CHARACTERIZATION ON SOME ABSOLUTE SUMMABILITY FACTORS OF INFINITE SERIES

W. T. SULAIMAN

(Received 12 June 1998)

AbSTRACT. A general theorem concerning some absolute summability factors of infinite series is proved. This theorem characterizes as well as generalizes our previous result [4]. Other results are also deduced.

Keywords and phrases. Summability, series, sequences.
1991 Mathematics Subject Classification. 40D15, 40F15, 40 F05.

1. Introduction. Let $\sum a_{n}$ be an infinite series with partial sum s_{n}. Let σ_{n}^{δ} and η_{n}^{δ} denote the nth Cesàro mean of order $\delta(\delta>-1)$ of the sequences $\left\{s_{n}\right\}$ and $\left\{n a_{n}\right\}$, respectively. The series $\sum a_{n}$ is said to be summable $|C, \delta|_{k}, k \geq 1$, if

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{k-1}\left|\sigma_{n}^{\delta}-\sigma_{n-1}^{\delta}\right|^{k}<\infty, \tag{1.1}
\end{equation*}
$$

or, equivalently,

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{-1}\left|\eta_{n}\right|^{k}<\infty . \tag{1.2}
\end{equation*}
$$

Let $\left\{p_{n}\right\}$ be a sequence of positive real constants such that

$$
\begin{equation*}
P_{n}=\sum_{v=0}^{n} p_{v} \rightarrow \infty \quad \text { as } n \rightarrow \infty . \tag{1.3}
\end{equation*}
$$

The series $\sum a_{n}$ is said to be summable $\left|\bar{N}, p_{n}\right|_{k}, k \geq 1$, if (Bor [1])

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|T_{n}-T_{n-1}\right|^{k}<\infty, \tag{1.4}
\end{equation*}
$$

where

$$
\begin{equation*}
T_{n}=P_{n}^{-1} \sum_{v=0}^{n} p_{v} s_{v} . \tag{1.5}
\end{equation*}
$$

For $p_{n}=1,\left|\bar{N}, p_{n}\right|_{k}$ summability is equivalent to $|C, 1|_{k}$ summability. In general, the two summabilities are not comparable. Let $\left\{\varphi_{n}\right\}$ be any sequence of positive real constants. The series $\sum a_{n}$ is said to be summable $\left|\bar{N}, p_{n}, \varphi_{n}\right|_{k}, k \geq 1$, if (Sulaiman [4])

$$
\begin{equation*}
\sum_{n=1}^{\infty} \varphi_{n}^{k-1}\left|T_{n}-T_{n-1}\right|^{k}<\infty . \tag{1.6}
\end{equation*}
$$

Clearly,

$$
\begin{equation*}
\left|\bar{N}, p_{n}, \frac{P_{n}}{p_{n}}\right|_{k}=\left|\bar{N}, p_{n}\right|_{k}, \quad|\bar{N}, 1, n|_{k}=|C, 1|_{k} \tag{1.7}
\end{equation*}
$$

Theorem 1.1 (Sulaiman [4]). Let $\left\{p_{n}\right\},\left\{a_{n}\right\}$, and $\left\{\varphi_{n}\right\}$ be sequences of real positive constants. Let t_{n} denote the (\bar{N}, p_{n})-mean of the series $\sum a_{n}$. If

$$
\begin{gather*}
\sum_{n=1}^{\infty}\left(\frac{P_{n}}{p_{n}}\right)^{k}\left(\frac{q_{n}}{Q_{n}}\right)^{k} \varphi_{n}^{k-1}\left|\epsilon_{n}\right|^{k}\left|\Delta t_{n-1}\right|^{k}<\infty, \\
\sum_{n=1}^{\infty} \varphi_{n}^{k-1}\left|\epsilon_{n}\right|^{k}\left|\Delta t_{n-1}\right|^{k}<\infty, \tag{1.8}\\
\sum_{n=1}^{\infty}\left(\frac{P_{n}}{p_{n}}\right)^{k} \varphi_{n}^{k-1}\left|\Delta \epsilon_{n}\right|^{k}\left|\Delta t_{n-1}\right|^{k}<\infty,
\end{gather*}
$$

then the series $\sum a_{n} \epsilon_{n}$ is summable $\left|\bar{N}, q_{n}, \varphi_{n}\right|_{k}, k \geq 1$, where $\Delta f_{n}=f_{n}-f_{n+1}$ for any sequence $\left\{f_{n}\right\}$ and

$$
\begin{equation*}
Q_{n}=\sum_{v=0}^{n} q_{v} \rightarrow \infty \quad \text { as } n \rightarrow \infty \quad\left(q_{-1}=Q_{-1}=0\right) \tag{1.9}
\end{equation*}
$$

2. Lemmas

Lemma 2.1 (Bor [1]). Let $k>1$ and $A=\left(a_{n v}\right)$ be an infinite matrix. In order that $A \in\left(\ell^{k} ; \ell^{k}\right)$, it is necessary that

$$
\begin{equation*}
a_{n v}=O(1) \quad(\text { all } n, v) \tag{2.1}
\end{equation*}
$$

Lemma 2.2. Suppose that $\epsilon_{n}=O\left(f_{n} g_{n}\right), f_{n}, g_{n} \geq 0,\left\{\epsilon_{n} / f_{n} g_{n}\right\}$ monotonic, $\Delta g_{n}=$ $O(1)$, and $\Delta f_{n}=O\left(f_{n} / g_{n+1}\right)$. Then $\Delta \epsilon_{n}=O\left(f_{n}\right)$.
Proof. Let $k_{n}=\left(\epsilon_{n} / f_{n} g_{n}\right)=O(1)$. If (k_{n}) is nondecreasing, then

$$
\begin{align*}
\Delta \epsilon_{n} & =k_{n} f_{n} g_{n}-k_{n+1} f_{n+1} g_{n+1} \\
& \leq k_{n} f_{n} g_{n}-k_{n} f_{n+1} g_{n+1} \\
& =k_{n} \Delta\left(f_{n} g_{n}\right)=k_{n}\left(f_{n} \Delta g_{n}+g_{n+1} \Delta f_{n}\right), \tag{2.2}\\
\left|\Delta \epsilon_{n}\right| & =O\left(f_{n}\left|\Delta g_{n}\right|\right)+O\left(g_{n+1}\left|\Delta f_{n}\right|\right) \\
& =O\left(f_{n}\right)+O\left(f_{n}\right)=O\left(f_{n}\right) .
\end{align*}
$$

If (k_{n}) is nonincreasing, write $\nabla f_{n}=f_{n+1}-f_{n}$,

$$
\begin{align*}
\nabla \epsilon_{n} & =k_{n+1} f_{n+1} g_{n+1}-k_{n} f_{n} g_{n} \\
& \leq k_{n} \nabla\left(f_{n} g_{n}\right) \\
& =k_{n}\left(f_{n} \nabla g_{n}+g_{n+1} \nabla f_{n}\right), \\
\left|\Delta \epsilon_{n}\right| & =\left|\nabla \epsilon_{n}\right|=O\left(f_{n}\left|\nabla g_{n}\right|\right)+O\left(g_{n+1}\left|\nabla f_{n}\right|\right) \tag{2.3}\\
& =O\left(f_{n}\left|\Delta g_{n}\right|\right)+O\left(g_{n+1}\left|\Delta f_{n}\right|\right) \\
& =O\left(f_{n}\right)+O\left(f_{n}\right)=O\left(f_{n}\right) .
\end{align*}
$$

3. Main Result. We state and prove the following theorem:

Theorem 3.1. Let $\left\{p_{n}\right\},\left\{q_{n}\right\},\left\{\alpha_{n}\right\}$, and $\left\{\beta_{n}\right\}$ be sequences of positive real numbers such that

$$
\begin{gather*}
\left\{\frac{\beta_{n} q_{n}}{Q_{n}}\right\} \text { is nonincreasing; } \tag{3.1}\\
p_{n} Q_{n}=O\left(P_{n} q_{n}\right) ; \tag{3.2}\\
\left\{\frac{P_{n} q_{n}}{p_{n} Q_{n}}\left(\frac{\beta_{n}}{\alpha_{n}}\right)^{1-(1 / k)} \epsilon_{n}\right\} \text { is monotonic; } \tag{3.3}\\
\Delta\left(\frac{Q_{n}}{q_{n}}\right)=O(1) ; \tag{3.4}\\
\Delta\left\{\frac{p_{n}}{P_{n}}\left(\frac{\alpha_{n}}{\beta_{n}}\right)^{1-(1 / k)}\right\}=O\left\{\frac{p_{n} q_{n+1}}{P_{n} Q_{n+1}}\left(\frac{\alpha_{n}}{\beta_{n}}\right)^{1-(1 / k)}\right\} . \tag{3.5}
\end{gather*}
$$

Then the necessary and sufficient conditions that $\sum a_{n} \epsilon_{n}$ be summable $\left|\bar{N}, q_{n}, \beta_{n}\right|_{k}$, whenever $\sum a_{n}$ is summable $\left|\bar{N}, p_{n}, \alpha_{n}\right|_{k}, k \geq 1$, are

$$
\begin{align*}
\epsilon_{n} & =O\left\{\frac{p_{n} Q_{n}}{P_{n} q_{n}}\left(\frac{\alpha_{n}}{\beta_{n}}\right)^{1-(1 / k)}\right\}, \tag{3.6}\\
\Delta \epsilon_{n} & =\left\{\frac{p_{n}}{P_{n-1}}\left(\frac{\alpha_{n}}{\beta_{n}}\right)^{1-(1 / k)}\right\} . \tag{3.7}
\end{align*}
$$

Proof. Write

$$
\begin{gather*}
T_{n}=\beta_{n}^{1-(1 / k)}\left(\frac{q_{n}}{Q_{n} Q_{n-1}}\right) \sum_{v=1}^{n} Q_{v-1} a_{v} \epsilon_{v}, \\
t_{n}=\alpha_{n}^{1-(1 / k)}\left(\frac{p_{n}}{P_{n} P_{n-1}}\right) \sum_{v=1}^{n} P_{v-1} a_{v}, \tag{3.8}\\
T_{n}= \\
=\beta_{n}^{1-(1 / k)}\left(\frac{q_{n}}{Q_{n} Q_{n-1}}\right) \sum_{v=1}^{n} P_{v-1} a_{v} \frac{Q_{v-1}}{P_{v-1}} \epsilon_{v} \\
=\beta_{n}^{1-(1 / k)}\left(\frac{q_{n}}{Q_{n} Q_{n-1}}\right)\left[\sum_{v=1}^{n-1} \sum_{r=1}^{v}\left(P_{r-1} a_{r}\right) \Delta\left(\frac{Q_{v-1}}{P_{v-1} \epsilon_{v}}\right)+\sum_{r=1}^{n}\left(\frac{P_{n}}{Q_{n} Q_{n-1}}\right) \sum_{v=1}^{n-1} \frac{P_{v} P_{v-1}}{p_{v}} \alpha_{v}^{(1 / k)-1} t_{v}\left\{\frac{Q_{n-1}}{P_{n-1}} \epsilon_{n}\right)\right] \\
+\left(\beta_{n}^{1-(1 / k)} \frac{q_{n}}{Q_{n-1}} \epsilon_{v}+\frac{p_{v} Q_{v} \epsilon_{v}}{P_{v-1} P_{v}}+\frac{Q_{v}}{P_{v}} \Delta \epsilon_{v}\right\} \\
= \\
\beta_{n}^{1-(1 / k)} \frac{P_{n}}{Q_{n} Q_{n-1}} \sum_{v=1}^{n-1}\left\{\frac{-q_{v}}{p_{v}} P_{v}^{(1 / k)-1} \frac{Q_{n-1}}{P_{n-1}} \epsilon_{n}\right. \\
\quad+\alpha_{v}^{(1 / k)-1} t_{v} \epsilon_{v} \tag{3.9}\\
\\
\left.+\frac{P_{n} q_{n}}{p_{n} Q_{n}} \alpha_{n}^{(1 / k)-1} Q_{n}^{1-(1 / k)} t_{v} \epsilon_{v}+\frac{P_{v} Q_{v}}{p_{v}} \alpha_{v}^{(1 / k)-1} t_{v} \Delta \epsilon_{v}\right\}
\end{gather*}
$$

Let us denote the above form of T_{n} by $T_{n, 1}+T_{n, 2}+T_{n, 3}+T_{n, 4}$.

By Minkowski's inequality, in order to prove the sufficiency, it is sufficient to show that $\sum_{n=1}^{\infty}\left|T_{n, r}\right|^{k}<\infty, r=1,2,3,4$. Applying Hölder's inequality,

$$
\begin{aligned}
\sum_{n=2}^{m+1}\left|T_{n, 1}\right|^{k} & =\sum_{n=2}^{m+1}\left|\beta_{n}^{1-(1 / k)} \frac{q_{n}}{Q_{n} Q_{n-1}} \sum_{v=1}^{n-1} \frac{-q_{v}}{p_{v}} P_{v} \alpha_{v}^{(1 / k)-1} t_{v} \epsilon_{v}\right|^{k} \\
& \leq \sum_{n=2}^{m+1} \beta_{n}^{k-1}\left(\frac{q_{n}}{Q_{n}}\right)^{k} \frac{1}{Q_{n-1}} \sum_{v=1}^{n-1} q_{v}\left(\frac{P_{v}}{p_{v}}\right)^{k} \alpha_{v}^{1-k}\left|t_{v}\right|^{k}\left|\epsilon_{v}\right|^{k}\left\{\sum_{v=1}^{n-1} \frac{q_{v}}{Q_{n-1}}\right\}^{k-1} \\
& \leq O(1) \sum_{v=1}^{m} q_{v}\left(\frac{P_{v}}{p_{v}}\right)^{k} \alpha_{v}^{1-k}\left|t_{v}\right|^{k}\left|\epsilon_{v}\right|^{k} \sum_{n=v+1}^{m+1} \beta_{n}^{k-1}\left(\frac{q_{n}}{Q_{n}}\right)^{k} \frac{1}{Q_{n-1}} \\
& =O(1) \sum_{v=1}^{m} q_{v}\left(\frac{P_{v}}{p_{v}}\right)^{k} \alpha_{v}^{1-k}\left|t_{v}\right|^{k}\left|\epsilon_{v}\right|^{k}\left(\beta_{v} \frac{q_{v}}{Q_{v}}\right)^{k-1} \sum_{n=v+1}^{m+1} \frac{q_{n}}{Q_{n} Q_{n-1}} \\
& =O(1) \sum_{v=1}^{m}\left(\frac{q_{v} P_{v}}{p_{v} Q_{v}}\right)^{k}\left(\frac{\beta_{v}}{\alpha_{v}}\right)^{k-1}\left|t_{v}\right|^{k}\left|\epsilon_{v}\right|^{k},
\end{aligned}
$$

$$
\begin{aligned}
\sum_{n=2}^{m+1}\left|T_{n, 2}\right|^{k} & =\sum_{n=2}^{m+1}\left|\beta_{n}^{1-(1 / k)} \frac{q_{n}}{Q_{n} Q_{n-1}} \sum_{v=1}^{n-1} \alpha_{v}^{(1 / k)-1} Q_{v} t_{v} \epsilon_{v}\right|^{k} \\
& =\sum_{n=2}^{m+1} \beta_{n}^{k-1}\left(\frac{q_{n}}{Q_{n}}\right)^{k} \frac{1}{Q_{n-1}} \sum_{v=1}^{n-1} \alpha_{v}^{1-k}\left(\frac{Q_{v}}{q_{v}}\right)^{k} q_{v}\left|t_{v}\right|^{k}\left|\epsilon_{v}\right|^{k}\left\{\sum_{v=1}^{n-1} \frac{q_{v}}{Q_{n-1}}\right\}^{k-1} \\
& \leq O(1) \sum_{v=1}^{m} \alpha_{v}^{1-k}\left(\frac{Q_{v}}{q_{v}}\right)^{k} q_{v}\left|t_{v}\right|^{k}\left|\epsilon_{v}\right|^{k} \sum_{n=v+1}^{m+1} \beta_{n}^{k-1}\left(\frac{q_{n}}{Q_{n}}\right)^{k} \frac{1}{Q_{n-1}} \\
& =O(1) \sum_{v=1}^{m} \alpha_{v}^{1-k}\left(\frac{Q_{v}}{q_{v}}\right)^{k} q_{v}\left|t_{v}\right|^{k}\left|\epsilon_{v}\right|^{k}\left(\beta_{v} \frac{q_{v}}{Q_{v}}\right)^{k-1} \sum_{n=v+1}^{m+1} \frac{q_{n}}{Q_{n} Q_{n-1}} \\
& =O(1) \sum_{v=1}^{m}\left(\frac{\beta_{v}}{\alpha_{v}}\right)^{k-1}\left|t_{v}\right|^{k}\left|\epsilon_{v}\right|^{k} \\
& =O(1) \sum_{v=1}^{m}\left(\frac{P_{v}}{p_{v}}\right)^{k}\left(\frac{q_{v}}{Q_{v}}\right)^{k}\left(\frac{\beta_{v}}{\alpha_{v}}\right)^{k-1}\left|t_{v}\right|^{k}\left|\epsilon_{v}\right|^{k}
\end{aligned}
$$

$$
\begin{aligned}
\sum_{n=2}^{m+1}\left|T_{n, 3}\right|^{k}= & \sum_{n=2}^{m+1}\left|\beta_{n}^{1-(1 / k)} \frac{q_{n}}{Q_{n} Q_{n-1}} \sum_{v=1}^{n-1} \frac{P_{v-1}}{p_{v}} Q_{v} \alpha_{v}^{(1 / k)-1} t_{v} \Delta \epsilon_{v}\right|^{k} \\
\leq & \sum_{n=2}^{m+1} \beta_{n}^{k-1}\left(\frac{q_{n}}{Q_{n}}\right)^{k} \frac{1}{Q_{n-1}} \sum_{v=1}^{n-1} q_{v}\left(\frac{P_{v-1}}{p_{v}}\right)^{k} \alpha_{v}^{1-k}\left(\frac{Q_{v}}{q_{v}}\right)^{k} \\
& \times\left|t_{v}\right|^{k}\left|\Delta \epsilon_{v}\right|^{k}\left\{\sum_{v=1}^{n-1} \frac{q_{v}}{Q_{n-1}}\right\}^{k-1} \\
= & O(1) \sum_{v=1}^{m} q_{v}\left(\frac{P_{v-1}}{p_{v}}\right)^{k}\left(\frac{Q_{v}}{q_{v}}\right)^{k} \alpha_{v}^{1-k}\left|t_{v}\right|^{k}\left|\Delta \epsilon_{v}\right|^{k} \sum_{n=v+1}^{m+1} \beta_{n}^{k-1}\left(\frac{q_{n}}{Q_{n}}\right)^{k} \frac{1}{Q_{n-1}} \\
= & O(1) \sum_{v=1}^{m} \frac{q_{v}}{Q_{v}}\left(\frac{P_{v-1}}{p_{v}}\right)^{k}\left(\frac{Q_{v}}{q_{v}}\right)^{k} \alpha_{v}^{1-k}\left|t_{v}\right|^{k}\left|\Delta \epsilon_{v}\right|^{k}\left(\beta_{v} \frac{q_{v}}{Q_{v}}\right)^{k-1}
\end{aligned}
$$

$$
\begin{align*}
& =O(1) \sum_{v=1}^{m}\left(\frac{P_{v-1}}{p_{v}}\right)^{k}\left(\frac{\beta_{v}}{\alpha_{v}}\right)^{k-1}\left|t_{v}\right|^{k}\left|\Delta \epsilon_{v}\right|^{k} \\
\sum_{n=2}^{m+1}\left|T_{n, 4}\right|^{k} & =O(1) \sum_{n=1}^{m}\left(\frac{q_{n} P_{n}}{p_{n} Q_{n}}\right)^{k}\left(\frac{\beta_{n}}{\alpha_{n}}\right)^{k-1}\left|t_{n}\right|^{k}\left|\epsilon_{n}\right|^{k} \tag{3.10}
\end{align*}
$$

Sufficiency of (3.6) and (3.7) follows.
Necessity of (3.6). Using the result of Bor in [2], the transformation from $\left(t_{n}\right)$ into (T_{n}) maps ℓ^{k} into ℓ^{k} and, hence by Lemma 2.1 the diagonal elements of this transformation are bounded and so (3.6) is necessary.
Necessity of (3.7). This follows from Lemma 2.2 and the necessity of (3.6) by taking

$$
\begin{equation*}
f_{n}=\left(\frac{p_{n}}{P_{n}}\right)\left(\frac{\alpha_{n}}{\beta_{n}}\right)^{1-(1 / k)}, \quad g_{n}=\frac{Q_{n}}{q_{n}} \tag{3.11}
\end{equation*}
$$

4. Applications

Corollary 4.1. Suppose that the conditions (3.1) and (3.2) are satisfied. Then the necessary and sufficient condition that $\sum a_{n}$ be summable $\left|\bar{N}, q_{n}, \beta_{n}\right|_{k}$, whenever it is summable $\left|\bar{N}, p_{n}, \alpha_{n}\right|_{k}, k \geq 1$, is

$$
\begin{equation*}
\frac{P_{n} q_{n}}{p_{n} Q_{n}}=O\left\{\left(\frac{\alpha_{n}}{\beta_{n}}\right)^{1-(1 / k)}\right\} \tag{4.1}
\end{equation*}
$$

Proof. The proof follows from Theorem 3.1 by putting $\epsilon_{n}=1$ and noticing that we do not need the conditions (3.3), (3.4), and (3.5) as $\Delta \epsilon_{n}=0$ for $\epsilon_{n}=1$.
Corollary 4.2. Suppose that (3.2) and (3.4) are satisfied, $\left\{\left(P_{n} q_{n} / p_{n} Q_{n}\right)^{(1 / k)} \epsilon_{n}\right\}$ is monotonic, and

$$
\begin{equation*}
\Delta\left\{\frac{p_{n}}{P_{n}}\left(\frac{P_{n} q_{n}}{p_{n} Q_{n}}\right)^{1-(1 / k)}\right\}=O\left\{\frac{p_{n} q_{n+1}}{P_{n} Q_{n+1}}\left(\frac{P_{n} q_{n}}{p_{n} Q_{n}}\right)^{1-(1 / k)}\right\} . \tag{4.2}
\end{equation*}
$$

Then the necessary and sufficient conditions that $\sum a_{n} \epsilon_{n}$ be summable $\left|\bar{N}, q_{n}\right|_{k}$ whenever $\sum a_{n}$ is summable $\left|\bar{N}, p_{n}\right|_{k}, k \geq 1$, are

$$
\begin{equation*}
\epsilon_{n}=O\left\{\frac{p_{n} Q_{n}}{P_{n} q_{n}}\right\}^{1 / k}, \quad \Delta \epsilon_{n}=\left\{\frac{p_{n}}{P_{n-1}}\left(\frac{P_{n} q_{n}}{p_{n} Q_{n}}\right)^{1-(1 / k)}\right\} . \tag{4.3}
\end{equation*}
$$

Proof. The proof follows from Theorem 3.1 by putting $\alpha_{n}=P_{n} / p_{n}, \beta_{n}=Q_{n} / q_{n}$.

Corollary 4.3 (Bor and Thorpe [3]). Suppose that $p_{n} Q_{n}=O\left(P_{n} q_{n}\right)$ and $p_{n} q_{n}=$ $O\left(p_{n} Q_{n}\right)$. Then, the series $\sum a_{n}$ is summable $\left|\bar{N}, q_{n}\right|_{k}$ if and only if it is summable $\left|\bar{N}, p_{n}\right|_{k}, k \geq 1$.

Proof. The proof follows from the sufficient part of Corollary 4.1.

Remark. It may be noticed that (3.4) can be replaced by

$$
\begin{equation*}
Q_{n} \Delta q_{n}=O\left(q_{n} q_{n+1}\right) \tag{4.4}
\end{equation*}
$$

as

$$
\begin{align*}
\left|\Delta\left(\frac{Q_{n}}{q_{n}}\right)\right| & =\left|\frac{Q_{n}}{q_{n}}-\frac{Q_{n+1}}{q_{n+1}}\right|=\left|\frac{q_{n+1} Q_{n}-q_{n}\left(Q_{n}+q_{n+1}\right)}{q_{n} q_{n+1}}\right| \\
& =\left|\frac{Q_{n} \Delta q_{n}}{q_{n} q_{n+1}}+1\right| \tag{4.5}\\
& \leq 1+\frac{Q_{n}\left|\Delta q_{n}\right|}{q_{n} q_{n+1}} .
\end{align*}
$$

References

[1] H. Bor, On two summability methods, Math. Proc. Cambridge Philos. Soc. 97 (1985), no. 1, 147-149. MR 86d:40004. Zbl 554.40008.
[2] , On the relative strength of two absolute summability methods, Proc. Amer. Math. Soc. 113 (1991), no. 4, 1009-1012. MR 92c:40006. Zbl 743.40007.
[3] H. Bor and B. Thorpe, On some absolute summability methods, Analysis 7 (1987), no. 2, 145-152. MR 88j:40012. Zbl 639.40005.
[4] W. T. Sulaiman, On some summability factors of infinite series, Proc. Amer. Math. Soc. 115 (1992), no. 2, 313-317. MR 92i:40009. Zbl 756.40006.

Sulaiman: College of Education, Ajman University, P. O. Box 346, Ajman, United Arab Emirates

