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SUBSEQUENCES AND CATEGORY
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ABSTRACT. If a sequence of functions diverges almost everywhere, then the set of subse-
quences which diverge almost everywhere is a residual set of subsequences.
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1. Introduction. In [1], Bilyeu, Lewis, and Kallman proved a general theorem about
rearrangements of a series of Banach space valued functions. This theorem settled a
question on rearrangements of Fourier series posed by Kac and Zygmund. Kallman
[3] proved an analog of this theorem for subseries of a series of Banach space valued
functions. The purpose of this paper is to complete the cycle of these ideas by prov-
ing an analogous theorem (Theorem 1.1) for subsequences of a sequence of Banach
space valued functions. Theorem 1.1 does not seem to follow directly from results of
[1] or [3]. Other than [1, 3], the only precedent for Theorem 1.1 seems to be a paper
[7] on subsequences of a sequence of complex numbers.

Let S be the set of all sequences s = (s1,52,...), where 1 < s7 < s, < --- is a strictly
increasing sequence of positive integers. S is a closed subset of the countable product
of the positive integers, and so S is a complete separable metric space. Given any
sequence of objects a;,as,..., one can identify the set of its subsequences both as a
set and as a topological space with S. In this context, it is natural to identify a collection
of subsequences with a subset of S and ask if it is first category, second category, or
residual ([5] or [6]). Define an equivalence relation ~ on S as follows: if s,t € S, then
s ~ tif and only if s, = t;, for all sufficiently large n. Intuitively this states that s ~ t if
and only if s and t agree from some point on. It is simple to check that any nonempty
subset of S which is saturated with respect to ~ is dense.

The main result of this paper is the following theorem, which is proved in Section 2.

THEOREM 1.1. Let (X,u) be a regular locally compact o -finite measure space, Z a
separable Banach space, and f,, : X — Z a sequence of Borel measurable functions. Sup-
pose that the sequence fy,(x) diverges for u-a.e., x € X. Then [s € S| f,(x) diverges
for p-a.e. x € X] is a residual setin S.

Just as in [1, 3], this measure-category result has a category-category analog which

is discussed in Section 3.

2. Proof of Theorem 1.1. The following special case of Theorem 1.1 will be proved
first.
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LEMMA 2.1. Let K be a compact Hausdorf{f space, Z a Banach space, and fy, : K — Z
a sequence of continuous functions, and 6 > 0. Suppose that for every x € K and
positive integer N, there exists a pair of integers n = n(x,N) and m = m(x,N) so that
N <n<=m and || fm(x) — fu(x)| > 6. Then [s € S | fs,(x) diverges for every x € K]
is a residual setin S.

PROOF. If m,n is a pair of integers such that 1 <n <m and s € S, let gsmn: K ~
[0, +00) be defined by gs.mn(x) = Il f5,, (X) = fs, (X) . gs,mn 1S continuous. Consider

A=) U [SESIUlsis;gg;;i,ni((éﬁoo)) =K]. (2.1

Nz1 N=<nj<my,.,N<np<mp

Fixl<n<mandseS. ThenV =[teS |ty =5y, and t, = s,] is an open neigh-
borhood of s in S. Hence, if t € V, then g m.n = gs,mn- This in turn implies that A is
a Gg subset of S. Furthermore, A is saturated with respect to the equivalence relation
~ and therefore is a dense G if it is nonempty.

A is nonempty since t = (1,2,3,...) is in A. To see this, fix N > 1. For N <n < m,
let U(m,n) = gg}n,n((éﬁoo)). Note that the collection {U(m,n)}n<n<m iS an open
covering of K by hypothesis and so has a finite subcover, say U (m,n1),...,U(my,ny).
One easily concludes from this that t € A.

Finally, note that the Cauchy criterion for convergence implies that if s € A, then
fs, (x) diverges for every x € K. Hence, A c [s € § | f5, (x) diverges for every x € K].
This proves Lemma 2.1. O

PROOF OF Theorem 1.1. We may assume that u is a probability measure since u
is o-finite. If g = 1, let

Dg=) |:X€X|||fm(x)_fn(x)||>;:|- (2.2)
N>1 N

=n==m
Each D, is a Borel subset of X, D; € Dg41, and the Cauchy criterion for convergence
implies that Ug>1D4 = [x € X | fun(x) diverges]. u(Uz>1D4) = 1 by assumption. Use a
vector-valued version of Lusin’s Theorem [2] to choose, for each g, a compact subset
K, of Dy so that each f, | K, is continuous and p(Dy—Kg) <1/q9.Rg=1[s €S| fs, (x)
diverges for every x € K] is a residual subset of S by Lemma 2.1. Hence, R = Ng>1R,
is a residual set in S and is contained in [s € S | f5, (x) diverges for p-a.e., x € X]
since p(Uy=1K4) = 1. This proves Theorem 1.1. O

3. Sequences of functions with the Baire property. Theorem 1.1 may be regarded
as a measure-category result. The purpose of this section is to prove a category-
category analog of Theorem 1.1 (cf. [1, Thm. 1.2] and [3, Thm. 3.1]).

Let X be a Polish space. A subset of X is said to have the Baire property if there exists
an open set U in X so that AAU is first category. The collection of all subsets of X with
the Baire property is a o-algebra which includes the analytic sets in X. Let Z be any
other Polish space. A function f : X — Z is said to have the Baire property if U open in
Z implies that f~1(U) has the Baire property in X. Any Borel function f: X ~ Z is a
function with the Baire property. See [4, 5] or [6] for a thorough discussion of this circle
of ideas. The following theorem is then a category-category analog of Theorem 1.1.
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THEOREM 3.1. Let X be a Polish space, Z a separable Banach space, and f, : X — Z
a sequence of functions with the Baire property. Suppose that [x € X | f,,(x) diverges]
is a residual subset of X. Then [s € S | fs, (x) diverges on a residual subset of X] is a
residual subset of S.

The following proposition, of independent interest, is needed to prove Theorem 3.1.

PROPOSITION 3.2. Let Z be a Banach space and let {z,,},>1 be a sequence in Z. Let
A=[s eS|z, converges]. Then either A =S or A is of first category in S.

PROOF. For k > 1 define

B= U [SES|||sz—zSnH>%]. 3.1)
N>=1 N<n=m

Note that By < By.1. Each set in square brackets is open in S. Hence, this formula
shows that By is a Gs. By is dense if it is nonempty since it is saturated with respect to
the equivalence relation ~. Therefore, By is a residual set in S if it is nonempty since

any dense G5 is residual.
The Cauchy criterion for convergence implies that A° = Uy-1Bk. Hence, either A =
S or A€ is residual in S; or either A = S or A is of first category in S. This proves
Proposition 3.2. O

PROOF OF Theorem 3.1. Check that the mapping (x,s) — f5, (x), X XS — Z,is a
function with the Baire property for every n > 1. Hence,

B=[(x,s) | fs, (x) diverges] = (| U [(x,s) [ fom () = fs, (]| > %] (3.2)
k>1 N=1 Nsn=<m

is a subset of X x S with the Baire property. For each x € X, let BS be the projection
of B¢ N ((x) xS) onto S. The hypotheses of Theorem 3.1 plus Proposition 3.2 imply
that each BY is a first category subset of S, except for a first category set of x’s. But
then B¢ is itself a first category subset of X xS [6, Thm. 15.4] and so B¢, the projection
of B n (X X (s)) onto X, is a first category subset of X, except for a first category
set of s’s (Theorem of Kuratowski-Ulam, [6, Thm. 15.1]). Hence, B, the projection of
BN (X x(s)) onto X, is a residual subset of X for all except a first category set of s’s.
This proves Theorem 3.1. O
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