
Internat. J. Math. & Math. Sci.
Vol. 22, No. 4 (1999) 869–883
S 0161-1712〈99〉22869-4

© Electronic Publishing House

LARGE SOLUTIONS OF SEMILINEAR ELLIPTIC EQUATIONS
WITH NONLINEAR GRADIENT TERMS

ALAN V. LAIR and AIHUA W. WOOD

(Received 19 June 1998)

Abstract. We show that large positive solutions exist for the equation (P±) :∆u±|∇u|q =
p(x)uγ in Ω ⊆ RN(N ≥ 3) for appropriate choices of γ > 1,q > 0 in which the domain Ω is
either bounded or equal to RN . The nonnegative function p is continuous and may vanish
on large parts of Ω. If Ω = RN , then p must satisfy a decay condition as |x| →∞. For (P+),
the decay condition is simply

∫∞
0 tφ(t)dt <∞, where φ(t)=max|x|=t p(x). For (P−), we

require that t2+βφ(t) be bounded above for some positive β. Furthermore, we show that
the given conditions on γ and p are nearly optimal for equation (P+) in that no large
solutions exist if either γ ≤ 1 or the function p has compact support in Ω.

Keywords and phrases. Large solution, elliptic equation, existence of solution, semilinear
elliptic equation.
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1. Introduction. We consider existence and nonexistence of large solutions of the
equation

∆u±|∇u|q = p(x)uγ (P±)

in which q and γ are positive constants, the function p is nonnegative, and the domain
Ω is either bounded with smooth boundary or equal to RN . A solution u(x) of (P±) is
called a large solution if u→∞ as x→ ∂Ω. In the case Ω = RN, x→ ∂Ωmeans |x| →∞
and such solutions are called entire large solutions.
Large solutions of semilinear elliptic equations have been studied for decades. Al-

most all such studies have dealt with equations of the form

∆u= g(x,u) (1.1)

in which the function g takes various forms (see [1, 2, 6, 8, 10, 12] and their references).
Except for [2] and [10], all of these have restricted their attention to bounded domains
and functions g which are strictly positive when u> 0.
In [2], Bandle and Marcus proved the existence of large solutions when g(x,u) =

p(x)uγ in which p is allowed to be zero at finitely many places in Ω. Lair and Shaker
[10] proved the existence of large solutions in bounded domains and entire large
solutions in RN for g(x,u)= p(x)f(u), allowing p to be zero on large parts of Ω.
A few authors considered large solutions of semilinear equations containing non-

linear gradient terms (see [1, 7, 11]). Motivation for the present study stems from the
work of Bandle and Giarrusso [1] who developed existence and asymptotic behavior
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results for large solutions of

∆u±|∇u|q = f(u) (1.2)

on a bounded domain. Our goal here is to develop comprehensive (and nearly optimal)
existence results for (P+) when Ω is either bounded or equal to RN , and at the same
time develop somewhat comparable results for problem (P−). In particular, for Ω
bounded, we show that problem (P+) has a positive large solution if γ and q satisfy

γ >max{1,q}, (1.3)

and p satisfies the following condition.

Condition (P). p(x) ≥ 0,∀x ∈ Ω; p(x) ∈ C(Ω̄); if z ∈ Ω and p(z) = 0, then
there exists a domain Dz containing z for which Dz ⊆Ω and p(x) > 0 for all x ∈ ∂Dz.

Thus, p is allowed to vanish on significant portion of Ω. Indeed, the function p
could be zero on all of Ω except for a small (in measure) open set containing ∂Ω. For
problem (P−) with Ω bounded, we do not need inequality (1.3) when we establish the
existence of a nonnegative solution (see Theorem 4).
For Ω = RN , we prove the existence of a positive entire large solution if p also

satisfies ∫∞
0
rφ(r)dr <∞, (1.4)

whereφ(r)=max|x|=r p(x) (see Theorem 3). For problem (P−), we require the strong-
er decay condition that r 2+βφ(r) be bounded above for some β > 0. In addition,
restrictions are placed on the relationship between q and γ (see Theorem 5).
Furthermore, for both the bounded and unbounded cases, we show that our con-

ditions on γ,q, and p are nearly optimal for (P+) in that if γ ≤ 1 or p has compact
support in Ω, then (P+) has no positive large solutions.
We also note that, among the many open problems related to (P±), the existence of

positive large solutions remains unproved for (P+) if 1 < γ ≤ q and for (P−) if the
function p is required to satisfy the weaker decay condition (1.4).

2. Existence results

2.1. Equation (P+). In this section, we develop a critical boundedness result
(Lemma 1), which will prove very useful in developing our existence theorem for
bounded domains (Theorem 2). This result, in turn, provides the critical element for
the existence proof when Ω = RN . Interestingly, Bandle and Giarrusso [1] had no
boundedness result comparable to that of Lemma 1. Indeed, their proof of their main
existence result simply assumes that such an upper bound exists.

2.1.1. Ω is a bounded domain

Lemma 1. Let un be a solution of the problem

∆un+|∇un|q = p(x)uγ
n x ∈Ω,

un(x)=n, x ∈ ∂Ω. (2.1)

Then 0<un ≤n on Ω̄. Furthermore, let BR be a ball of radius R such that BR ⊆Ω. Then
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there exists a constant M = M(R,q,γ) such that un(x) ≤ M on BR∀n, provided that
0<mo ≤ p(x)≤Mo in Ω and (1.3) holds.

Proof. To prove that un > 0 in Ω, without loss of generality, we let n = 1. We
observe from the maximum principle that 0 ≤ u1 ≤ 1. Furthermore, it is clear that,
for any 0 < εo < 1, any solution, say z, to the problem (which exists by [9, Thm. 8.3,
p. 301])

∆z+|∇z|q = p(x)zγ, x ∈Ω,
z = εo, x ∈ ∂Ω (2.2)

satisfies z ≤ u1 and 0 ≤ z ≤ εo. Hence, if we show that z > 0 in Ω for some choice
of εo ∈ (0,1), we will be done. To do this, let xo ∈ RN\Ω̄. We assume, without loss
of generality, that xo = 0. Let r = |x| and choose Ro > 0 large so that Ω̄ ⊆ B(0,Ro).
Choose Mo > 0 so that p(x) <Mo on Ω̄. Now, choose 0< εo < 1 so that

Moε
γ
oR2

o
2N

≤ εo. (2.3)

Let v(x) = (Moε
γ
o/2N)r 2 for |x| ≤ Ro. Define w on the ball B(0,Ro) as w(x) = z(x)

for x ∈ Ω̄ and w(x)= εo on B(0,Ro)\Ω̄. We show that v ≤w in B(0,Ro).
Thus, we suppose that max(v −w) in B(0,Ro) is positive. In this case, the point

where the maximum occurs must lie in Ω since

v(x)= Moε
γ
o

2N
r 2 ≤ Moε

γ
o

2N
R2
o ≤ εo =w(x), x ∈ B(0,Ro)\Ω. (2.4)

Therefore, at the point where max(v−w) occurs, we have
0≥∆(v−w)=∆(v−z)=Moε

γ
o −pzγ+|∇z|q > p

(
εγo −zγ

)≥ 0, (2.5)

a contradiction. Therefore, v ≤w in B(0,Ro)which yields v ≤w inΩ or (Moε
γ
o/2N)r 2

≤ z(x) in Ω. Since r > 0 in Ω, we get z > 0 in Ω. Hence, u1 > 0 in Ω.
Now, let ε be a sufficiently small positive number so that BR+ε ⊆ Ω and let vn be a

solution of

∆vn =mov
γ
n, x ∈ BR+ε,

vn =n, x ∈ ∂BR+ε.
(2.6)

A similar argument as above implies that vn > 0 in BR+ε. By the maximum principle,
it is clear that vn ≤ vn+1,n = 1,2, . . . . By [4, Thm. A], it is easy to show that vn is a
radial solution. Thus, vn satisfies

v′′n +
N−1
r

v′n =mov
γ
n, x ∈ BR+ε,

vn =n, x ∈ ∂BR+ε.
(2.7)

It is clear that v′n(0)= 0 and v′n(r)≥ 0∀n and∀r . Equation (2.7) may be rewritten as(
rN−1v′n(r)

)′ =morN−1v
γ
n, (2.8)

which may be integrated to get∫ r
0

(
sN−1v′n(s)

)′
ds =mo

∫ r
o
sN−1vγn ds. (2.9)
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Thus, we have

rN−1v′n(r)=mo

∫ r
0
sN−1vγn ds ≤morN−1v

γ
n(r)

∫ r
0
ds =morNv

γ
n(r) (2.10)

which implies that

v′n(r)≤morv
γ
n. (2.11)

Let v be a solution of

∆v =movγ, x ∈ BR+ε,
v →∞, x ∈ ∂BR+ε. (2.12)

The existence of v is justified by [10, Thm. 1]. By the maximum principle, vn ≤ v in
BR+ε for all n. Thus, vn is bounded above on BR by a constant which is independent
of n. By (2.11), v′n(r) is also bounded above by a constant independent of n. Let K be
an upper bound for both vn and v′n on BR.
If we can find a function wn which satisfies

∆wn+|∇wn|q ≤mow
γ
n, x ∈ BR+ε ⊆Ω,

wn =n, x ∈ ∂BR+ε,
wn ≤Ko, x ∈ B̄R,

(2.13)

where Ko is a constant independent of n, then by the maximum principle, we have
un ≤wn ≤Ko, and we will be done.
Letwn = cvλn, wherevn is a solution of (2.7), the constants c and λ, both independent

of n, are determined later. Since

∆wn+|∇wn|q−mow
γ
n

= λcvλ−1n ∆vn+λ(λ−1)cvλ−2n |∇vn|2+cqλqv(λ−1)q|∇vn|q−mocγv
λγ
n

= λcvλ−1n

[
∆vn+(λ−1)v−1n |∇vn|2+cq−1λq−1v(λ−1)(q−1)n |∇vn|q

−mocγ−1

λ
vλγ−λ+1n

]
,

(2.14)

to complete the proof, it suffices to find c and λ such that

∆vn+(λ−1)v−1n |∇vn|2+cq−1λq−1v(λ−1)(q−1)n |∇vn|q−mocγ−1

λ
vλγ−λ+1n ≤ 0 (2.15)

on BR+ε for all n, for then we have un ≤wn ≤ cKλ ≡ Ko. Since vn satisfies (2.7) and
(2.11), the left side of the above equals

mov
γ
n+(λ−1)v−1n |∇vn|2+cq−1λq−1v(λ−1)(q−1)n |∇vn|q−mocγ−1

λ
vλγ−λ+1n

=mov
γ
n+(λ−1)v−1n

∣∣v′n∣∣2+cq−1λq−1v(λ−1)(q−1)n |v′n|q−
mocγ−1

λ
vλγ−λ+1n

≤mov
γ
n+(λ−1)m2

o(R+ε)2v2γ−1
n +cq−1λq−1mq

o(R+ε)qv(λ+γ)q−q−λ+1n

−mo

λ
cγ−1vλγ−λ+1n .

(2.16)

Now, since γ > q, we can choose λ large so that
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λγ−λ+1> γ ⇐⇒ λ≥ 1,

λγ−λ+1> 2γ−1⇐⇒ λ≥ 2,

λγ−λ+1> (λ+γ)q−q−λ+1⇐⇒ λ≥ q(γ−1)
γ−q ,

(2.17)

and

mosγ+(λ−1)m2
o(R+ε)2s2γ−1

+cq−1λq−1mq
o(R+ε)qs(λ+γ)q−q−λ+1−mo

λ
cγ−1sλγ−λ+1 < 0

(2.18)

for s ≥ 2 and c ≥ 1. Since 0 < v1 ≤ ··· ≤ vn ≤ vn+1 ≤ ··· in BR+ε, we may find β > 0
such that vn(r)≥ β ∀n and ∀r . For the above choice of λ, choose the constant c ≥ 1
so that the following holds.

mo2γ+(λ−1)m2
o(R+ε)222γ−1

+cq−1λq−1mq
o(R+ε)q2(λ+γ)q−q−λ+1−mo

λ
cγ−1βλγ−λ+1 < 0.

(2.19)

Thus, whether vn(r)≤ 2 or vn(r)≥ 2, we get

mov
γ
n+(λ−1)m2

o(R+ε)2v2γ−1
n +cq−1λq−1mq

o(R+ε)qv(λ+γ)q−q−λ+1n

<
mo

λ
cγ−1vλγ−λ+1n .

(2.20)

Hence, ∆wn+|∇wn|q ≤mow
γ
n on BR+ε.

Theorem 2. Assume that (1.3) and condition (P) hold. Suppose that Ω is a bounded
domain in RN , N ≥ 3, with smooth boundary. Then, equation (P+) has a large positive
solution in Ω.

Proof. By [9, Thm. 8.3, p. 301], it is easy to prove that, for each k∈N , the boundary
value problem

∆vk+|∇vk|q = p(x)vγk , x ∈Ω,
vk(x)= k, x ∈ ∂Ω (2.21)

has a unique positive classical solution. By themaximumprinciple it can be shown that
vk ≤ vk+1, k ≥ 1, in Ω. Indeed, suppose that there is a point where v ≡ vk+1−vk < 0.
Let xo ∈ RN\Ω̄. We assume, without loss of generality, that xo = 0. Let r = |x|. Then,
for some small ε > 0, v+ε/(1+r) has a negative minimum in Ω. At that minimum,
we have

0≤∆
(
v+ ε

1+r
)

= p
[
vγk+1−vγk

]
−|∇vk+1|q+|∇vk|q+ε

[
2

(1+r)3 −
N−1

r(1+r)2
]

≤ 0−ε N−1
r(1+r)3 < 0,

(2.22)

a contradiction. Hence, vk ≤ vk+1, for k = 1,2, . . . . Furthermore, by Lemma 1, v1 > 0
in Ω.
In what follows, it is understood that the maximum principle is applied as above,

where the factor ε/(1+r) is used whenever the function p is not strictly positive.
To complete the proof, it suffices to show the following:
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(C1) ∀xo ∈ Ω, there exists M (depending on xo but independent of k) such that
vk(x)≤M ∀x near xo;

(C2) limx→∂Ωv(x)=∞, where v(x)= limk→∞vk(x) for x ∈Ω;
(C3) v is classical solution of (P+).
To prove (C1), we consider two cases.
Case (a). p(xo) > 0. Since p is continuous, there exists a ball B(xo,r) such that

p(x)≥mo in B(xo,r) for somemo > 0. (C1) then follows easily from Lemma 1.
Case (b). p(xo) = 0. By the hypothesis, there exists a domain Ωo ⊆ Ω such that

xo ∈Ωo and p(x) > 0 ∀x ∈ ∂Ωo. From Case (a) above, we know that ∀x ∈ ∂Ωo there
exists a ball B(x,rx) and a positive constant Mx such that vk ≤ Mx on B(x,rx/2).
Since Ω is bounded (and hence Ωo is bounded), ∂Ωo is compact. Thus, there exists
a finite number of such balls that cover ∂Ωo. Let M = max{Mx1 , . . . ,Mxk}, where the
balls B(xi,rxi/2),i= 1, . . . ,k, cover ∂Ωo. Clearly, vk ≤M on ∂Ωo. Yet anothermaximum
principle argument yields vk ≤M on Ωo.
The proof of (C2) is straightforward. For any L > 0 and any sequence xk → x ∈ ∂Ω,

since vL+1 = L+1 on ∂Ω and is continuous, there is some K > 0 such that vL+1(xk)≥ L
for k≥K. Note that, since v ≥ vL+1 in Ω, we have v(xk)≥ L, k≥K. Hence, v(xk)→∞
as k→∞. Thus, we have v →∞ as x→ ∂Ω.
To prove (C3), we let xo ∈ Ω and let B(xo,r) be the ball of radius r centered at xo

such that it is contained inΩ. Letψ be a C∞ function which is equal to 1 on B(xo,r/2)
and zero off B(xo,r).
Let f(s)= 1/(1+s). Multiplying both sides of equation (2.21) by ψ2f(vk) and inte-

grating over B(xo,r) yields∫
B(xo,r)

ψ2f(vk)∆vkdx+
∫
B(xo,r)

ψ2f(vk)|∇vk|q dx =
∫
B(xo,r)

ψ2f(vk)pv
γ
k dx.

(2.23)

Integration by parts produces

−
∫
B(xo,r)

ψ2f ′(vk)|∇vk|2dx−
∫
B(xo,r)

2ψ∇ψf(vk)·∇vkdx

+
∫
B(xo,r)

ψ2f(vk)|∇vk|q dx =
∫
B(xo,r)

ψ2f(vk)pv
γ
k dx.

(2.24)

Thus, we have(
1

1+Mr

)2∫
B(xo,r)

ψ2|∇vk|2dx

≤
∫
B(xo,r)

ψ2

(1+vk)2 |∇vk|
2dx+

∫
B(xo,r)

ψ2f(vk)|∇vk|q dx

=
∫
B(xo,r)

2ψ∇ψ·∇vk
(

1
1+vk)

)
dx+

∫
B(xo,r)

ψ2f(vk)pv
γ
k dx

≤
∫
B(xo,r)

(ψ|∇vk|)2|∇ψ|1+v1 +
∫
B(xo,r)

ψ2f(vk)pv
γ
k dx

≤ ε
∫
B(xo,r)

ψ2|∇vk|2dx+ 1
4ε

∫
B(xo,r)

(
2|∇ψ|
1+v1

)2
dx+M1

≤ ε
∫
B(xo,r)

ψ2|∇vk|2dx+M2,

(2.25)
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where Mr is an upper bound for vk on B(xo,r), k= 1,2, . . . ,ε is any positive number,
and the constants M1 and M2 are independent of k. Hence, we get∫

B(xo,r)

∣∣ψ∇vk∣∣2dx ≤M. (2.26)

That is, the L2(B(xo,r))-norm of |ψ∇vk| is bounded independently of k. Thus, the
L2(B(xo,r/2))-norm of |∇vk| is bounded independently of k.
By the standard regularity argument (see [10]), we may find a number r1 > 0 such

that there is a subsequence of {vk}∞1 , which we still call {vk}∞1 , that converges in
C1+α(B(xo,r1)) for some positive number α< 1.
Let ψ be as before but with r replaced by r1.
Now, we consider two cases regarding the regularity of the function p(x).
Case 1. p(x) ∈ Cα(Ω). Note that, ∆vk = pvγk −|∇vk|q and ∆(ψvk) = 2∇ψ ·∇vk+

vk∆ψ +ψ∆vk, k ≥ 1, converges in Cα(B(xo,r1)) as k → ∞. By Schauder theory,
{ψvk}∞1 converges inC2+α(B(xo,r1)) and hence {vk}∞1 converges inC2+α(B(xo,r1/2)).
Since xo is arbitrary, it follows that v ∈ C2+α(Ω) and is a solution of (P+).

Case 2. p(x) ∈ C(Ω). We have vk
s−C(B(xo,r1))v��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������→ and, consequently, ∆vk = pvγk −

∇vk|q s−C(B(xo,r1))��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������→ p(x)vγ−|∇v|q ≡ z. That the Laplacian is a closed linear operator
implies that v ∈ D(∆), ∆v = z. Since xo is arbitrary, we have that v is a classical
solution of (P+).
2.1.2. Ω = RN

Theorem 3. Let Ω = RN . Assume that (1.3), (1.4), and condition (P) hold. Then
equation (P+) has a positive entire large solution.

Proof. By Theorem 2, for k= 1,2, . . . , the boundary blow-up problem

∆vk+|∇vk|q = p(x)vγk , |x|< k,
vk(x) �→∞, as |x| �→ k

(2.27)

has a classical solution. By the maximum principle, it is clear that

v1 ≥ v2 ≥ ··· ≥ vk ≥ vk+1 ≥ ··· (2.28)

in RN . Let v(x) = limk→∞vk(x), x ∈ RN . We claim that v is the desired solution. To
prove this, we consider the related problem

∆uk = p(x)uγ
k, |x|< k,

uk(x) �→∞, as |x| �→ k.
(2.29)

It is shown in [10] that (2.29) has a unique positive solution for each k, and that

u1 ≥u2 ≥ ··· ≥uk ≥uk+1 ≥ ··· ≥w > 0 (2.30)

for somew →∞ as |x| →∞. It follows easily from themaximum principle that vk ≥uk

for k= 1,2 . . . . Thus, v(x)→∞ as |x| →∞. By a similar argument as (C3) in Theorem 2,
we have that v is the desired solution.
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2.2. Equation (P−)
2.2.1. Ω is a bounded domain. The following theorem is our main result for prob-

lem (P−) on a bounded domain. Much of the proof is similar to that of Theorem 2
and is, therefore, only outlined.

Theorem 4. Suppose that γ > 1, q > 0, condition (P) holds, and Ω is a bounded do-
main in RN ,N ≥ 3, with smooth boundary. Then equation (P−) has a large nonnegative
solution in Ω.

Proof. The only significant difference between this proof and that of Theorem 2
lies in obtaining an upper bound M for the sequence {vk} near x0. There, Lemma 1
is needed, but for (P−) the proof is much easier. Indeed, it is easy to prove that
vk(x)≤w(x) for all x ∈Ω, where w is a solution of (See [10, Thm. 1]).

∆w = p(x)wγ, x <Ω,

w(x) �→∞, x �→ ∂Ω.
(2.31)

2.2.2. Ω = RN . Our main result for equation (P−) is the following theorem.

Theorem 5. Let Ω = RN , γ > 1, and assume that condition (P) holds.
If there exist positive numbers β and R such that 0 ≤ p(x) ≤ Mr−2−β, whenever

r ≡ |x|>R, then equation (P−) has a nonnegative entire large solution provided that
max{γ,q}> 2 if q ≥ 1, and γ ≤ 1+β(1−q)/(2−q) if q < 1.

To prepare for proving this theorem, we now state and prove three lemmas.

Lemma 6. Let M be any nonnegative number and β any positive number.
Then, for R sufficiently large, there is a nonnegative solution of the problem

w′′ + N−1
r

w′ −|w′|q ≥Mr−2−βwγ, r ≥ R,
w(r)→∞, r →∞

(2.32)

provided that γ > 1 if q > 2, and γ ≤ 1+β(1−q)/(2−q) if q < 1.

Proof. Denote L(w)≡w′′ +(N−1/r)w′ −|w′|q−Mr−2−βwγ . Let α be a positive
real number whose value will be made precise later. We have

L(rα)=α(α−1)rα−2+ N−1
r

αrα−1−αqrαq−q−Mr−2−βrαγ

=α(α+N−2)rα−2−αqr (α−1)q−Mr−2−βrαγ

= r−(2+β)+αγ[α(α+N−2)rβ+α(1−γ)−αqr (α−1)q+2+β−αγ−M]
≡ r−(2+β)+αγ[α(α+N−2)rα1−αqrα2−M].

(2.33)

Requiring that α1 ≥ 0 and α1 ≥α2 yield

α≤ β
γ−1 (2.34)

and

α≥ 2−q
1−q for q < 1, or α≤ q−2

q−1 for q > 2, (2.35)



LARGE SOLUTIONS OF SEMILINEAR ELLIPTIC EQUATIONS . . . 877

respectively. Thus, for q < 1, we require that

γ ≤ 1+β
(
1−q
2−q

)
. (2.36)

In this case, we take α= (1−q)/(2−q). For q > 2, we take γ > 1 and α≤min{β/(γ−
1), (q−2)/(q−1)}. Hence, we may choose R large so that L(rα) ≥ 0. Consequently,
w(r)≡ rα, where α is as defined above, is the desired solution.

Lemma 7. Let M and β be any positive numbers, and let φ(r) ≡ 22+βMr−2−β. If
there is a nonnegative solution u of

∆u−|∇u|s ≥φ(r)uγ, |x| ≥ R,
u(x)→∞, |x| →∞ (2.37)

that satisfies u≥ r (s−2)/(s−1) for some s > 2, then there is a nonnegative solution of

∆w−|∇w|q ≥φ(r)wγ, |x| ≥ R,
w(x)→∞, |x| →∞, (2.38)

where 1≤ q ≤ 2, provided that γ > 2+β.
Proof. Let w = cuα, where u is a nonnegative solution of (2.37), 0 < c, α < 1 are

to be determined later. We have

L(w)≡∆w−|∇w|q−φ(r)wγ

≥ cαuα−1(|∇u|s+φ(r)uγ)
−[cα(1−α)uα−2|∇u|2+(cα)qu(α−1)q|∇u|q+φ(r)cγuαγ]

≥ cαuα−1|∇u|s+(cαuα+γ−1−cγuαγ)φ(r)
−cα[(1−α)uα−2|∇u|2+u(α−1)|∇u|q].

(2.39)

We choose 0 < c, α < 1 so that L(w) ≥ 0. Since u→∞, we may choose R > 0 so that
u≥ 1.
Hence, we need to consider only two cases:
(a) |u| ≥ 1 and |∇u| ≥ 1;
(b) |u| ≥ 1 and |∇u|< 1.

For case (a), it can be easily shown that L(w)≥ 0 by appropriately choosing c and α.
For (b), it suffices to have

1
3cαu

α+γ−1 ≥ cγuαγ,
1
3φ(r)u

α+γ−1 ≥ cα(1−α)uα−2,
1
3φ(r)u

α+γ−1 ≥ cαuα−1.

(2.40)

Thus, we need only to require that

1
3φ(r)u

γ ≥ cα. (2.41)

Since φ(r)= 22+βMr−2−β and u(x)≥ r (s−2)/(s−1), it is sufficient to have

1
32

2+βMr(−2−β)+(γ)(s−2)/(s−1) ≥ cα. (2.42)
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This is true since we can choose s large enough so that

(−2−β)+γ
(
s−2
s−1

)
> 0. (2.43)

Hence, we have L(w)≥ 0.

Lemma 8. Suppose that β > 0 and 0≤ p(x)≤ 22+βMr−2−β for large M . Let w be a
nonnegative solution of

∆w−|∇w|q ≥ 22+βM(1+r)−2−βwγ, |x| ≥ R
w(x)→∞, |x| →∞ (2.44)

for some R ≥ 1. Let Mo =max|x|=Rw(x). Then, any solution of

∆vk−|∇vk|q = p(x)vγk , |x|< k
vk(x)→∞, |x| → k

(2.45)

must satisfy

vk(x)≥w(x)−Mo for R ≤ |x|< k, (2.46)

for any k > R.

Proof. Suppose that the conclusion is false. That is, suppose that

max
R≤x≤k

[
w(x)−Mo−vk(x)

]=w(xo)−Mo−vk(xo) > 0 (2.47)

for somexo. Sincew(x)−Mo−vk(x)≤−vk(x)≤ 0 if |x| = R andw(x)−Mo−vk(x)→
−∞ as |x| → k, we know that R < |xo| < k. Hence, ∆(w −Mo −vk) ≤ 0 at xo and
∇(w−Mo−vk)= 0 at xo. Thus,

0≥∆(w−Mo−vk)=∆w−∆vk
≥ |∇w|q+(1+r)−2−βM22+βwγ−|∇vk|q−pvγk
= 22+β(1+r)−2−βMwγ−pvγk
>
[
22+βM(1+r)−2−β−p]vγk .

(2.48)

Hence, we get

0>
[
22+βM(1+r)−2−β−p]vγk . (2.49)

However, since p(x)≤Mr−2−β and r ≥ R ≥ 1, we get

p(x)≤M
(
1+r
r

)2+β
(1+r)−2−β ≤M22+β(1+r)−2−k. (2.50)

Hence, we get

22+βM(1+r)−2−β−p ≥ 0, (2.51)

which contradicts (2.49). Hence, w(x)−Mo−vk(x)≤ 0 in R ≤ |x| ≤ k.
We now prove Theorem 5.
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Proof. By Theorem 4, we have that, for k= 1,2, . . . , the boundary blow-up problem

∆vk−|∇vk|q = p(x)vγk , |x|< k,
vk(x) �→∞, as |x| → k

(2.52)

has a nonnegative classical solution. By the maximum principle, it is clear that

v1 ≥ v2 ≥ ··· ≥ vk ≥ vk+1 ≥ ··· (2.53)

in RN . Let v(x)= limk→∞vk(x), x ∈ RN , where we assume that vk =∞ for |x|> k for
all k. Let v(x) = limk→∞vk(x), x ∈ RN . We claim that v is the desired solution. To
prove this, we need only to prove that v satisfies (P−) and that v → ∞ as |x| → ∞.
To prove the second statement, it suffices to find a nonnegative lower bound, say
w(x), for the sequence {vk}∞1 such thatw →∞ as |x| →∞. Also, by another standard
regularity argument (see [10]), we can show that v is smooth and is a classical solution
of (P−).
If q > 2 or q < 1, let w be a solution of (2.44) which we know to exist by Lemma 6,

where M is a constant. Then, by Lemma 11, vk(x) ≥ w(x) − Mo, where Mo =
max|x|=1w(x) for 1≤ |x| ≤ R.
Thus, v(x)≥w(x)−Mo for 1≤ |x| ≤ R. Hence, v(x)→∞ as |x| →∞. We conclude

that v is a solution of (P−). In particular, if q > 2, then v ≥w = r (q−2)/(q−1).
Assume that 1 ≤ q ≤ 2. By Lemma 6, there is a solution, say u, to equation (2.37),

where s > 2. Now, letw be a solution of (2.38). It is clear thatw solves (2.44) and hence
v ≥w−Mo, where Mo is defined as in Lemma 8. Again, we get v →∞ as |x| →∞, and
is a classical solution of (P−).

3. Nonexistence results

Theorem 9. Suppose that condition (P) and (1.4) hold. If 0≤ γ ≤ 1, then (P+) has
no positive entire large solution in RN .

Proof. We first show that (1.4) implies that

∫∞
0
r 1−N

∫ r
0
sN−1φ(s)dsdr <∞. (3.1)

Indeed, for any R > 0, we have

∫ R
0
r 1−N

∫ r
0
sN−1φ(s)dsdr

= 1
2−N

∫ R
0

d
dr

(
r 2−N

)∫ r
0
sN−1φ(s)dsdr

= 1
2−N r 2−N

∫ r
0
sN−1φ(s)ds |R0 −

1
2−N

∫ R
0
r 2−NrN−1φ(r)dr

= 1
2−NR2−N

∫ R
0
sN−1φ(s)ds− 1

2−N
∫ R
0
rφ(r)dr

≤ 1
N−2

∫∞
0
rφ(r)dr <∞.

(3.2)
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By (3.1), we can choose ro large enough so that

β≡
∫∞
ro
t1−N

∫ t
0
sN−1φ(s)dsdt < 1. (3.3)

Now, suppose that (P+) has a positive large solution u(x). Using technique similar
to that described in [5], we define

ū(r)≡ 1
vo
(
sN−1r

) ∫
|x|=r

u(x)dσr ≡
∫
|x|=r

u(x)dσ, (3.4)

where vo(sN−1r) is the volume of the (N−1)-dimensional sphere and σr is the mea-
sure on the sphere. We have

∆ū= ū′′ + N−1
r

ū′ =
∫
|x|=r

∆udσ

=
∫
|x|=r

[
p(x)uγ−|∇u|q]dσ ≤φ(r)

∫
|x|=r

uγ dσ

≤φ(r)
[∫

|x|=r
udσ

]γ
(By Jensen’s Inequality)

=φ(r)ūγ(r).

(3.5)

Thus, we have

ū′′ + N−1
r

ū′ ≤φ(r)ūγ(r). (3.6)

Integrating the above inequality yields

ū(r)≤ ū(ro)+rN−1o ū′(ro)
r 2−N

2−N

∣∣∣∣∣
r

ro

+
∫ r
ro
t1−N

∫ t
ro
sN−1φ(s)ūγ(s)dsdt

≤ ū(ro)+ 1
N−2roū

′(ro)+
∫ r
ro
t1−N

∫ t
ro
sN−1φ(s)ūγ(s)dsdt

≤ ū(ro)+ 1
N−2roū

′(ro)+
(
max
ro≤r≤R

ū(r)
)γ

β for ro ≤ r ≤ R

≡A+
(
max
ro≤r≤R

ū(r)
)γ

β.

(3.7)

Let h(R)=maxro≤r≤R ū(r). Since 0≤ γ ≤ 1, then the last inequality gives

h(R)≤A+(h(R))γβ≤A+β(1+h(R)) ∀R ≥ ro, (3.8)

or equivalently,

0≤ ū(R)≤ h(R)≤ A+β
1−β . (3.9)

Thus, ū is bounded and hence cannot be a large solution. Consequently, u cannot be
a large solution.

Combining Theorems 3 and 9, we get the following corollary.

Corollary 10. Assume that conditions (P) and (1.4) hold. Let γ > q, then equa-
tion (P+) has a positive entire large solution if and only if γ > 1.
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Theorem 11. Suppose that Ω is bounded and 0≤ γ ≤ 1. Then (P+) has no positive
large solution in Ω.

Proof. Suppose that (P+) has a positive large solutionu(x) inΩ. Assume, without
loss of generality, that 0∈Ω. Let B be a ball of radius R centered at 0 and containing
Ω such that ∂B∩∂Ω �= ∅. Let M =maxx∈Ω̄p(x).
Let vn be the unique solution of

∆vn =Mvγn, x ∈ B,
vn =n, x ∈ ∂B. (3.10)

Clearly, vn ≤ u in B. (We assume that u = ∞ in B\Ω). As shown in Lemma 1, vn is
radially symmetric and thus satisfies

v′′n +
N−1
r

v′n =Mvγn, x ∈ B,
vn =n, x ∈ ∂B.

(3.11)

Hence, we have (
rN−1v′n

)′ =MrN−1vγn. (3.12)

Integrating this inequality yields

v′n(r)=Mr 1−N
∫ r
0
sN−1vγn(s)ds ≥ 0. (3.13)

Choose 0< ro < R so that

R2−r 2o
2N

≤ 1
2M

. (3.14)

Integrating (3.13), using (3.14), and noting that vn is monotonically increasing gives

vn(r)= vn(ro)+M
∫ r
ro
t1−N

∫ t
0
sN−1vγn(s)dsdt

≤ vn(ro)+Mvγn(r)
[
r 2−r 2o
2N

]

≤ vn(ro)+ 1
2v

γ
n(r).

(3.15)

Since 0≤ γ ≤ 1, we have vγn ≤ 1+vn, which gives

vn(r)≤ vn(ro)+ 1
2 + 1

2vn. (3.16)

Thus, we get

vn(r)≤ 1+2vn(ro) for ro ≤ r ≤ R. (3.17)

In particular, we have

vn(R)≤ 1+2vn(ro), (3.18)

that is

vn(ro)≥ n−1
2

. (3.19)
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Thus, for each xo ∈Ω such that ro = |xo| satisfies (3.14), we get

u(xo)≥ vn(ro)≥ n−1
2

�→∞ as n �→∞. (3.20)

Hence, u(x) does not exist.

Corollary 12. Suppose that γ > q and Ω is a bounded domain in RN(N ≥ 3). Let
p(x) satisfy condition (P). Then equation (P+) has a positive large solution if and only
if γ > 1.

4. Condition on p is nearly optimal. We have shown in Theorem 2 that if the non-
negative function p is such that each of its zero points is enclosed by a bounded
surface of nonzero points, then equation (P+) has a large positive solution. In this
section we show that, if the condition does not hold in the sense that p vanishes in
an “outer ring” of the domain, then equation (P+) has no positive large solution.

Theorem 13. Suppose that g(x,0)= 0∀x ∈Ω. If there exists a domainD ⊆Ω such
that D̄ ⊂Ω and g(x,t)= 0∀x ∈Ω\D,∀t ≥ 0, then there is no positive large solution of

∆u+|∇u|q = g(x,u), x ∈Ω. (4.1)

Note that this includes the case g(x,u)= p(x)uγ , γ ≥ 0, and p(x)= 0 in Ω\D.
Proof. Suppose that such a solution u exists. Let w be the unique positive solu-

tion of

∆w = 0, x ∈Ω\D,
w = 0, x ∈ ∂D,
w = 1, x ∈ ∂Ω.

(4.2)

It should be noted that u satisfies

∆u≤ 0, x ∈Ω\D,
u=∞, x ∈ ∂Ω,
u≥ 0, x ∈ ∂D.

(4.3)

By the maximum principle, we get kw ≤u for any k > 0 since kw satisfies

∆(kw)= 0, x ∈Ω\D,
kw = k, x ∈ ∂Ω,
kw = 0, x ∈ ∂D.

(4.4)

Therefore, for any xo ∈Ω\D, we have w(xo) > 0 and kw(xo)≤u(xo) ∀k > 0. Hence,
u(xo)=∞, which is a contradiction.
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