. Here solutions are written as x(t) = T (£)x(0) +f(f T(t-s)f(s)ds. O

We return now to a general (not necessarily perfect) Banach space X. We state and
prove the following theorem.

THEOREM 1.7. Let A be a (possibly unbounded) linear operator which is the gen-
erator of a Co-group of strongly continuous linear operators T(t), t € R such that
T(t)x : R — X is almost automorphic for each x € X. Consider the differential equation

X' (1) = Ax(t) + £ (£,x(1)), (1.8)

where f(t,x) : Rx X — X is strongly continuous with respect to jointly t and x and such
that | f (t,x) - f(t,») I <Llx-y| foranyt €R, x,y € X, and [; |If(£,0)||dt < co.

Then every mild solution x (t) of (1.8) with [ l1x(t)|ldt < o is asymptotically almost
automorphic.

PROOF. Let x:R* — X be a mild solution of (1.8). Then we have
t
x(t) = T(t)x(0)+J T(t—s)f(s,x(s))ds. (1.9)
0

We claim that f(;” T(-s)f(s,x(s))ds exists in X (in Bochner’s sense). Indeed, since T (t)
is almost automorphic for each x € X, then

sup||T(t)x|| < o for each x € X. (1.10)
teR

Consequently

sup [|[T(t)]| =M < oo, (1.11)
teR



364 GASTON MANDATA N’'GUEREKATA

by the uniform boundedness principle. Let us write

J: T(-5)f(s,x(s))ds = J: T(-5)(f(s,x(s)) *f(S,O))dS%‘L:O T(-s)f(s,0)ds,
(1.12)

then we get the inequality

HJ T(—s)f(s,x(s))dsHsM(LJ \Ix(s)llds+J ||f(s,0)\|ds) < oo, (1.13)
0 0 0
Now the continuous function F : R — X defined by

F(t) = Jj T(t—s)f(s,x(s))ds=T(t) J: T(-s)f(s,x(s))ds (1.14)

is almost automorphic; therefore V(t) = T(t)x(0) + F(t) is also almost automorphic.
Let us consider the continuous function W: R* — X

W(t):—J:OT(t—S)f(s,x(s))ds. (1.15)

If we use the same computation as for F(t) in (1.14), we get
W)l sM(LL llx(s)dsll +L ||f(s,0)d5||> (1.16)

which shows that lim;_. [|[W(t)] = 0.
Finally x(t) = V(t) + W (t), t € R* is asymptotically almost automorphic. O

REMARK 1.8. (1) An example of Theorem 1.5 (occurring in Sturm-Liouville theory,
for instance) is when X is a Hilbert space and Ap, = A,,@, for {p,:n=1,2,...} an
orthonormal basis and |Re(A,)| < M for all n. For X;, one may take X; =
span{@y,...,@n} (for any N) and assume f € L°(R, X}).

(2) An example of operator A satisfying the hypothesis of Theorem 1.7 is the above
example with A* = —A,ie., M =0.
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