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Abstract. In [3], we started the investigation of compactness in fuzzy function spaces
in FCS, the category of fuzzy convergence spaces as defined by Lowen/Lowen/Wuyts [8].
This paper goes somewhat deeper in the investigation of fuzzy function spaces using the
notion of splitting and conjoining structures on fuzzy subsets. We discuss the connection
to the exponential law and give several examples of such structures. As a special case, we
study a notion of fuzzy compact open topology.
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1. Introduction. The theory of fuzzy topological spaces is meanwhile highly devel-
oped. Especially, compactness and separation axioms have been thoroughly studied.
Yet, one important field of classical topology has not yet attained wide attention in
fuzzy topology: the theory of function spaces. Function spaces play an important role
in functional analysis, in the theory of differential equations, in complex analysis, and
in almost every other branch of modern mathematics, not to forget in topology itself.
Therefore, it seems desirable to study function spaces also in fuzzy topology. In the
meantime, three papers on this subject have appeared (Peng [11], Dang and Behera [2],
and Alderton [1]). The fact that FTS, the category of fuzzy topological spaces (Lowen
[9]), is not cartesian closed led Lowen and Lowen [7] to the definition of FCS, the cate-
gory of fuzzy convergence spaces. This paper takes FCS as a starting point to discuss
certain fuzzy function space structures via splitting and conjoining structures. It con-
tinues a previous paper by the author, where compactness in fuzzy function spaces
in FCS was considered [3] and also considers function spaces in FTS.

2. Preliminaries. Let X be a nonvoid set. Fuzzy subsets of X are denoted by A,B,
C, . . . ∈ [0,1]X , (ordinary) subsets of X are denoted by small italics a,b,c, . . . ⊂ X.
For a ⊂ X, we denote by 1a the characteristic function of a and in case a = {x}, we
write 1x . For the characteristic function of the whole set X,Y ,Z , we write for short
again X,Y ,Z . The fundamental definitions of fuzzy set theory and fuzzy topology are
assumed to be familiar to the reader. We especially take Lowen’s definition of fuzzy
topology [9]. In order to make this paper self-contained, however, we summarize the
main results of our papers [3, 4, 5]. Given a fuzzy subset A ∈ [0,1]X , we denote
FX(A) := {B ∈ [0,1]X : B ⊂ A} and call A0 := {x ∈ X : A(x) > 0} the support of A. For
A ∈ [0,1]X , we call a fuzzy subset of the form B = A∩1B0 a crisp fuzzy subset of A.

http://ijmms.hindawi.com
http://www.hindawi.com


728 GUNTHER JÄGER

If A=X, we regain the usual definition.
For a function f : X → Y , we define its restriction on A by f | A(D) := f(D) (D ∈

FX(A)) and the corresponding inverse image by (f |A)−1(E) := f−1(E)∩A (E ∈ FY (Y))
(cf. [4]). If, moreover, f(A) ⊂ B, we call g = f | A : A→ B a fuzzy mapping from A to
B [4].
A nonempty collection F ⊂ FX(A) is called a fuzzy filter on A if and only if it does

not contain the empty fuzzy set ∅ := 1∅, is closed under finite intersections, and
contains, for F ∈ F, every fuzzy superset A⊃ G ⊃ F . B⊂ FX(A) is called a fuzzy filter
basis on A if and only if it is not empty, does not contain the empty fuzzy set, and the
intersection of two of its members contains a member of B. For a fuzzy filter basis B
on A, [B]A = [B] := {F ⊂ A : ∃B ∈ B such that B ⊂ F} is a fuzzy filter on A. A fuzzy
filter on A is called a prime fuzzy filter if and only if whenever F ∪G ∈ F, F ∈ F or
G ∈ F. For example, the fuzzy point filters [α1x] := {G ⊂A :G(x)≥α} (0<α≤A(x))
are prime fuzzy filters. The set F(A) of fuzzy filters on A is ordered by set inclusion.
For F ∈ F(A), the set P(F) of all prime fuzzy filters finer than F is inductive and, by
Zorn’s lemma, there exist minimal elements in P(F), the set of which is denoted by
Pm(F) (cf. Lowen [10]). For a fuzzy filter F∈ F(A), the system ı(F) := {F0 : F ∈ F} is a
filter on A0. F is a prime fuzzy filter if and only if ı(F) is an ultrafilter. We further call
for a fuzzy filter F∈ F(A)

c(F) := inf
F∈F

sup
x∈X

F(x) (2.1)

its characteristic value (Lowen/Lowen [6]).
For A∈ [0,1]X , we call a mapping

lim :


F(A) �→ FX(A)

F � �→ limF
(2.2)

a fuzzy convergence on A if and only if the following conditions are satisfied:
(PST) ∀F∈ F(A) : limF=⋂G∈Pm(F) limG;
(F1p) ∀F∈ F(A) prime fuzzy filters : limF≤ c(F);
(F2p) ∀F,G∈ F(A) prime fuzzy filters : F≤G⇒ limG⊂ limF;
(C1) ∀x ∈A0, 0<α≤A(x) :α1x ⊂ lim[α1x].
(cf. [5, 7, 8]). The pair (A, lim) is then called a fuzzy convergence space (fcs for short).
A fuzzy topological space (X,∆) can be considered as an fcs if we put, for F∈ F(X),

lim(∆)F :=
⋂

G∈Pm(F)

⋂
G∈G

G∆, (2.3)

which is the definition of limit of a fuzzy filter due to Lowen [10].
For two fuzzy convergences lim, lim′ on the same fuzzy set A ∈ [0,1]X , we say

that lim′ is finer than lim if and only if, for every prime fuzzy filter F ∈ F(A), we
have lim′F ⊂ limF. We then write lim ≤ lim′. It is easily verified that, for two fuzzy
topologies Γ , ∆ on X, we have Γ ≤∆ (i.e., Γ ⊂∆) if and only if lim(Γ)≤ lim(∆).
In [5], a fuzzy mapping g : (A, limA)→ (B, limB) is called (limA, limB)-continuous (or

simply continuous if the involved fuzzy convergences are clear) if and only if, for
every prime fuzzy filter F ∈ F(A), we have g(limAF) ⊂ limB g(F). By definition, we
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have, for two fuzzy convergences lim, lim′ on A ∈ [0,1]X , lim ≤ lim′ if and only if
idX |A : (A, lim′)→ (A, lim) is continuous.
Now, let (gλ : A → (Aλ, limλ))λ∈Λ be a family of fuzzy mappings from a fuzzy set

A ∈ [0,1]X to fcs’s (Aλ, limλ) with Aλ ∈ [0,1]Xλ (λ ∈ Λ). If we put, for a prime fuzzy
filter F∈ F(A),

init
(
limλ,gλ

)
F :=

⋂
λ∈Λ

g−1
(
limλgλ(F)

)
, (2.4)

and derive init(limλ,gλ) for arbitrary fuzzy filters F∈ F(A) by (PST), then init(limλ,gλ)
is the coarsest fuzzy convergence on A such that every gλ is continuous [5].
If B ⊂ A(A, lim) fcs, and ıB := idX | B : B → A is the fuzzy inclusion, we call lim |B :=

init(lim, ıB) the fuzzy convergence on B induced by lim and the pair (B, lim |B) a fuzzy
subspace of (A, lim). We have lim |B F = B∩ lim[F] for a prime fuzzy filter F ∈ F(B).
For more details on this subspace concept, see [3, 4, 5].
If Aλ ∈ [0,1]Xλ (λ ∈ Λ) and, as usual, ΠAλ((xλ)) := infλ∈ΛAλ(xλ) for (xλ) ∈ ΠXλ,

the restrictions πµ := prµ | ΠAλ of the projections prµ : ΠXλ → Xµ,(xλ) � xµ are
fuzzy mappings from ΠAλ to Aµ(µ ∈Λ) (cf. [4]). If we denote π−lim := init(limλ,πλ),
then (ΠAλ,π− lim) is called the product space of the fcs’s ((Aλ, limλ))λ∈Λ. For a prime
fuzzy filter F ∈ F(ΠAλ), we have π− limF = Πλ∈Λ limλπλ(F) =

⋂
λ∈Λπ−1

λ (limλπλ(F)).
For more details, we refer to [5].
If g = f | A : A→ B and h = k | C : C → D are fuzzy mappings and if we define, as

usual, the product-mapping f ×k(a,c) := (f (a),k(c)), then it is easily verified that
f ×k(A×C)⊂ B×D. Hence, we can define the fuzzy product-mapping g×h := f ×k |
A×C : A×C → B×D. The simple proofs of the next two propositions are left to the
reader.

Proposition 2.1. Let, in the situation above, F ⊂ A×C . If πA respectively πC , are
the fuzzy projections from A×C to A respectively C , and πB respectively πD , are the
fuzzy projections from B×D to B respectively D, then g(πA(F)) = πB(g×h(F)) and
h(πC(F))=πD(g×h(F)).

Proposition 2.2. Let (A, limA),(B, limB),(C, limC), and (D, limD) be fcs’s and let
g : A → B and h : C → D be continuous fuzzy mappings. Then the product-mapping
g×h is (limA× limC, limB× limD)-continuous.

3. Continuous convergence on fuzzy subsets (The space C(A,B)). Let in this
number A∈ [0,1]X,B ∈ [0,1]Y , and always

[
sup
x∈X

A(X)
]
1B0 ⊂ B. (3.1)

We then have BA00 = {g : A0 → B0 | g(A) ⊂ B}, i.e., we do not need to distinguish
between mappings from A0 to B0 and fuzzy mappings from A to B. For a mapping
g :A0→ B0, we put

BA
(
g
)= η

(
g
)
:= inf

x∈A0
B
(
g(x)

)
, (3.2)
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i.e., BA = Πx∈A0B (identifying g and (g(x))x∈A0 in the natural way) is a fuzzy set

on BA00 .
We consider the evaluation map

ev :


B

A0
0 ×A0 �→ B0(
g,x

) � �→ g(x).
(3.3)

If (3.1) is assumed, then ev : BA×A → B is a fuzzy mapping [3]. We further denote
by πBA : BA×A → BA the restriction of the projection pr

B
A0
0

: (g,x) � g and by πA :

BA×A → A the restriction of the projection prA0 : (g,x) � x on BA×A. The fuzzy
convergence structure of continuous convergence on BA is defined as follows (cf. [3,
7, 8]). For (A, limA),(B, limB) fcs’s, g : A→ B a fuzzy mapping and F ∈ F(BA) a prime
fuzzy filter, we put

C
(
F,g

)
:=
{
α∈ [0,1] | ∀Θ∈ F(BA×A) prime fuzzy filters such that

πBA(Θ)≤ F,∀x ∈A0 : limAπA(Θ)(x)∧α≤π−1
x
(
limB ev(Θ)

)(
g
)} (3.4)

and

c-limF
(
g
)
:= c(F)∧η(g)∧supC(F,g). (3.5)

For an arbitrary fuzzy filter F∈ F(BA), we derive c- limF by (PST). c- lim then satisfies
(PST), (F1p), and (F2p) and, in general, fails to satisfy (C1). Therefore, we speak of c- lim
as a “ weak fuzzy convergence structure” (cf. [3]).
IfM ⊂ BA is a fuzzy subset of BA, we call c- lim |M the (weak) fuzzy convergence struc-

ture of continuous convergence on M and denote this (weak) fuzzy convergence again
by c-lim. The next proposition shows that we can calculate the fuzzy convergence of
continuous convergence for certain M ⊂ BA “from inside.”

Proposition 3.1. Let (A, limA), (B, limB) be fcs’s andM = BA∩1M0 be a crisp fuzzy
subset of BA. If we put for a prime fuzzy filter F∈ F(M) and g ∈M0

CM
(
F,g

)
:=
{
α∈ [0,1] | ∀Θ∈ F(M×A) prime fuzzy filter such that
πM(Θ)≤ F,∀x ∈A0 : limAπA(Θ)(x)∧α≤π−1

x
(
limB ev(Θ)

)(
g
)}
,
(3.6)

then c- limF(g)= c(F)∧η(g)∧supCM(F,g). Here, πM = prM0
|M×A is the restriction

of the mapping M0×A0 � (g,x)� g ∈M0 and πA :M×A→ A is the fuzzy projection
and ev :M×A→ B and πx = prx |M :M → B is the restriction of the mapping g� g(x).

Proof. We prove that C([F],g)= CM(F,g). Let α∈ C([F],g) and let Θ∈ F(M×A)
be a prime fuzzy filter such that πM(Θ)≤ F and let x ∈A0. Then [Θ]∈ F(BA×A) is a
prime fuzzy filter and [πM(Θ)]≤ [F]. For Ψ ⊂M×A and g ∈M0, we have πM(Ψ)(g)=
supx∈A0 Ψ(g,x)=πBA(Ψ)(g)which yields [πM(Θ)]=πBA([Θ]). Obviously,πA([Θ])=
πA(Θ) and ev([Θ])= ev(Θ) (here, the fuzzy functions on the left sides are defined on
BA×A and the ones on the right sides are defined on M×A). Hence, we get

limAπA(Θ)(x)∧α= limAπA([Θ])(x)∧α
≤π−1

x
(
limB ev([Θ])

)(
g
)

=π−1
x
(
limB ev(Θ)

)(
g
)
,

(3.7)

i.e., α∈ CM(F,g).
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Conversely, let α ∈ CM(F,g) and Θ ∈ F(BA×A) be a prime fuzzy filter such that
πBA(Θ)≤ [F] and let x ∈A0. Then, as ı(πBA(Θ))= ı([F]) and M is a crisp fuzzy sub-
set, we get that M ∈ πBA(Θ) and, therefore, also M ×A ∈ Θ. We put Θ′ := ΘM×A =
{θ ∩ (M ×A) : θ ∈ Θ}. Then [Θ′] = Θ, and Θ′ is also a prime fuzzy filter. A sim-
ple computation shows that πM(Ψ ∩ (M ×A)) = πBA(Ψ)∩M for Ψ ∈ BA×A and so
πM(Θ′) = (πBA(Θ))M . From this, we conclude that πM(Θ′) ≤ ([F])M = F. As, further-
more, πA(Θ′) = πA(Θ) and ev(Θ′) = ev(Θ) (where again the fuzzy functions on the
left sides are defined on M ×A and those on the right sides are defined on BA×A),
this yields α∈ C([F],g) which completes the proof.

Proposition 3.2. Let (A, limA),(B, limB) be fcs’s andM = BA∩1M0 be a crisp fuzzy
subset of BA. The following hold:

(i) ev : (M×A,c- lim× limA)→ (B, limB) is continuous.
(ii) If A = α1X, B = α1Y and lim∗ is a fuzzy convergence on M such that ev : (M×

A, lim∗× limA)→ (B, limB) is continuous, then c- lim≤ lim∗.

Proof. Using Proposition 3.1, we can copy the corresponding proof of [3, Prop. 4.6].

We now put for two fcs’s (A, limA) and (B, limB)

C(A,B)0 :=
{
g :
(
A, limA) �→ (B, limB) continuous} (3.8)

and define the fuzzy subset C(A,B) of BA by C(A,B) := BA∩1C(A,B)0 . In [3, Prop. 4.2],
we showed that, for a continuous fuzzy mapping g : (A, limA) → (B, limB) and for
0 < α ≤ η(g), we have α1g ⊂ c- lim[α1g]. Hence, (C(A,B),c- lim) satisfies the axiom
(C1), i.e., is an fcs.
We finally mention a result due to Lowen/Lowen [7]. Let X,Y ,Z be nonvoid sets and

f : X×Y → Z be a mapping. We define a mapping ϕ(f) : X → ZY , ϕ(f)(x) := f(x,·).
The just-defined bijection ϕ : ZX×Y → (ZY )X is called an “exponential map” (Poppe
[12]).

Proposition 3.3. Let (X, limX),(Y , limY ) and (Z, limZ) be fcs’s. Then

ϕ
(
C(X×Y ,Z))= C

(
X,C(Y ,Z)

)
. (3.9)

Here, C(Y ,Z) is provided with the fuzzy convergence of continuous convergence and
X×Y with the product fuzzy convergence limX× limY .

Proof. ϕ(C(X×Y ,Z)) ⊂ C(X,C(Y ,Z)) is shown in [7, Thm. 5.2]. The reverse in-
clusion follows using the continuity of the evaluation map (Proposition 3.2) and the
continuity of the fuzzy product-mapping (Proposition 2.2) in exactly the same way as
the proof of the corresponding “classical” theorem 2.2, (a)⇒(b) in Poppe [12].

4. Splitting and conjoining fuzzy convergences

Definition 4.1. Let (A, limA),(B, limB) be fcs’s, M ⊂ BA and lim be a fuzzy con-
vergence on M .

(i) lim is called conjoining for M if and only if c- lim≤ lim holds on M .
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(ii) lim is called splitting for M if and only if lim≤ c- lim holds on M .

As an immediate consequence of Proposition 3.2, we obtain the following proposi-
tion.

Proposition 4.2. Let (A, limA),(B, limB) be fcs’s and M ⊂ BA. The following hold:
(i) If lim is conjoining for M , then ev : (M×A, lim× limA)→ (B, limB) is continuous.
(ii) If A = α1X , B = α1Y and M = BA∩1M0 is a crisp fuzzy subset, then, from the

continuity of ev : (M×A, lim× limA)→ (B, limB), we get that lim is conjoining.

Splitting and conjoining fuzzy convergences are closely related to the “exponential
law” (for corresponding “classical” results (cf. Poppe [12])).

Proposition 4.3. Let (Y , limY ),(Z, limZ) be fcs’s and lim be a fuzzy convergence
for C(Y ,Z). Then the following are equivalent:

(i) lim is splitting for C(Y ,Z),
(ii) for each fcs (X, limX), we have ϕ(C(X×Y ,Z))⊂ C(X,(C(Y ,Z), lim)).

Proof. Let first lim be splitting for C(Y ,Z). From Proposition 3.3, we get that,
for a continuous fuzzy mapping f : X × Y → Z , the fuzzy mapping ϕ(f) : X →
(C(Y ,Z),c- lim) is continuous. Hence, for a prime fuzzy filter F∈ F(X), we have

ϕ
(
f
)
(limX F)⊂ c- limϕ

(
f
)
(F)⊂ limϕ

(
f
)
(F), (4.1)

i.e., ϕ(f) is (limX, lim)-continuous.
Conversely, let condition (ii) hold. (C(Y ,Z),c- lim) is a fuzzy convergence space and,

hence,

ϕ
(
C
(
(C(Y ,Z),c- lim)×Y ,Z))⊂ C

(
(C(Y ,Z),c- lim),(C(Y ,Z), lim)

)
. (4.2)

By Proposition 3.2, the evaluation map ev is continuous, i.e., ev∈ C((C(Y ,Z),c- lim)×
Y ,Z) and, hence, ϕ(ev) ∈ C((C(Y ,Z),c- lim), (C(Y ,Z), lim)). As ϕ(ev)(g)(y) =
ev(g,·)(y) = ev(g,y) = g(y) = idC(Y ,Z)(g)(y), i.e., ϕ(ev) is the identity map on
C(Y ,Z), we conclude that lim≤ c- lim, i.e., lim is splitting for C(Y ,Z).

Proposition 4.4. Let (Y , limY ),(Z, limZ) be fcs’s and lim be a fuzzy convergence
for C(Y ,Z). Then the following are equivalent:

(i) lim is conjoining for C(Y ,Z),
(ii) for each fcs (X, limX), we have C(X,(C(Y ,Z), lim))⊂ϕ(C(X×Y ,Z)).

Proof. Let first lim be conjoining for C(Y ,Z), and let f : (X, limX)→ (C(Y ,Z), lim)
be continuous. As c- lim≤ lim, then also f : (X, limX)→ (C(Y ,Z),c- lim) is continuous.
This yields C(X,(C(Y ,Z), lim)) ⊂ C(X,(C(Y ,Z),c- lim)). Proposition 3.3 now implies
condition (ii).
Conversely, let condition (ii) hold. As (C(Y ,Z), lim) is an fcs, we obtain

C
(
(C(Y ,Z), lim),(C(Y ,Z), lim)

)⊂ϕ
(
(C(Y ,Z), lim)×Y ,Z). (4.3)

As idC(Y ,Z) is (lim, lim)-continuous, we deduce, herefrom, that

ϕ−1( idC(Y ,Z) ) : (C(Y ,Z), lim)×Y �→ Z (4.4)
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is continuous. But, as ϕ(ev)= idC(Y ,Z) and ϕ is a bijection, we get ϕ−1(idC(Y ,Z))= ev
and, hence, by Proposition 4.2, lim is conjoining for C(Y ,Z).

5. Examples for splitting and conjoining fuzzy convergences

5.1. The discrete and the indiscrete fuzzy convergences. Let A ∈ [0,1]X . If we
put for a prime fuzzy filter F∈ F(A)

lim ıF := c(F)1X∩A,

limδF(x) :=

c(F) if and only if ı(F)= [x],

0 else
(x ∈X)

(5.1)

and derive limı respectively limδ for arbitrary fuzzy filters on A by (PST), then the
following proposition holds.

Proposition 5.1. Let A∈ [0,1]X . Then
(i) limı, limδ are fuzzy convergences on A,
(ii) for a fuzzy convergence lim on A, we have limı ≤ lim≤ limδ.

Proof. (i) That limı is a fuzzy convergence on A is obvious and, obviously, limδ

satisfies axioms (F1p), (PST), and (C1). If F, G ∈ F(A) are prime fuzzy filters and
F ≤ G and limδG(x) > 0, then ı(G) = [x] and, consequently, also ı(F) = [x]. Hence,
limδF(x)= c(F)≥ c(G)= limδG(x) and also (F2p) holds.
(ii) Let F ∈ F(A) be a prime fuzzy filter. As an immediate consequence of (F1p),

we obtain limF ⊂ limıF. Now, let limδF(x) = c(F) > 0. Then ı(F) = [x] and, hence,
A∩1x ∈ F. From this, we conclude that, for F ∈ F,

F(x)= F∩(A∩1x)(x)= sup
y∈X

F∩A∩1x
(
y
)≥ inf

G∈F
sup
y∈X

G(x)= c(F), (5.2)

i.e., F≤ [c(F)1x]. Hence, it follows, by (F2p) and (C1), that

limF(x)≥ lim[c(F)1x](x)≥ c(F)1x(x)= c(F), (5.3)

i.e., limF⊃ limδF and the proposition is proved.

limı is called the indiscrete fuzzy convergence on A and limδ is called the discrete
fuzzy convergence on A.

Corollary 5.2. Let (A, limA), (B, limB) be fcs’s and M ⊂ BA. Then
(i) The indiscrete fuzzy convergence on M is splitting for M .
(ii) If M ⊂ C(A,B), then the discrete fuzzy convergence on M is conjoining for M .

5.2. The fuzzy convergence of pointwise convergence. Let (A, limA),(B, limB) be
fcs’s. We define a fuzzy convergence on BA by putting, for a prime fuzzy filter F ∈
F(BA),

p- limF :=
⋂

x∈A0
π−1
x
(
limBπx(F)

)
(5.4)

and derive p- limF for an arbitrary fuzzy filter on BA by (PST), i.e., p- lim is the ini-
tial fuzzy convergence on BA respectively the (πx,B)x∈A0 . p- lim is called the fuzzy
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convergence of pointwise convergence on BA [3]. In [3], we proved the following propo-
sition.

Proposition 5.3. Let A ∈ [0,1]X , B ∈ [0,1]Y be constant fuzzy sets of the same
height α> 0 and (A, limA), (B, limB) be fcs’s. Then p - lim≤ c- lim.

Corollary 5.4. Under the assumptions of Proposition 5.3, the fuzzy convergence
of pointwise convergence p - lim is splitting for BA.

5.3. The fuzzy convergence of strictly continuous convergence. Let (A, limA),
(B, limB) be fcs’s and M ⊂ BA. We put for a prime fuzzy filter F ∈ F(M) and a fuzzy
mapping g :A→ B

SCM
(
F,g

)
:=
{
α∈ [0,1] | ∀Θ∈ F(M×A) prime fuzzy filters such that

πM(Θ)≤ F,∀y ∈ B0 : limBg
(
πA(Θ)

)(
y
)∧α≤ limB ev(Θ)

(
y
)}
,
(5.5)

and define

sc- limF
(
g
)
:= c(F)∧η(g)∧supSCM (F,g), (5.6)

and derive sc- limF for arbitrary fuzzy filters on M by (PST).

Proposition 5.5. Under the assumptions mentioned above, sc - lim is a fuzzy con-
vergence on M .

Proof. By definition, sc- lim satisfies (PST) and (F1p). If F≤G for two prime fuzzy
filters F, G ∈ F(M), we obviously have SCM(G,g) ⊂ SCM(F,g) and, hence, sc- limG ⊂
sc- limF, i.e., (F2p) holds. So, all that remains to be shown is (C1): Let 0 < α ≤ η(g)
and Θ ∈ F(M ×A) be a prime fuzzy filter such that πM(Θ) ≤ [α1g]. It then follows,
in exactly the same way as in the proof of [7, Prop. 5.1], that ev(Θ) ≤ g(πA(Θ)).
Using (F2p) for (B, limB), we deduce herefrom limB g(πA(Θ)) ⊂ limB ev(Θ). Hence,
1 ∈ SCM([α1g],g) and, therefore, sc- lim[α1g](g) = c([α1g]) = α and sc-lim sat-
isfies (C1). (sc- lim is called the fuzzy convergence of strictly continuous convergence
on M .)

Proposition 5.6. If A=α1X and B =α1Y , then sc - lim is conjoining for C(A,B).

Proof. We putM := C(A,B). Let F∈ F(M) be a prime fuzzy filter and g ∈ C(A,B)0.
Further, letα∈ SCM(F,g) andΘ∈ F(M×A) be a prime fuzzy filter such thatπM(Θ)≤ F
and let x ∈A0. Then g(x)∈ B0 and the continuity of g yields

limAπA(Θ)(x)∧α≤ g
(
limAπA(Θ)

)(
g(x)

)∧α
≤ limBg

(
πA(Θ)

)(
g(x)

)∧α
≤ limB ev(Θ)

(
g(x)

)
=π−1

x
(
limB ev(Θ)

)(
g
)
.

(5.7)

Hence, α∈ CM(F,g) and so sc- lim≥ c- lim on M .
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6. Splitting and conjoining fuzzy topologies. In this number, we only consider
fuzzy topological spaces (X,∆),(Y ,Γ) in the sense of Lowen [9] and crisp subspaces
of YX . As in the (classical) theory of convergence space (Poppe [12]), we call a fuzzy
topology T on a crisp subsetM = 1M0 ⊂ YX splitting (resp. conjoining) forM if and only
if the corresponding fuzzy convergence lim(T) is splitting (resp. conjoining) for M .

6.1. The discrete and the indiscrete fuzzy topologies. Let X be a nonvoid set. If
we put ∆δ := FX(X) and ∆ı := {α : 0 ≤ α ≤ 1}, then, obviously, ∆δ and ∆ı are fuzzy
topologies onX.∆δ is called discrete fuzzy topology onX and∆ı is called the indiscrete
fuzzy topology on X.

Proposition 6.1. We have lim(∆δ)= limδ and lim(∆ı)= limı.

Proof. First, we show that lim(∆δ) = limδ. Let F ∈ F(X) be a prime fuzzy fil-
ter. By the definition of lim(∆δ), We obtain lim(∆δ)F =

⋂
F∈FF . If lim(∆δ)F = ∅, as-

sume that limδF(x) > 0. Then ı(F) = [x] and, therefore, F ≤ [c(F)1x] (see the proof
of Proposition 5.1). (F2p) together with (C1) for lim(∆δ) then imply ∅ = lim(∆δ)F ⊃
c(F)1x , a contradiction to limδF(x) > 0. Hence, also limδF=∅. If lim(∆δ)F(x)=:α>
0< β := lim(∆δ)F(y), then F≤ [α1x] and F≤ [β1y]. Thus, ı(F)= [x] and ı(F)= [y],
i.e., x = y . From this, we conclude that, lim(∆δ)F = α1x ≤ c(F)1x = limδF. But as
ı(F)= [x], we again get F≤ [c(F)1x] and this yields, using (F2p), lim(∆δ)F⊃ c(F)1x .
Hence, lim(∆δ)= limδ is established.
To prove lim(∆ı) = limı it suffices to remark that, for F ∈ [0,1]X , we have F∆ı =

supx∈X F(x) and so lim(∆ı)F = infF∈F supx∈X F(x) = c(F) for a prime fuzzy filter
F∈ F(X).

Corollary 6.2. Let (X,∆) and (Y ,Γ) be fuzzy topological spaces andM = 1M0 ⊂ YX

be a crisp fuzzy subset of YX . Then
(i) The indiscrete fuzzy topology on M is splitting for M .
(ii) If M ⊂ C(X,Y), then the discrete fuzzy topology is conjoining for M .

6.2. The fuzzy compact open topology. In [11], Peng defines a notion of fuzzy
compact open topology using the notion of N-compactness due to Wang [13]. Here,
we alter his definition slightly using Lowen’s [9] definition of compactness. Let (X,∆),
(Y ,Γ) be fuzzy topological spaces. For a subset k⊂X and G ∈ [0,1]Y , we put

(1k,G)(g) := inf
x∈k

G
(
g(x)

)
. (6.1)

So, (1k,G)∈ [0,1]Y . It is easily verified that the system

{
(1k,G) : 1k compact in (X,∆),G ∈ Γ} (6.2)

is a subbase for a fuzzy topology on YX , the fuzzy compact open topology ∆co on YX .
If we restrict the functions (1k,G) on C(X,Y), then the subspace topology of ∆co is
also denoted by ∆co.
For the proof of the next proposition, we need two lemmas, the proofs of which are

left to the reader.
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Lemma 1. LetX be a nonvoid set and∆, Γ be fuzzy topologies onX. If, for everyD ∈ Γ
and for every x ∈ X such that D(x) =: αx > 0, there is Hx ∈ ∆ such that Hx∩αx ⊂D
and Hx(x)∧αx =D(x), then ∆≥ Γ .

Lemma 2. Let (X,∆) and (Y ,Γ) be fuzzy topological spaces and let (X×Y ,∆×Γ) be
their product space. Then G ∈ ∆× Γ if and only if, for every (x,y) ∈ X×Y and every
ε > 0, there are fuzzy sets Hε

x ∈∆, Kε
y ∈ Γ such that Hε

x×Kε
y ⊂G and Hε

x×Kε
y(x,y)≥

G(x,y)−ε.
Proposition 6.3. Let (X,∆) and (Y ,Γ) be fuzzy topological spaces and T be a con-

joining fuzzy topology on YX (respectively C(X,Y)). Then T≥∆co.

Proof. Let 1k ∈ [0,1]X be compact and G ∈ Γ and (1k,G)(g) = infx∈kG(g(x)) =:
αg > 0. Then, for every x ∈ k, we have αg ≤G(g(x))= ev−1(G)(g,x). As T is conjoin-
ing, the evaluation map is continuous (Proposition 4.2 and [5, Prop. 4.3]) and, hence,
ev−1(G)∈ T×∆. Let ε > 0. Lemma 2 yields the existence of fuzzy sets Hx ∈ T, Ox ∈∆
such that

Hx×Ox ⊂ ev−1(G),

Hx
(
g
)∧Ox(x)≥ ev−1(G)

(
g,x

)− ε
2
≥αg− ε

2
.

(6.3)

From this, we see that the system {Ox : x ∈ k} is an open cover of (αg−(ε/2))1k. As
1k is compact, there are finitely many x1

ε , . . . ,xn
ε ∈ k such that

⋃n
k=1Oxkε

⊃ (αg−ε)1k.
We put H :=⋂n

k=1Hxkε
. Then H ∈ T. We prove that H∩αg ⊂ (1k,G) in two steps.

Step 1. ev(H×(αg−ε)1k)⊂G. Let b ∈ Y , then

ev
(
H×(αg−ε)1k

)
(b)= sup

(f ,x):x∈k,f (x)=b
H
(
f
)∧(αg−ε). (6.4)

Let δ > 0, then there are fδ, xδ ∈ k such that fδ(xδ)= b and

ev
(
H×(αg−ε)1k

)
(b)−δ≤H

(
fδ
)∧(αg−ε). (6.5)

We choose k∈ {1,2, . . . ,n} such that Oxkε
(xδ)≥αg−ε. Then

ev
(
H×(αg−ε)1k

)
(b)−δ

≤H(fδ)∧Oxkε
(xδ)≤ ev−1(G)

(
fδ,xδ

)
=G

(
fδ(xδ)

)=G(b).

(6.6)

The arbitrariness of δ > 0 now yields the assumption.
Step 2. For every x ∈ k, we have G(f(x)) ≥ ev(H × (αg − ε)1k)(f (x)) ≥ H(f)∧

(αg − ε). Hence, (1k,G)(f ) ≥ H(f)∧ (αg − ε). The arbitrariness of ε > 0 now yields
(1k,G)⊃H∩αg . As, moreover, H(g)=⋂n

k=1Hxkε
(g)≥αg−(ε/2), we finally get, again

by the arbitrariness of ε > 0, H(g)∧αg = (1k,G)(g). Lemma 1 now yields (1k,G)∈ T.
Hence, ∆co ≤ T and the proposition is proved.
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