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Abstract. An expression for the kth power of an n×n determinant in n2 indeterminates
(zij) is given as a sum of monomials. Two applications of this expression are given: the
first is the Regge generating function for the Clebsch-Gordan coefficients of the unitary
group SU (2), noting also the relation to the 3F2 hypergeometric series; the second is to
the even powers of the Vandermonde determinant, or, equivalently, all powers of the dis-
criminant. The second result leads to an interesting map between magic square arrays and
partitions and has applications to the wave functions describing the quantum Hall effect.
The generalization of this map to arbitrary square arrays of nonnegative integers, having
given row and column sums, is also given.
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1. Introduction. One expects to find an expression for (detZ)k, where Z = (zij) is
ann×nmatrix of commuting indeterminates, as a sumover homogeneousmonomials
in the (zij) in the classical works of Jacobi, Sylvester, MacMahon, Muir, or others, but
such a search has not yet turned this up. We present this expansion because of its
occurrence in several physical applications as given in Sections 3, 4, and 5. Classical
results frommathematics still find many applications to modern physics and it would
be nice should a classical derivation of the desired form of (detZ)k be found.
Let us begin by giving several general notations used throughout the presentation,

introducing special notations as needed: the symbol A denotes an n×n array (aij)
of nonnegative integers

A=




a11 a12 ··· a1n
a21 a22 ··· a2n
...

...
...

an1 an2 ··· ann


 , (1.1)

and we define

A!=
∏
ij
aij ! . (1.2)

The symbol Z = (zij) denotes an n×n matrix of commuting indeterminates
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Z =




z11 z12 ··· z1n
z21 z22 ··· z2n
...

...
...

zn1 zn2 ··· znn


 , (1.3)

and we set

ZA =
∏
ij

(
zij

)aij . (1.4)

We denote by An
a,b the set of all n×n arrays A with specific row and column sums:

a = (a1,a2, . . . ,an) and b = (b1,b2, . . . ,bn), where each ai and bi is a nonnegative
integer

An
a,b =

{
A= (

aij
)∣∣∣∑

j
aij = ai,

∑
i
aij = bj

}
. (1.5)

In the case where the ai and bj are all equal to k (magic square), we denote this set
by An,k. Finally, we use the following notation for a multinomial coefficient(

k∏
ki

)
= k!
k1! k2! ··· ,

∑
ki = k. (1.6)

2. Power of a determinant. Let Z denote an n×nmatrix as above with indetermi-
nate elements. The determinant of Z is defined by

detZ =
∑
π
επz1,π1z2,π2 ···zn,πn , (2.1)

where the summation is over all the permutations π = (π1,π2, . . . ,πn) of the integers
(1,2, . . . ,n), and επ denotes the sign of the permutation. The kth power of detZ is
obtained as an expansion in terms of homogeneous monomials of degree k in the
elements of Z by elementary means using the multinomial theorem and “collecting-
up” powers of a given zij . The result of carrying this out is

(detZ)k =
∑

A∈An,k
Ck(A)ZA, (2.2)

where the coefficient Ck(A) is a restricted sum over multinomial coefficients given by

Ck(A)=
∑
k(π)

′
(−1)K


 k∏

π
k(π)


 , K =

∑
π odd

k(π). (2.3)

The k(π)’s in the multinomial coefficient are nonnegative integers, one for each per-
mutation π . The prime on the summation indicates that the summation over the
multinomial coefficients is a restricted one: the restriction is that the summation is
over all nonnegative integers k(π) in the multinomial coefficients such that, for a
given array A= (aij)∈An,k, k(π) must satisfy the n2 relations∑

π with πi=j
k(π)= aij, 1≤ i, j ≤n. (2.4)

Thus, for each pair (i,j) in these relations, the summation is carried out over all the
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permutations π such that the ith part πi of the permutation π is j, that is, πi = j. It
may be verified, from (2.4), that

∑
π k(π)= k.

For example, for n= 3, we have

det



z11 z12 z13
z21 z22 z23
z31 z32 z33



k

=
∑

A∈A3,k
Ck(A)ZA, (2.5)

Ck(A)=
∑
k(π)

′
(−1)k(132)+k(213)+k(321)

(
k

k(123),k(132),k(231),k(213),k(312),k(321)

)
,

(2.6)

where, for each A∈A3,k, the restrictions on the summation are

k(123)+k(132)= a11, k(213)+k(231)= a12, k(312)+k(321)= a13,

k(213)+k(312)= a21, k(321)+k(123)= a22, k(132)+k(231)= a23, (2.7)

k(321)+k(231)= a31, k(132)+k(312)= a32, k(123)+k(213)= a33.

Observe for this n = 3 case that the permutations are distributed such that the row
and column sums are all equal to k.

3. First application: power of a 3×3 determinant, 3F2 hypergeometric series and
Clebsch-Gordan coefficient of SU (2). The Clebsch-Gordan coefficients of the unitary
group SU (2), the quantummechanical rotation group, are of fundamental importance
across all of quantum physics (see, for example, [2, 3, 10, 16]). This is so, in part,
because these coefficients constitute the basic building blocks for constructing com-
posite angular momentum systems from constituent ones, hence, are very important
for the description of composite physical systems built from simpler constituents.
The role of the kth power of a 3×3 determinant in generating these Clebsch-Gordan
coefficients was discovered by Schwinger [14] and Regge [11]. There is also a relation
of these Clebsch-Gordan coefficients to the 3F2 hypergeometric series of unit argu-
ment (see, for example, [3, p. 432]), where the three numerator and two denominator
parameters have special integer values. These two relations are usually noted sepa-
rately. As an application of the general theory for n = 3, it is instructive to link the
two relations together through the common occurrence of the expansion coefficients
Ck(A) in the kth power of a 3×3 determinant.
Let a,b,c be nonnegative integers and d,e integers such that the entries in the 3×3

array A defined by

A=




a c+e b+d
c+d b a+e
b+e a+d c


 (3.1)

are all nonnegative. Let

n=min(a,b,c), k= a+b+c+d+e. (3.2)
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Then, the following relation holds

(d+1)n(e+1)n 3F2
[ −a, −b, −c
d+1 e+1

]

=
n∑
s=0

(−a)s(−b)s(−c)s(d+s+1)n−s(e+s+1)n−s
s!

= (−1)a+b+c a!b!c!(d+n)!(e+n)! Ck(A)
k!

.

(3.3)

The notation (x)s = x(x+1)···(x+ s−1), s = 1,2, . . . , with (x)0 = 1, is that for a
rising factorial in an indeterminate x. The first equality in this expression is just the
definition of the 3F2 hypergeometric series for the indicated parameters. The second
equality is an easy consequence of (2.6), when it is recognized that there is only one
“free” summation index in that expression.
From one of the explicit forms (see [2, eq. (3.170)]) for a Clebsch-Gordan coefficient

of SU (2), one has the following expression for this coefficient

C
j1 j2 j
m1 m2 m

= δm1+m2,m(−1)2j1+j+m
√
2j+1

√
A!

(k+1)!
Ck(A)
k!

, (3.4)

where k= j1+j2+j and A∈A3,j1+j2+j is the following array of nonnegative integers

A=



j2+j−j1 j+j1−j2 j1+j2−j
j1−m1 j2−m2 j+m
j1+m1 j2+m2 j−m


 . (3.5)

In this expression, the quantities j1 and j2 are known in the physics literature as the
angularmomentum quantum numbers and they are arbitrary integers or half-integers,
ji ∈ {0,1/2,1,3/2, . . .}, and j is the total angular momentum quantum number, which,
for given j1 and j2, assumes values j = j1+j2,j1+j2−1, . . . ,|j1−j2|. The quantitiesm1,
m2, and m are called the projection quantum numbers and assume values m1 = j1,
j1 − 1, . . . ,−j1; m2 = j2,j2 − 1, . . . ,−j2; m = j,j − 1, . . . ,−j, where the sum rule m =
m1+m2 is to hold for a nonzero coefficient. These values of the angular momentum
quantum numbers and their projections are just those for which the entries in the
array A are nonnegative integers with row and column sums equal to k = j1+j2+j.
Relation (3.4) is completely equivalent to one of the definitions of the Clebsch-Gordan
coefficients given in the literature, and we need not concern ourselves here with its
origin beyond this expression.
One can use the angular momentum parameters in favor of the a,b,c,d,e parame-

ters, or conversely, and eliminate the coefficient Ck(A) between (3.3) and (3.4) to ob-
tain the relation between the Clebsch-Gordan coefficients and the 3F2 hypergeometric
series.
Relation (3.3) does not probably appear in the literature, and we hope that noting

the common linkage of the Clebsch-Gordan and the hypergeometric coefficients to
the expansion of the power of a determinant enhances the communication between
physicists and mathematicians on this subject.
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4. Second application: even power of the Vandermonde determinant. The ex-
pression for the even powers of the Vandermonde determinant enter into the Laughlin
[6] wave functions used to describe the quantum Hall effect. In this application, one
seeks an expression of these powers in terms of Schur functions (Di Francesco et al.
[4] and Scharf et al. [13]). This problem may be approached using the power of a de-
terminant. It leads to interesting questions concerning square arrays of nonnegative
integers and partitions, not addressed in [4, 13]. The purpose of this section is to
give a formulation of the problem that uses directly relations (2.2), (2.3), and (2.4) for
the power of a determinant (several alternative formulations are given in [4, 13]). One
begins with the following well-known identities:

[
Vn(x)

]2k =

 ∏
1≤i<j≤n

(
xi−xj

)
2k

= det




1 x1 x21 ··· xn−1
1

1 x2 x22 ··· xn−1
2

...
...

1 xn x2n ··· xn−1
n




2k

= det




n p1(x) p2(x) ··· pn−1(x)

p1(x) p2(x) p3(x) ··· pn(x)
...

...
pn−1(x) pn(x) pn+1(x) ··· p2n−2(x)




k

,

(4.1)

where pr denotes the power sum symmetric function defined by

pr (x)=
n∑
i=1

xr
i . (4.2)

Applying (2.2) with coefficients (2.3) for the power of a determinant, we obtain

V 2kn =
∑

A∈An,k
Ck(A)na11pα, (4.3)

where we make the following definitions:

α= (
α1,α2, . . . ,α2n−2

)
, αr =

∑
i+j=r+2
1≤i≤j≤n

aij, r = 1,2, . . . ,2n−2,

pα = pα1
1 pα2

2 ···pα2n−2
2n−2 .

(4.4)

For λ= (λ1,λ2, . . .) a partition, the symmetric functions pλ are defined by

pλ = pλ1pλ2 ··· . (4.5)

Thus, the symmetric functions pλ are written in terms of the functions pα by

pλ =
(
p2n−2

)α2n−2(p2n−3)α2n−3 ···(p2)α2(p1)α1 , (4.6)

where λ= λ(A) is the partition depending on the array A and defined by

λ= λ(A)= (
(2n−2)α2n−2 ,(2n−3)α2n−3 , . . . ,2α2 ,1α1), (4.7)

wherema denotes that integerm is repeated a times. The partition λ= λ(A) has

α1+α2+···+α2n−2 = kn−a11 (4.8)



750 JAMES D. LOUCK

nonzero parts and is a partition of

N =α1+2α2+···+(2n−2)α2n−2 = kn(n−1). (4.9)

This last result is easily proved from

N =
2n−2∑
r=1

rαr =
2n−2∑
r=1

∑
i+j=r+2

aij =
n∑

i,j=1
(i+j−2)aij

=
n∑
i=1

i
n∑
j=1

aij+
n∑
j=1

j
n∑
i=1

aij−2
n∑

i,j=1
aij

=
n∑
i=1

iai+
n∑
j=1

jbj−2n
n∑
i=1

ai,

(4.10)

where

n∑
j=1

aij = ai,
n∑
i=1

aij = bj,
n∑

i,j=1
aij =

n∑
i=1

ai =
n∑
j=1

bj. (4.11)

When the row and column sums ai and bj are all equal to k, we obtain N as given
by (4.9).
In terms of the partition notation, relation (4.2) is expressed as

V 2kn =
∑

A∈An,k
Ck(A)na11pλ(A). (4.12)

It is a well-known result due to Frobenius (James and Kerber [5] and Macdonald [9])
that the expression of the symmetric functions pλ, λ a partition ofN , is given in terms
of the Schur functions sµ , µ a partition of N , by

pλ =
∑
µ�N

Mλµsµ, (4.13)

where the elements of the matrix M are the characters of the symmetric group SN
given by

Mλµ = χµλ . (4.14)

Substitution of these relations into (4.12) gives the expansion of the even powers of
the Vandermonde determinant in terms of Schur functions:

V 2kn =
∑
µ�N

V 2kµ sµ, (4.15)

V 2kµ =
∑

A∈An,k
Ck(A)na11χµλ(A). (4.16)

For k= 1, relations (4.15) and (4.16) are equivalent to [4, eq. (4.15)]. All quantities en-
tering into (4.15) are known, in principle. While conceptually quite simple, in practice,
it is quite formidable to implement these relations into useful computations for the
applications (see [4, 13]).
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We will not go further with the above observations on the expansion of the power
of the Vandermonde determinant into Schur functions, since this has been done in
great detail in [4, 13]. Instead, we wish to take up the problem of the mapping from
square arrays A of nonnegative integers having fixed row and column sums k into
partitions. While one could do this without mentioning the Laughlin problem and the
above ramifications, the background for any motivation would be lacking.

5. A map from square arrays to partitions. Consider the set of square arrays An,k

defined as a special case of An
a,b in (1.5). The derivation of formula (4.12) led to a

natural way, given by (4.6), (4.7), (4.8), and (4.9), of associating a partition with each
square array A∈An,k. While the case of interest in the problem outlined in Section 4
is that of these magic squares, it is just as easy to give the generalization of that result
for the general case, A ∈ An

a,b. There are two good reasons for doing so. The general
case A ∈ An

a,b occurs in the representation theory of the general unitary group (see,
for example, [7, 8]) and may have implications for that theory; and we would be amiss
not to point out the existence of the invariant N in (5.6) below.
We define the map from the set of arrays An

a,b into partitions by

A=




a11 a12 a13 a14 ···
a21 a22 a23 ···
a31 a32 ···
a41 ···
...

...
...

...



�→ (

α1,α2, . . . ,α2n−2
)

�→ λ(A)= (
(2n−2)α2n−2 , . . . ,2α2 ,1α1),

(5.1)

where the exponentsα= (α1,α2, . . . ,α2n−2) are obtained by summing the entries along
the “backward diagonals”

α1 = a21+a12,
α2 = a31+a22+a13,
...

αr =
∑

i+j=r+2
aij,

...
α2n−2 = ann.

(5.2)

The partition λ(A) is a partition of

N =
n∑
i=1

iai+
n∑
j=1

jbj−2n
n∑
i=1

ai (5.3)

into

α1+α2+···+α2n−2 =

 n∑
i=1

ai


−a11 (5.4)

nonzero parts.
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We denote by Λn
a,b the image of A

n
a,b under the map (5.1)

Λn
a,b =

{
λ(A) |A∈An

a,b
}
. (5.5)

It is quite interesting that the quantity

N(a,b)=
n∑
i=1

iai+
n∑
j=1

jbj−2n
n∑
i=1

ai (5.6)

is an invariant of the set An
a,b; that is, it is the same for each A∈An

a,b. It is, of course,
this property that makes the map (5.1) interesting since all the partitions that arise
are partitions of the same number, namely, N(a,b). The number of nonzero parts
changes with a11 in accordance with (5.4).
In general, several arrays A∈An

a,b give rise to the same λ(A); for example,

λ
(
AT )= λ(A), (5.7)

where the superscript T denotes transposition of the array A. The problem of deter-
mining the inverse image

{
A | λ(A)= λ∈Λn

a,b
}

(5.8)

and the multiplicity of each λ appears to be quite difficult. If we letMn
a,b(λ) denote the

multiplicity of λ∈Λn
a,b, the number of n×n square arrays A of nonnegative integers

with row and column sums a and b is given by

∣∣An
a,b

∣∣= ∑
λ∈Λna,b

Mn
a,b(λ). (5.9)

Thus, the unsolved problem of counting the number ofmembersA∈An
a,b is expressed

in terms of the unsolved problem of determining the partitions λ ∈ Λn
a,b and their

multiplicity.
Having posed this problem, wemust admit to almost no progress toward its solution.

Indeed, the same situation is true even when we specialize to magic squares, the case
of relevance for the physical problem outlined in Section 4. Some progress has been
made for the case k= 1, which originates from the discriminant, the square of the Van-
dermonde determinant, but the general characterization of the partitions and their
multiplicity is not solved here. Nonetheless, these problems seem sufficiently inter-
esting to present, despite this lack of progress toward their solution.

6. The map from magic square arrays to partitions. The results of Section 5 are
valid when specialized tomagic squares. This is the case applicable to the even powers
of the Vandermonde determinant discussed in Section 4. It is convenient to restate
some of the results from Section 5 using a simplified notation. Since a= b = (kn) for
magic squares, we define the set of magic squares by

An,k =An
a,b for a= b = (kn). (6.1)
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The map (5.1) now reads

A �→ (
α1,α2, . . . ,α2n−2

)
�→ λ(A)= (

(2n−2)α2n−2 , . . . ,2α2 ,1α1), (6.2)

where the exponents (α1,α2, . . . ,α2n−2) are read off the backward diagonals of A ∈
An,k, just as in (5.1), as given explicitly by (5.2). We now obtain the set of partitions

Λn,k =
{
λ(A) |A∈An,k

}
. (6.3)

Now, since

N =α1+2α2+···+(2n−2)α2n−2 = kn(n−1), (6.4)

α1+α2+···+α2n−2 = kn−a11, (6.5)

each partition λ ∈ Λn,k is a partition of kn(n−1) into a number of nonzero parts
k(n− 1),k(n− 1)+ 1, . . . ,kn, since each a11 = 0,1, . . . ,k can occur for at least one
magic square.
As an example, we find the partitions λ ∈ Λ3,2 together with their multiplicity by

writing out explicitly the 21magic squares arrays forn= 3, k= 2. The results are given
in Table 1. This table corresponds to the partitioning of the set of 21 magic squares

Table 1.

multiplicity partitions in Λ3,2

1
(
42,22

)
,
(
42,2,12

)
,
(
42,14

)
,
(
4,32,2

)
,
(
4,32,12

)
,(

4,24
)
,
(
4,23,12

)
,
(
34

)
,
(
32,23

)
,
(
26

)
2

(
4,3,22,1

)
,
(
4,3,2,13

)
,
(
33,2,1

)
,
(
3,24,1

)
3

(
32,22,12

)

A3,2 into a subset of ten with each mapping to one of the partitions of multiplicity 1, a
subset of eight consisting of four pairs with each pair mapping to one of the partitions
of multiplicity 2, and a subset of three with all mapping to the partition of multiplicity
3 : 21= 10(1)+4(2)+3(1).
If we letMn,k(λ) denote the multiplicity of partition λ∈Λn,k, then the number |Λn,k|

of n×n magic squares, with each row and column sum equal to k, is given by
∣∣Λn,k

∣∣= ∑
λ∈Λn,k

Mn,k(λ). (6.6)

The number |Λn,k| is denoted by Hn(k) in Stanley [15], where a very readable account
of their properties may be found. Relation (6.6) appears to be new.
Even this simplified problem of determining which partitions occur inΛn,k, and their

corresponding multiplicity, appears to be difficult. We turn to the simplest case k= 1,
where the magic square arrays are the permutation matrices of order n, and we are
dealing with the discriminant.
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7. The map from permutation matrices to partitions. In the case of k = 1 and
general n, relation (4.1) is the expansion of the discriminant, and the set of magic
square matrices An,1 is the set of n×n permutation matrices. For n= 3, we have the
following results from the map (5.1):



1 0 0

0 1 0

0 0 1


 �→ (0,1,0,1) �→ (4,2),



1 0 0

0 0 1

0 1 0


 �→ (0,0,2,0) �→ (3,3),



0 1 0

1 0 0

0 0 1


 �→ (2,0,0,1) �→ (4,1,1),



0 0 1

1 0 0

0 1 0


 �→ (1,1,1,0) �→ (3,2,1), (7.1)



0 1 0

0 0 1

1 0 0


 �→ (1,1,1,0) �→ (3,2,1),



0 0 1

0 1 0

1 0 0


 �→ (0,3,0,0) �→ (2,2,2).

This case already gives a multiplicity 2 occurrence for the partition (3, 2, 1) originating
from the transposition property (5.7). All partitions of 6 into 2 and 3 nonzero parts
beginning with 4 or less occur, but this does not generalize; that is, the map (5.1) does
not give all partitions of n(n−1) into n and n−1 nonzero parts with greatest part
≤ 2n−2, as already shown in the case n= 4 given below.
Let us develop some results for the general discriminant. We denote an element of

An,1 by

(
ei1 ,ei2 , . . . ,ein

)
, (7.2)

where ei denotes a column matrix of length n with 1 in the ith position and 0 else-
where, and i1, i2, . . . , in is a permutation of 1,2, . . . ,n. Amain result for the construction
of the α sequences corresponding to permutation matrices follows:

Lemma 7.1. Let ri with i= 1,2, . . . ,2n−2 denote the unit rowmatrix of length 2n−2
with 1 in position i and 0 elsewhere and also define r0 = (0,0, . . . ,0). Then,

(
ei1 ,ei2 , . . . ,ein

)
�→

n∑
k=1

rik+k−2 =
(
α1,α2, . . . ,α2n−2

)= 2n−2∑
i=1

αiri �→ λ(α)

= (
(2n−2)α2n−2 , . . . ,2α2 ,1α1).

(7.3)

Proof. Row ik of (ei1 ,ei2 , . . . ,ein) is given by rk and the 1 in this row vector con-
tributes a 1 to αik+k−2 and a 0 to all other αi.

Lemma 7.1 is equivalent to applying the map directly to the permutations belonging
to Sn. Thus, using the two-rowed notation for a permutation, we have the following
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map Sn→Λn,1:


1 2 ··· n

i1 i2 ··· in


 �→

n∑
k=1

rik+k−2 =
2n−2∑
i=1

αiri �→ λ= (
(2n−2)α2n−2 , . . . ,2α2 ,1α1).

(7.4)

This formulation makes it quite easy to construct the partitions in question.
The principal theorem for the map of permutations to partitions, Sn → Λn,1, is the

following: define the sequence of nonnegative integers I(i1, i2, . . . , in) by

I
(
i1, i2, . . . , in

)= (
i1−1, i2, i3+1, . . . , in+n−2

)
. (7.5)

where i1, i2, . . . , in is a permutation of 1,2, . . . ,n. Arrange the parts of I(i1, i2, . . . , in) in
nonincreasing order as read from left to right, and denote this ordered sequence by
〈I(i1, i2, . . . , in)〉. Then

Theorem 7.1. The permutation in the map defined in Lemma 7.1 is given by

λ= 〈
I
(
i1, i2, . . . , in

)〉
. (7.6)

Proof. From λ= (λ1,λ2, . . . ,λn), as given by (7.6), we have

n∑
k=1

rik+k−2 = rλ1+rλ2+···+rλn �→
(
λ1,λ2, . . . ,λn

)
. (7.7)

Notice that λn = 0 if and only if i1 = 1, and that all other λi are positive.
An alternative way of expressing the result, given by Theorem 7.1, is the following:

two sequences in the multiset Kn, defined by

Kn =
{(
i1−1, i2, i3+1, . . . , in+n−2

) | i1, i2, i3, . . . , in a permutation of 1,2, . . . ,n},
(7.8)

are equivalent if they are permutations of one another. Thus, we partition the set
Kn into equivalence classes under this equivalence relation, where we note that the
cardinality of Kn is n!. The label of each equivalence class is then taken to be the
unique partition corresponding to it and this partition has the multiplicity equal to
the number of elements in the equivalence class. One might hope that a partitioning
problem, so simply posed, would have been solved, but we have not found such.
As an example, we have, for n= 3,

〈
I(1,2,3)

〉= (4,2,0),
〈
I(1,3,2)

〉= (3,3,0),〈
I(2,1,3)

〉= (4,1,1),
〈
I(2,3,1)

〉= (3,2,1),〈
I(3,1,2)

〉= (3,2,1),
〈
I(3,2,1)

〉= (2,2,2).

(7.9)

These results, of course, agree with (7.1), but show, in addition, the simplicity of the
construction as given by Theorem 7.1.
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We give, without proof, an additional lemma, which is an easy consequence of
Theorem 7.1, and which allows a recursive construction of the partitions in Λn,1 from
those in Λn−1,1. Each λ ∈ Λn−1,1 has the form λ = (λ1,λ2, . . . ,λn−1), allowing λn−1 = 0
for those partitions having n−2 nonzero parts. Let (i2, i3, . . . , in) be a permutation
of (2,3, . . . ,n). Then (i2−1, i3−1, . . . , in−1) is a permutation of (1,2, . . . ,n−1), and
conversely. The identity

I
(
1, i2, . . . , in

)= (
0, I(i2−1, i3−1, . . . , in−1)

)+(2,2, . . . ,2) (7.10)

is apparent. Let us define (1,j)I(1, i2, . . . , in) to be the sequence obtained from I(1, i2,. . .,
in) by interchanging 1 and ik = j, where j = 1,2, . . . ,n with

(1,1)I
(
1, i2, . . . , in

)= I
(
1, i2, . . . , in

)
. (7.11)

With these notations, we have

Lemma 7.2. The partitions in the set Λn,1 are obtained from those in the set Λn−1,1
by the formula

λ= 〈(
1,j

)
I
(
1, i2, . . . , in

)〉
, (7.12)

where (i2, i3, . . . , in) runs over all the permutations of (2,3, . . . ,n) and j over 1,2, . . . ,n.

One may also formulate the result given by Lemma 7.2 in terms of the Young frame
associated with each of the partitions λ ∈ Λn−1,1. To obtain the partitions in the set{〈I(1, i2, . . . , in)〉}, one adjoins two nodes to each row 1,2, . . . ,n−1 of the shape λ ∈
Λn−1,1. To obtain the partitions in the set

{〈(1,j)I(1, i2, . . . , in)〉}, one first identifies
the index k such that ik = j and then adjoins to the shape λ = 〈I(1, i2, . . . , in)〉 a row
containing j−1 nodes and a row containing k−1 nodes, and deletes a row containing
j+k−2 nodes, such that the new shape is standard.
Using the above results, one can construct, by hand, the partitions in the sets Λ4,1

and Λ5,1 and the multiplicity of each partition
Λ4,1: there are 16 distinct partitions with multiplicity 1,2,3 with 24= 1(9)+2(6)+

3(1)

multiplicity partitions

1 (6,4,2),(6,3,3),(5,5,2),(4,4,4);

(6,4,1,1),(6,2,2,2),(5,5,1,1),(4,4,2,2),(3,3,3,3)

2 (5,4,3);(6,3,2,1),(5,4,2,1),(5,3,3,1),(5,3,2,2),(4,4,3,1)

3 (4,3,3,2)
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Λ5,1: there are 59 distinct partitions with multiplicity 1,2,3,4,6 with 120 = 1(20)+
2(26)+3(6)+4(6)+6(1)

multiplicity partitions

1 (8,6,4,2),(8,6,3,3),(8,5,5,2),(8,4,4,4),(7,7,4,2),(7,7,3,3),

(6,6,6,2),(6,6,4,4),(5,5,5,5);

(8,6,4,1,1),(8,6,2,2,2),(8,5,5,1,1),(8,4,4,2,2),(8,3,3,3,3),

(7,7,4,1,1),(7,7,2,2,2),(6,6,6,1,1),(6,6,3,3,2),(6,5,5,2,2),

(4,4,4,4,4) ,

2 (8,5,4,3),(7,6,5,2),(7,6,4,3),(7,5,5,3),(7,5,4,4),(6,6,5,3);

(8,6,3,2,1),(8,5,4,2,1),(8,5,3,3,1),(8,5,3,2,2),(8,4,4,3,1),

(7,7,3,2,1),(7,6,5,1,1),(7,6,4,2,1),(7,6,3,3,1),(7,6,3,2,2),

(7,5,5,2,1),(7,5,3,3,2),(7,4,4,4,1),(7,4,3,3,3),(6,6,5,2,1),

(6,6,4,2,2),(6,5,5,3,1),(6,5,3,3,3),(5,5,5,4,1),(5,5,5,3,2)

3 (6,5,5,4);

(8,4,3,3,2),(6,4,4,4,2),(6,4,4,3,3),(5,5,4,4,2),(5,5,4,3,3)

4 (7,5,4,3,1),(7,5,4,2,2),(7,4,4,3,2),(6,6,4,3,1),(6,5,4,4,1),

(5,4,4,4,3)

6 (6,5,4,3,2).

The following lemma gives a useful characterization of the cardinality of the set of
partitions Λn,1: let Ln,n= 1,2, . . . , denote the number of partitions belonging to Λn,1

that have exactly n nonzero parts. Then

Lemma 7.3. The cardinality of Λn,1 is given by

|Λn,1| = L1+L2+···+Ln. (7.13)

Proof. The relation

|Λn,1| = |Λn−1,1|+Ln, |Λ1,1| = 1, n= 2,3, . . . (7.14)

follows directly from relation (7.12), since the j = 1 case gives the partitions having the
last part λn = 0, which are |Λn−1,1| in number, and the j > 1 cases give the partitions
having n nonzero parts. Iteration of relation (7.14) then gives (7.13).
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My colleague, Myron Stein, Los Alamos National Laboratory, graciously wrote a pro-
gram to calculate all the partitions in Λn,1 directly from the sequence (7.5). The num-
bers Ln and |Λn,1| through n= 10, from that calculation, are

n 1 2 3 4 5 6 7 8 9 10

Ln 1 1 3 11 43 187 859 4165 20961 108805

|Λn,1| 1 2 5 16 59 246 1105 5270 26231 135036

Nµ 1 2 5 16 59 247 1111 5302 26376 135670

The numbers Ln appear not to be any of those considered in the theory of restricted
partitions (Andrews [1]).
Let us note that the λ∈Λn,1 are those entering the left-hand side of (4.13), with the

partitions µ entering the right-hand side and enumerating the Schur functions. The
numberNµ of Schur functions given in the above table are those given by Di Francesco
et al. [4]. There is no reason that Nµ should agree with |Λn,1|. It is also interesting to
note that the coefficient (4.16) for k= 1 (the discriminant) vanishes “accidentally” for
certain partitions µ, thus reducing the number of terms in the summation (4.15) to
less than Nµ . This occurs (see [13]) for n ≥ 8, where the reduction is by 8 for n = 8
and by 66 for n= 9.
A simple characterization of the partitions λ ∈ Λn,1 and their multiplicity Mn,1(λ)

has not been found. So the entries in the right-hand side of the formula

n!=
∑

λ∈Λn,1
Mn,1(λ) (7.15)

are also undetermined.
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