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Abstract. Let t be a sequence in (0,1) that converges to 1, and define the Abel-type matrix
Aα,t by ank =

(
k+α
k

)
tk+1
n (1−tn)α+1 for α>−1. The matrix Aα,t determines a sequence-

to-sequence variant of the Abel-type power series method of summability introduced by
Borwein in [1]. The purpose of this paper is to study these matrices as mappings into �.
Necessary and sufficient conditions for Aα,t to be �-�, G-�, and Gw -� are established. Also,
the strength of Aα,t in the �-� setting is investigated.
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1. Introduction and background. The Abel-type power series method [1], denoted
by Aα,α >−1, is the following sequence-to-function transformation: if

∞∑
k=0

(k+α
k

)
ukxk <∞ for 0<x < 1 (1.1)

and

lim
x→1−

(1−x)α+1
∞∑
k=0

(k+α
k

)
ukxk = L, (1.2)

then we say that u is Aα-summable to L. In order to study this summability method
as a mapping into �, we must modify it into a sequence to sequence transformation.
This is achieved by replacing the continuous parameter x with a sequence t such that
0 < tn < 1 for all n and limtn = 1. Thus, the sequence u is transformed into the
sequence Aα,tu whose nth term is given by

(Aα,tu)n = (1−tn)α+1
∞∑
k=0

(k+α
k

)
uk tkn. (1.3)

This transformation is determined by the matrix Aα,t whose nkth entry is given by

ank =
(k+α
k

)
tkn(1−tn)α+1. (1.4)

The matrix Aα,t is called the Abel-type matrix. The case α = 0 is the Abel matrix
introduced by Fridy in [5]. It is easy to see that the Aα,t matrix is regular and, indeed,
totally regular.
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2. Basic notations. Let A = (ank) be an infinite matrix defining a sequence-to-
sequence summability transformation given by

(Ax)n =
∞∑
k=0

ankxk, (2.1)

where (Ax)n denotes the nth term of the image sequence Ax. The sequence Ax is
called the A-transform of the sequence x. If X and Z are sets of complex number
sequence, then the matrix A is called an X-Z matrix if the image Au of u under the
transformation A is in Z whenever u is in X.

Let y be a complex number sequence. Throughout this paper, we use the following
basic notations:

� =
{
y :

∞∑
k=0

|yk| converges
}
,

�p =
{
y :

∞∑
k=0

|yk|pconverges
}
,

d(A)=
{
y :

∞∑
k=0

ankyk converges for each n≥ 0
}
,

�(A)= {y :Ay ∈ �
}
,

G = {y :yk =O
(
rk
)

for some r ∈ (0,1)},
Gw =

{
y :yk =O

(
rk
)

for some r ∈ (0,w),0<w < 1
}
,

c(A)= {y :y is summable by A
}
.

(2.2)

3. The main results. Our first result gives a necessary and sufficient condition for
Aα,t to be �-�.

Theorem 1. Suppose that −1 < α ≤ 0. Then the matrix Aα,t is �-� if and only if
(1−t)α+1 ∈ �.

Proof. Since −1<α≤ 0 and 0< tn < 1, we have

∞∑
n=0

|ank| =
(k+α
k

) ∞∑
n=0

tkn(1−tn)α+1 ≤
∞∑
n=0

(1−tn)α+1 for each k. (3.1)

Thus, if (1− t)α+1 ∈ �, Knopp-Lorentz theorem [6] guarantees that Aα,t is an �-�
matrix. Also, if Aα,t is an �-� matrix, then by Knopp-Lorentz theorem, we have

∞∑
n=0

|an,o|<∞, (3.2)

and this yields (1−t)α+1 ∈ �.

Remark 1. In Theorem 1, the implication that Aα,t is �-� ⇒ (1− t)α+1 ∈ � is also
true for any α > 0, however, the converse implication is not true for any α > 0. This
is demonstrated in Theorem 4 below.
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Corollary 1. If −1 < α ≤ 0 and < 0 < tn < wn < 1, then Aα,w is an �-� matrix
whenever Aα,t is an �-� matrix.

Proof. The corollary follows easily by Theorem 1.

Corollary 2. If −1<α< β≤ 0, then Aβ,t is an �-� matrix whenever Aα,t is an �-�
matrix.

Corollary 3. If −1<α≤ 0 and Aα,t is an �-� matrix, then 1/ log(1−t)∈ �.

Corollary 4. If −1 < α ≤ 0, then arcsin(1−t)α+1 ∈ � if and only if Aα,t is an �-�
matrix.

Corollary 5. Suppose that −1 < α ≤ 0 and wn = 1/tn. Then the zeta matrix zw
[2] is �-� whenever Aα,t is an �-� matrix.

Corollary 6. Suppose that −1<α≤ 0 and tn = 1−(n+2)−q,0< q < 1: then Aα,t
is not an �-� matrix.

Proof. Since (1−t)α+1 is not in �, the corollary follows easily by Theorem 1.

Before considering our next theorem, we recall the following result which follows
as a consequence of the familiar Hölder’s inequality for summation. The result states
that if x and y are real number sequences such that x ∈ �p,y ∈ �q, p > 1, and
(1/p)+(1/q)= 1, then xy ∈ �.

Theorem 2. If Aα,t is an �-� matrix, then
∞∑
n=0

log
(2−tn)
(n+1)

<∞. (3.3)

Proof. Since log(2−tn)∼ (1−tn), it suffices to show that
∞∑
n=0

(1−tn)
(n+1)

<∞. (3.4)

If Aα,t is an �-� matrix, then, by Theorem 1, we have (1− t)α+1 ∈ �. If −1 < α ≤ 0, it
is easy to see that if (1− t)α+1 ∈ �, then we have (1− t) ∈ � and, consequently, the
assertion follows. If α > 0, then the theorem follows using the preceding result by
letting xn = 1−tn, yn = 1/(n+1), p =α+1, and q = (α+1)/α.

Theorem 3. Suppose that tn = (n+1)/(n+2). Then Aα,t is an �-� matrix if and
only if α> 0.

Proof. If Aα,t is an �-� matrix, then, by Theorem 1, it follows that (1− t)α+1 ∈ �
and this yields α> 0. Conversely, suppose that α> 0. Then we have

∞∑
n=0

|ank| =
(k+α
k

) ∞∑
n=0

(
n+1
n+2

)k
(n+2)−(α+1)

=
(k+α
k

) ∞∑
n=0

(n+1)k(n+2)−(k+α+1)

≤M
(k+α
k

)∫∞
0
(x+1)k(x+2)−(k+α+1)dx

(3.5)
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for some M > 0. This is possible as both the summation and the integral are finite
since α> 0. Now, we let

g(k)=
∫∞

0
(x+1)k(x+2)−(k+α+1)dx, (3.6)

and we compute g(k) using integration by parts repeatedly. We have

g(k)= 1
k+α ·2

−(k+α)+h1(k), (3.7)

where

h1(k)= k
k+α

∫∞
0
(x+1)k−1(x+2)−(k+α)dx

= k·2−(k+α−1)

(k+α)(k+α−1)
+h2k

(3.8)

and

h2(k)= k(k−1)
(k+α)(k+α−1)

∫∞
0
(x+1)k−2(x+2)−(k+α−1)dx

= k(k−1)·2−(k+α−2)

(k+α)(k+α−1)(k+α−2)
+h3(k).

(3.9)

It follows that

h3(k)= k(k−1)(k−2)·2−(k+α−3)

(k+α)(k+α−1)(k+α−2)(k+α−3)
+h4(k), (3.10)

where

h4(k)= k(k−1)(k−2)(k−3)
(k+α)(k+α−1)(k+α−2)(k+α−3)(k+α−4)

×
∫∞

0
(x+1)k−4(x+2)−(k+α−3)dx.

(3.11)

Continuing this process, we get

hk(k)= k(k−1)(k−2)···2−α
(k+α)(k+α−1)(k+α−2)···α =

2−α

α
(k+α
k

) .
(3.12)

It is easy to see that g(k) can be written using summation notation as

g(k)= 2−α

α
(k+α
k

)
k∑
i=0

(i+α−1
i

)
2−i

≤ 2−α

α
(k+α
k

)
∞∑
i=0

(i+α−1
i

)
2−i

= 2−α

α
(k+α
k

)2α = 1

α
(k+α
k

) .

(3.13)
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Consequently, we get

∞∑
n=0

|ank| ≤M
(k+α
k

)
g(k)≤

M
(k+α
k

)

α
(k+α
k

) = Mα . (3.14)

Thus by the Knopp-Lorentz theorem [6], Aα,t is an �-� matrix.

Corollary 7. Suppose tn = (n+1)/(n+2). Then Aα,t is an �-� matrix if and only
if (1−t)α+1 ∈ �.

Theorem 4. Suppose α > 0 and tn = 1− (n+2)−q,0 < q < 1. Then Aα,t is not an
�-� matrix.

Proof. If (1−t)α+1 is not in �, then by Theorem 1, Aα,t is not �-�. If (1−t)α+1 ∈ �,
then we prove that Aα,t is not �-� by showing that the condition of the Knopp-Lorentz
theorem [6] fails to hold. For convenience, we let q = 1/p and 21/p = R, where p > 1.
Then we have

∞∑
n=0

|ank| =
(k+α
k

) ∞∑
n=0

(
1−(n+2)−1/p

)k
(n+2)(−1/p)(α+1)

=
(k+α
k

) ∞∑
n=0

(
(n+2)1/p−1

)k
(n+2)(−1/p)(k+α+1)

≥M
(k+α
k

)∫∞
0

(
(x+2)1/p−1

)k
(x+2)(−1/p)(k+α+1)dx

(3.15)

for some M > 0. This is possible as both the summation and integral are finite since
(1−t)α+1 ∈ �. Now, let us define

g(k)=
∫∞

0

(
(x+2)1/p−1

)k
(x+2)(−1/p)(k+α+1)dx. (3.16)

Using integration by parts repeatedly, we can easily deduce that

g(k)= p(R−1)kR−(k+α+1−p)

k+α+1−p + pk(R−1)k−1(R)−(k+α−p)

(k+α+1−p)(k+α−p)

+···+ pk(k−1)(k−2)···(R)−(α+1−p)

(k+α+1−p)(k+α−p)(k+α−1−p)···(α+1−p) .
(3.17)

This implies that

g(k) >
pk(k−1)(k−2)···R−(α+1−p)

(k+α+1−p)(k+α−p)(k+α−1−p)···(α+1−p)

= pR−(α+1−p)

(α+1−p)
(
k+α+1−p

k

) . (3.18)
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Now, we have

∞∑
n=0

|ank| ≥M1

(
k+α
k

)
g(k)

>
pM1

(k+α
k

)
R−(α+1−p)

(α+1−p)
(k+α+1−p

k

) > M2kα

kα+1−p =M2kp−1.

(3.19)

Thus, it follows that

sup
k

{ ∞∑
n=0

|ank|
}
=∞, (3.20)

and hence Aα,t is not �-�.

In case tn = 1−(n+2)−q, it is natural to ask whether Aα,t is an �-� matrix. For −1 <
α ≤ 0, it is easy to see that Aα,t is �-� if and only if α > (1−q)/q, by Theorem 1.
For α > 0, the answer to this question is given by the next theorem, which gives a
necessary and sufficient condition for the matrix to be �-�.

Theorem 5. Suppose that α > 0 and tn = 1−(n+2)−q. Then Aα,t is an �-� matrix
if and only if q ≥ 1.

Proof. Suppose that q ≥ 1. Let q = 1/p,21/p= R and (R−1)/R=S, where 0 < p ≤ 1.
Then we have

∞∑
n=0

|ank| =
(k+α
k

) ∞∑
n=0

(
1−(n+2)−1/p

)k
(n+2)(−1/p)(α+1)

=
(k+α
k

) ∞∑
n=0

(
(n+2)1/p−1

)k
(n+4)(−1/p)(k+α+1)

≤M
(k+α
k

)∫∞
0

(
(x+2)1/p−1

)k
(x+2)(−1/p)(k+α+1) dx

(3.21)

for some M > 0. This is possible as both the summation and the integral are finite
since (1−t)α+1 ∈ � for α> 0. Now, let us define

g(k)=
∫∞

0

(
(x+2)1/p−1

)k
(x+2)(−1/p)(k+α+1) dx. (3.22)

Using integration by parts repeatedly, we can easily deduce that

g(k)= p(R−1)kR−(k+α−p+1)

k+α−p+1
+ pk(R−1)k−1(R)−(k+α−p)

(k+α−p+1)(k+α−p)

+···+ pk(k−1)(k−2)···R−(α−p+1)

(k+α−p+1)(k+α−p)···(α−p+1)
.

(3.23)

Now, from the hypotheses that q ≥ 1 and α> 0, it follows that
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g(k)≤ (R−1)k+αR−(k+α)

k+α + k(R−1)k+α−1R−(k+α−1)

(k+α)(k+α−1)

+···+ k(k−1)(k−2)···R−(α)
(k+α)(k+α−1)···(α)

≤ S
k+α

k+α +
kSk+α−1

(k+α)(k+α−1)
+···+ k(k−1)(k−2)···Sα

(k+α)(k+α−1)···α.

(3.24)

By writing the right-hand side of the preceding inequality using the summation nota-
tion, we obtain

g(k)≤ Sα

α
(k+α
k

)
k∑
i=0

(i+α−1
i

)
Si

≤ Sα

α
(k+α
k

)
∞∑
i=0

(i+α−1
i

)
Si

= Sα

α
(k+α
k

)S−α = 1

α
(k+α
k

) .

(3.25)

Consequently, we have

∞∑
n=0

|ank| ≤M
(k+α
k

)
g(k)≤

M
(k+α
k

)

α
(k+α
k

) = Mα . (3.26)

Thus, by Knopp-Lorentz theorem [6], Aα,t is an �-� matrix .
Conversely, if Aα,t is an �-� matrix, then it follows, by Theorems 3 and 4, that q ≥ 1.

Corollary 8. Suppose that tn = 1−(n+2)−q, wn = 1−(n+2)−p and q < p. Then
Aα,W is an �-� matrix whenever Aα,t is an �-� matrix.

Proof. The result follows immediately from Theorems 1 and 5.

Corollary 9. Suppose that α > 0, tn = 1− (n+ 2)−q,wn = 1− (n+ 2)−p and
(1/q)+(1/p)= 1. Then both Aα,t and Aα,w are �-� matrices.

Proof. The hypotheses imply that both q and p are greater than 1, and hence the
corollary follows easily by Theorem 5.

Theorem 6. The following statements are equivalent:
(1) Aα,t is a Gw -� matrix;
(2) (1−t)α+1 ∈ �;
(3) arcsin(1−t)α+1 ∈ �;
(4)

(
(1−t)α+1

)
/
(√

1−(1−t)2(α+1)
)∈ �;

(5) Aα,t is a G-� matrix.
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Proof. We get (1)⇒ (2) by [9, Thm. 1.1] and (2)⇒ (3)⇒ (4)⇒ (5) follow easily
from the following basic inequality

x < arcsinx <
x√

(1−x2)
, 0<x < 1, (3.27)

and by [4, Thm. 1]. The assertion that (5)⇒ (1) follows immediately as Gw is a subset
of G.

Corollary 10. Suppose that tn = 1− (n+2)−q. Then Aα,t is a G-� matrix if and
only if α> (1−q)/q. For q = 1, Aα,t is a G-� matrix if and only if it is an �-� matrix.

Proof. The proof follows using Theorems 3 and 6.

Theorem 7. The following statements are equivalent:
(1) Aα,t is a Gw -G matrix ;
(2) (1−t)α+1 ∈G;
(3) arcsin(1−t)α+1 ∈G;
(4) Aα,t is a G-G matrix.

Proof. (1)⇒ (2) follows by [9, Thm. 2.1] and (2)⇒ (3)⇒ (4) follows easily from
(3.27) and [4, Thm. 4]. The assertion that (4) ⇒ (1)follows immediately as Gw is a
subset of G.

Corollary 11. If Aα,t is a Gw -Gw matrix, then it is a G-G matrix.

Our next few results suggest that the Abel-type matrix Aα,t is �-stronger than the
identity matrix (see [7, Def. 3]). The results indicate how large the sizes of �(Aα,t) and
d(Aα,t) are.

Theorem 8. Suppose that −1<α≤ 0, Aα,t is an �-� matrix, and the series
∑∞
k=0xk

has bounded partial sums. Then it follows that x ∈ �(Aα,t).
Proof. Since, for −1<α≤ 0,

(k+α
k
)

is decreasing, the theorem is proved by follow-
ing the same steps used in the proof of [7, Thm. 4].

Remark 2. Although the preceding theorem is stated for −1 < α ≤ 0, the conclu-
sion is also true for α> 0 for some sequences. This is demonstrated as follows: let x
be the bounded sequence given by

xk = (−1)k. (3.28)

Let Y be the Aα,t-transform of the sequence x. Then it follows that the sequence Y is
given by

Yn = (1−tn)α+1
∞∑
k=0

(k+α
k

)
xk tkn

= (1−tn)α+1
∞∑
k=0

(k+α
k

)
(−1)k tkn

= (1−tn)
α+1

(1+tn)α+1

(3.29)
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which implies that

Yn < (1−tn)α+1. (3.30)

Hence, if Aα,t is an �-� matrix, then by Theorem 1, (1−t)α+1 ∈ �, and so x ∈ �(Aα,t).
Corollary 12. Suppose that −1 < α ≤ 0, Aα,t is an �-� matrix. Then �(Aα,t) con-

tains the class of all sequences x such that
∑∞
k=0xk is conditionally convergent.

Remark 3. In fact, we can give a further indication of the size of �(Aα,t) by showing
that if Aα,t is an �-� matrix, then it also contains an unbounded sequence. To verify
this, consider the sequence x given by

xk = (−1)k
k+α+1
α+1

. (3.31)

Let Y be the Aα,t-transform of the sequence x. Then we have

Yn = (1−tn)α+1
∞∑
k=0

(k+α
k

)
xk tkn

= (1−tn)α+1
∞∑
k=0

(k+α
k

)
(−1)k

k+α+1
α+1

tkn

= (1−tn)
α+1

(1+tn)α+2

(3.32)

and, consequently,

Yn < (1−tn)α+1. (3.33)

Hence, if Aα,t is an �-� matrix, then by Theorem 1, (1−t)α+1 ∈ �, and so x ∈ �(Aα,t).
This example clearly indicates that Aα,t is a rather strong method in the �-� setting
for any α>−1.

The �-� strength of the Aα,t matrices can also be demonstrated by comparing them
with the familiar Norland matrices (Np) [3]. By using the same techniques used in
the proof of [3, Thm. 8], we can show that the class of the Aα,t matrix summability
methods is �-stronger than the class of Np matrix summability methods for some p.

When discussing the �-� strength of Aα,t , or the size of �(Aα,t), it is very important
that we also determine the domain of Aα,t . The following proposition, which can be
easily proved, gives a characterization of the domain of Aα,t .

Proposition 1. The complex number sequence x is in the domain of the matrix
Aα,t if and only if

limsup
k
|xk|1/k ≤ 1. (3.34)

Remark 4. Proposition 1 can be used as a powerful tool in making a comparison
between the �-� strength of the Aα,t matrices and some other matrices as shown by
the following examples.

Example 1. The Aα,t matrix is not �-stronger than the Borel matrix B[8, p. 53]. To
demonstrate this, consider the sequence x given by

xk = (−3)k. (3.35)
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Then we have

(Bx)n =
∞∑
k=0

e−n
nk

k!
(−3)k = e−4n. (3.36)

Thus, we have Bx ∈ � and hence x ∈ �(B), but by Proposition 1, x ∉ �(Aα,t) . Hence,
Aα,t is not �-stronger than B.

Example 2. The Aα,t matrix is not �-stronger than the familiar Euler-Knopp matrix
Er for r ∈ (0,1). Also, Er is not �-stronger than Aα,t . To demonstrate this, consider
the sequence x defined by

xk = (−q)k and r = 1
q
, (3.37)

where q > 1. Let Y be the Er -transform of the sequence x . Then it is easy to see that
the sequence Y is defined by

Yn =
(−1
q

)n
. (3.38)

Since q > 1, we have Y ∈ � and hence x ∈ �(Er ), but x ∉ �(Aα,t) by Proposition 1.
Hence, Aα,t is not �-stronger than Er . To show that Er is not �-stronger than Aα,t ,
we let −1 < α ≤ 0 and consider the sequence x that was constructed by Fridy in his
example of [5, p. 424] . Here, we have x ∉ �(Er ), but x ∈ �(Aα,t) by Theorem 8. Thus,
Er is not �-stronger than Aα,t .
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