THE ABEL-TYPE TRANSFORMATIONS INTO ℓ
 MULATU LEMMA

(Received 24 November 1997 and in revised form 16 January 1998)

Abstract. Let t be a sequence in $(0,1)$ that converges to 1 , and define the Abel-type matrix $A_{\alpha, t}$ by $a_{n k}=\binom{k+\alpha}{k} t_{n}^{k+1}\left(1-t_{n}\right)^{\alpha+1}$ for $\alpha>-1$. The matrix $A_{\alpha, t}$ determines a sequence-to-sequence variant of the Abel-type power series method of summability introduced by Borwein in [1]. The purpose of this paper is to study these matrices as mappings into ℓ. Necessary and sufficient conditions for $A_{\alpha, t}$ to be $\ell-\ell, G^{-\ell}$, and $G_{w}{ }^{-\ell}$ are established. Also, the strength of $A_{\alpha, t}$ in the $\ell-\ell$ setting is investigated.

Keywords and phrases. ℓ - ℓ methods, ℓ-stronger, $G-G$ methods, $G_{w}-G_{w}$ methods.
1991 Mathematics Subject Classification. Primary 40A05; Secondary 40C05.

1. Introduction and background. The Abel-type power series method [1], denoted by $A_{\alpha}, \alpha>-1$, is the following sequence-to-function transformation: if

$$
\begin{equation*}
\sum_{k=0}^{\infty}\binom{k+\alpha}{k} u_{k} x^{k}<\infty \quad \text { for } 0<x<1 \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{x \rightarrow 1^{-}}(1-x)^{\alpha+1} \sum_{k=0}^{\infty}\binom{k+\alpha}{k} u_{k} x^{k}=L \tag{1.2}
\end{equation*}
$$

then we say that u is A_{α}-summable to L. In order to study this summability method as a mapping into ℓ, we must modify it into a sequence to sequence transformation. This is achieved by replacing the continuous parameter x with a sequence t such that $0<t_{n}<1$ for all n and $\lim t_{n}=1$. Thus, the sequence u is transformed into the sequence $A_{\alpha, t} u$ whose nth term is given by

$$
\begin{equation*}
\left(A_{\alpha, t} u\right)_{n}=\left(1-t_{n}\right)^{\alpha+1} \sum_{k=0}^{\infty}\binom{k+\alpha}{k} u_{k} t_{n}^{k} \tag{1.3}
\end{equation*}
$$

This transformation is determined by the matrix $A_{\alpha, t}$ whose $n k$ th entry is given by

$$
\begin{equation*}
a_{n k}=\binom{k+\alpha}{k} t_{n}^{k}\left(1-t_{n}\right)^{\alpha+1} . \tag{1.4}
\end{equation*}
$$

The matrix $A_{\alpha, t}$ is called the Abel-type matrix. The case $\alpha=0$ is the Abel matrix introduced by Fridy in [5]. It is easy to see that the $A_{\alpha, t}$ matrix is regular and, indeed, totally regular.
2. Basic notations. Let $A=\left(a_{n k}\right)$ be an infinite matrix defining a sequence-tosequence summability transformation given by

$$
\begin{equation*}
(A x)_{n}=\sum_{k=0}^{\infty} a_{n k} x_{k}, \tag{2.1}
\end{equation*}
$$

where $(A x)_{n}$ denotes the nth term of the image sequence $A x$. The sequence $A x$ is called the A-transform of the sequence x. If X and Z are sets of complex number sequence, then the matrix A is called an $X-Z$ matrix if the image $A u$ of u under the transformation A is in Z whenever u is in X.
Let y be a complex number sequence. Throughout this paper, we use the following basic notations:

$$
\begin{align*}
\ell & =\left\{y: \sum_{k=0}^{\infty}\left|y_{k}\right| \text { converges }\right\}, \\
\ell^{p} & =\left\{y: \sum_{k=0}^{\infty}\left|y_{k}\right|^{p} \text { converges }\right\}, \\
d(A) & =\left\{y: \sum_{k=0}^{\infty} a_{n k} y_{k} \text { converges for each } n \geq 0\right\}, \tag{2.2}\\
\ell(A) & =\left\{y: A_{y} \in \ell\right\}, \\
G & =\left\{y: y_{k}=O\left(r^{k}\right) \text { for some } r \in(0,1)\right\}, \\
G_{w} & =\left\{y: y_{k}=O\left(r^{k}\right) \text { for some } r \in(0, w), 0<w<1\right\}, \\
c(A) & =\{y: y \text { is summable by } A\} .
\end{align*}
$$

3. The main results. Our first result gives a necessary and sufficient condition for $A_{\alpha, t}$ to be $\ell-\ell$.

Theorem 1. Suppose that $-1<\alpha \leq 0$. Then the matrix $A_{\alpha, t}$ is $\ell-\ell$ if and only if $(1-t)^{\alpha+1} \in \ell$.

Proof. Since $-1<\alpha \leq 0$ and $0<t_{n}<1$, we have

$$
\begin{equation*}
\sum_{n=0}^{\infty}\left|a_{n k}\right|=\binom{k+\alpha}{k} \sum_{n=0}^{\infty} t_{n}^{k}\left(1-t_{n}\right)^{\alpha+1} \leq \sum_{n=0}^{\infty}\left(1-t_{n}\right)^{\alpha+1} \quad \text { for each } k . \tag{3.1}
\end{equation*}
$$

Thus, if $(1-t)^{\alpha+1} \in \ell$, Knopp-Lorentz theorem [6] guarantees that $A_{\alpha, t}$ is an $\ell-\ell$ matrix. Also, if $A_{\alpha, t}$ is an $\ell-\ell$ matrix, then by Knopp-Lorentz theorem, we have

$$
\begin{equation*}
\sum_{n=0}^{\infty}\left|a_{n, o}\right|<\infty, \tag{3.2}
\end{equation*}
$$

and this yields $(1-t)^{\alpha+1} \in \ell$.
Remark 1. In Theorem 1, the implication that $A_{\alpha, t}$ is $\ell-\ell \Rightarrow(1-t)^{\alpha+1} \in \ell$ is also true for any $\alpha>0$, however, the converse implication is not true for any $\alpha>0$. This is demonstrated in Theorem 4 below.

COROLLARY 1. If $-1<\alpha \leq 0$ and $<0<t_{n}<w_{n}<1$, then $A_{\alpha, w}$ is an $\ell-\ell$ matrix whenever $A_{\alpha, t}$ is an $\ell-\ell$ matrix.

Proof. The corollary follows easily by Theorem 1.
COROLLARY 2. If $-1<\alpha<\beta \leq 0$, then $A_{\beta, t}$ is an $\ell-\ell$ matrix whenever $A_{\alpha, t}$ is an $\ell-\ell$ matrix.

COROLLARY 3. If $-1<\alpha \leq 0$ and $A_{\alpha, t}$ is an $\ell-\ell$ matrix, then $1 / \log (1-t) \in \ell$.
COROLLARY 4. If $-1<\alpha \leq 0$, then $\arcsin (1-t)^{\alpha+1} \in \ell$ if and only if $A_{\alpha, t}$ is an $\ell-\ell$ matrix.

COROLLARY 5. Suppose that $-1<\alpha \leq 0$ and $w_{n}=1 / t_{n}$. Then the zeta matrix z_{w} [2] is $\ell-\ell$ whenever $A_{\alpha, t}$ is an $\ell-\ell$ matrix.

COROLLARY 6. Suppose that $-1<\alpha \leq 0$ and $t_{n}=1-(n+2)^{-q}, 0<q<1$: then $A_{\alpha, t}$ is not an $\ell-\ell$ matrix.

Proof. Since $(1-t)^{\alpha+1}$ is not in ℓ, the corollary follows easily by Theorem 1 .
Before considering our next theorem, we recall the following result which follows as a consequence of the familiar Hölder's inequality for summation. The result states that if x and y are real number sequences such that $x \in \ell^{p}, y \in \ell^{q}, p>1$, and $(1 / p)+(1 / q)=1$, then $x y \in \ell$.

THEOREM 2. If $A_{\alpha, t}$ is an $\ell-\ell$ matrix, then

$$
\begin{equation*}
\sum_{n=0}^{\infty} \log \frac{\left(2-t_{n}\right)}{(n+1)}<\infty \tag{3.3}
\end{equation*}
$$

Proof. Since $\log \left(2-t_{n}\right) \sim\left(1-t_{n}\right)$, it suffices to show that

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{\left(1-t_{n}\right)}{(n+1)}<\infty \tag{3.4}
\end{equation*}
$$

If $A_{\alpha, t}$ is an $\ell-\ell$ matrix, then, by Theorem 1 , we have $(1-t)^{\alpha+1} \in \ell$. If $-1<\alpha \leq 0$, it is easy to see that if $(1-t)^{\alpha+1} \in \ell$, then we have $(1-t) \in \ell$ and, consequently, the assertion follows. If $\alpha>0$, then the theorem follows using the preceding result by letting $x_{n}=1-t_{n}, y_{n}=1 /(n+1), p=\alpha+1$, and $q=(\alpha+1) / \alpha$.

THEOREM 3. Suppose that $t_{n}=(n+1) /(n+2)$. Then $A_{\alpha, t}$ is an $\ell-\ell$ matrix if and only if $\alpha>0$.

Proof. If $A_{\alpha, t}$ is an $\ell-\ell$ matrix, then, by Theorem 1 , it follows that $(1-t)^{\alpha+1} \in \ell$ and this yields $\alpha>0$. Conversely, suppose that $\alpha>0$. Then we have

$$
\begin{align*}
\sum_{n=0}^{\infty}\left|a_{n k}\right| & =\binom{k+\alpha}{k} \sum_{n=0}^{\infty}\left(\frac{n+1}{n+2}\right)^{k}(n+2)^{-(\alpha+1)} \\
& =\binom{k+\alpha}{k} \sum_{n=0}^{\infty}(n+1)^{k}(n+2)^{-(k+\alpha+1)} \tag{3.5}\\
& \leq M\binom{k+\alpha}{k} \int_{0}^{\infty}(x+1)^{k}(x+2)^{-(k+\alpha+1)} d x
\end{align*}
$$

for some $M>0$. This is possible as both the summation and the integral are finite since $\alpha>0$. Now, we let

$$
\begin{equation*}
g(k)=\int_{0}^{\infty}(x+1)^{k}(x+2)^{-(k+\alpha+1)} d x, \tag{3.6}
\end{equation*}
$$

and we compute $g(k)$ using integration by parts repeatedly. We have

$$
\begin{equation*}
g(k)=\frac{1}{k+\alpha} \cdot 2^{-(k+\alpha)}+h_{1}(k), \tag{3.7}
\end{equation*}
$$

where

$$
\begin{align*}
h_{1}(k) & =\frac{k}{k+\alpha} \int_{0}^{\infty}(x+1)^{k-1}(x+2)^{-(k+\alpha)} d x \\
& =\frac{k \cdot 2^{-(k+\alpha-1)}}{(k+\alpha)(k+\alpha-1)}+h_{2} k \tag{3.8}
\end{align*}
$$

and

$$
\begin{align*}
h_{2}(k) & =\frac{k(k-1)}{(k+\alpha)(k+\alpha-1)} \int_{0}^{\infty}(x+1)^{k-2}(x+2)^{-(k+\alpha-1)} d x \\
& =\frac{k(k-1) \cdot 2^{-(k+\alpha-2)}}{(k+\alpha)(k+\alpha-1)(k+\alpha-2)}+h_{3}(k) . \tag{3.9}
\end{align*}
$$

It follows that

$$
\begin{equation*}
h_{3}(k)=\frac{k(k-1)(k-2) \cdot 2^{-(k+\alpha-3)}}{(k+\alpha)(k+\alpha-1)(k+\alpha-2)(k+\alpha-3)}+h_{4}(k), \tag{3.10}
\end{equation*}
$$

where

$$
\begin{align*}
h_{4}(k)= & \frac{k(k-1)(k-2)(k-3)}{(k+\alpha)(k+\alpha-1)(k+\alpha-2)(k+\alpha-3)(k+\alpha-4)} \tag{3.11}\\
& \times \int_{0}^{\infty}(x+1)^{k-4}(x+2)^{-(k+\alpha-3)} d x .
\end{align*}
$$

Continuing this process, we get

$$
\begin{equation*}
h_{k}(k)=\frac{k(k-1)(k-2) \cdots 2^{-\alpha}}{(k+\alpha)(k+\alpha-1)(k+\alpha-2) \cdots \alpha}=\frac{2^{-\alpha}}{\alpha\binom{k+\alpha}{k}} . \tag{3.12}
\end{equation*}
$$

It is easy to see that $g(k)$ can be written using summation notation as

$$
\begin{align*}
g(k) & =\frac{2^{-\alpha}}{\alpha\binom{k+\alpha}{k}} \sum_{i=0}^{k}\binom{i+\alpha-1}{i} 2^{-i} \\
& \leq \frac{2^{-\alpha}}{\alpha\binom{k+\alpha}{k}} \sum_{i=0}^{\infty}\binom{i+\alpha-1}{i} 2^{-i} \tag{3.13}\\
& =\frac{2^{-\alpha}}{\alpha\binom{k+\alpha}{k}} 2^{\alpha}=\frac{1}{\alpha\binom{k+\alpha}{k}} .
\end{align*}
$$

Consequently, we get

$$
\begin{equation*}
\sum_{n=0}^{\infty}\left|a_{n k}\right| \leq M\binom{k+\alpha}{k} g(k) \leq \frac{M\binom{k+\alpha}{k}}{\alpha\binom{k+\alpha}{k}}=\frac{M}{\alpha} \tag{3.14}
\end{equation*}
$$

Thus by the Knopp-Lorentz theorem [6], $A_{\alpha, t}$ is an $\ell-\ell$ matrix.
Corollary 7. Suppose $t_{n}=(n+1) /(n+2)$. Then $A_{\alpha, t}$ is an $\ell-\ell$ matrix if and only if $(1-t)^{\alpha+1} \in \ell$.

Theorem 4. Suppose $\alpha>0$ and $t_{n}=1-(n+2)^{-q}, 0<q<1$. Then $A_{\alpha, t}$ is not an $\ell-\ell$ matrix.

Proof. If $(1-t)^{\alpha+1}$ is not in ℓ, then by Theorem $1, A_{\alpha, t}$ is not $\ell-\ell$. If $(1-t)^{\alpha+1} \in \ell$, then we prove that $A_{\alpha, t}$ is not $\ell-\ell$ by showing that the condition of the Knopp-Lorentz theorem [6] fails to hold. For convenience, we let $q=1 / p$ and $2^{1 / p}=R$, where $p>1$. Then we have

$$
\begin{align*}
\sum_{n=0}^{\infty}\left|a_{n k}\right| & =\binom{k+\alpha}{k} \sum_{n=0}^{\infty}\left(1-(n+2)^{-1 / p}\right)^{k}(n+2)^{(-1 / p)(\alpha+1)} \\
& =\binom{k+\alpha}{k} \sum_{n=0}^{\infty}\left((n+2)^{1 / p}-1\right)^{k}(n+2)^{(-1 / p)(k+\alpha+1)} \tag{3.15}\\
& \geq M\binom{k+\alpha}{k} \int_{0}^{\infty}\left((x+2)^{1 / p}-1\right)^{k}(x+2)^{(-1 / p)(k+\alpha+1)} d x
\end{align*}
$$

for some $M>0$. This is possible as both the summation and integral are finite since $(1-t)^{\alpha+1} \in \ell$. Now, let us define

$$
\begin{equation*}
g(k)=\int_{0}^{\infty}\left((x+2)^{1 / p}-1\right)^{k}(x+2)^{(-1 / p)(k+\alpha+1)} d x \tag{3.16}
\end{equation*}
$$

Using integration by parts repeatedly, we can easily deduce that

$$
\begin{align*}
g(k)= & \frac{p(R-1)^{k} R^{-(k+\alpha+1-p)}}{k+\alpha+1-p}+\frac{p k(R-1)^{k-1}(R)^{-(k+\alpha-p)}}{(k+\alpha+1-p)(k+\alpha-p)} \tag{3.17}\\
& +\cdots+\frac{p k(k-1)(k-2) \cdots(R)^{-(\alpha+1-p)}}{(k+\alpha+1-p)(k+\alpha-p)(k+\alpha-1-p) \cdots(\alpha+1-p)} .
\end{align*}
$$

This implies that

$$
\begin{align*}
g(k) & >\frac{p k(k-1)(k-2) \cdots R^{-(\alpha+1-p)}}{(k+\alpha+1-p)(k+\alpha-p)(k+\alpha-1-p) \cdots(\alpha+1-p)} \\
& =\frac{p R^{-(\alpha+1-p)}}{(\alpha+1-p)\binom{k+\alpha+1-p}{k}} . \tag{3.18}
\end{align*}
$$

Now, we have

$$
\begin{align*}
\sum_{n=0}^{\infty}\left|a_{n k}\right| & \geq M_{1}\binom{k+\alpha}{k} g(k) \\
& >\frac{p M_{1}\binom{k+\alpha}{k} R^{-(\alpha+1-p)}}{(\alpha+1-p)\binom{k+\alpha+1-p}{k}}>\frac{M_{2} k^{\alpha}}{k^{\alpha+1-p}}=M_{2} k^{p-1} \tag{3.19}
\end{align*}
$$

Thus, it follows that

$$
\begin{equation*}
\sup _{k}\left\{\sum_{n=0}^{\infty}\left|a_{n k}\right|\right\}=\infty \tag{3.20}
\end{equation*}
$$

and hence $A_{\alpha, t}$ is not $\ell-\ell$.
In case $t_{n}=1-(n+2)^{-q}$, it is natural to ask whether $A_{\alpha, t}$ is an $\ell-\ell$ matrix. For $-1<$ $\alpha \leq 0$, it is easy to see that $A_{\alpha, t}$ is $\ell-\ell$ if and only if $\alpha>(1-q) / q$, by Theorem 1 . For $\alpha>0$, the answer to this question is given by the next theorem, which gives a necessary and sufficient condition for the matrix to be $\ell-\ell$.

THEOREM 5. Suppose that $\alpha>0$ and $t_{n}=1-(n+2)^{-q}$. Then $A_{\alpha, t}$ is an $\ell-\ell$ matrix if and only if $q \geq 1$.

Proof. Suppose that $q \geq 1$. Let $q=1 / p, 2^{1 / p}=R$ and $(R-1) / R=S$, where $0<p \leq 1$. Then we have

$$
\begin{align*}
\sum_{n=0}^{\infty}\left|a_{n k}\right| & =\binom{k+\alpha}{k} \sum_{n=0}^{\infty}\left(1-(n+2)^{-1 / p}\right)^{k}(n+2)^{(-1 / p)(\alpha+1)} \\
& =\binom{k+\alpha}{k} \sum_{n=0}^{\infty}\left((n+2)^{1 / p}-1\right)^{k}(n+4)^{(-1 / p)(k+\alpha+1)} \tag{3.21}\\
& \leq M\binom{k+\alpha}{k} \int_{0}^{\infty}\left((x+2)^{1 / p}-1\right)^{k}(x+2)^{(-1 / p)(k+\alpha+1)} d x
\end{align*}
$$

for some $M>0$. This is possible as both the summation and the integral are finite since $(1-t)^{\alpha+1} \in \ell$ for $\alpha>0$. Now, let us define

$$
\begin{equation*}
g(k)=\int_{0}^{\infty}\left((x+2)^{1 / p}-1\right)^{k}(x+2)^{(-1 / p)(k+\alpha+1)} d x \tag{3.22}
\end{equation*}
$$

Using integration by parts repeatedly, we can easily deduce that

$$
\begin{align*}
g(k)= & \frac{p(R-1)^{k} R^{-(k+\alpha-p+1)}}{k+\alpha-p+1}+\frac{p k(R-1)^{k-1}(R)^{-(k+\alpha-p)}}{(k+\alpha-p+1)(k+\alpha-p)} \tag{3.23}\\
& +\cdots+\frac{p k(k-1)(k-2) \cdots R^{-(\alpha-p+1)}}{(k+\alpha-p+1)(k+\alpha-p) \cdots(\alpha-p+1)}
\end{align*}
$$

Now, from the hypotheses that $q \geq 1$ and $\alpha>0$, it follows that

$$
\begin{align*}
g(k) \leq & \frac{(R-1)^{k+\alpha} R^{-(k+\alpha)}}{k+\alpha}+\frac{k(R-1)^{k+\alpha-1} R^{-(k+\alpha-1)}}{(k+\alpha)(k+\alpha-1)} \\
& +\cdots+\frac{k(k-1)(k-2) \cdots R^{-(\alpha)}}{(k+\alpha)(k+\alpha-1) \cdots(\alpha)} \tag{3.24}\\
\leq & \frac{S^{k+\alpha}}{k+\alpha}+\frac{k S^{k+\alpha-1}}{(k+\alpha)(k+\alpha-1)}+\cdots+\frac{k(k-1)(k-2) \cdots S^{\alpha}}{(k+\alpha)(k+\alpha-1) \cdots \alpha} .
\end{align*}
$$

By writing the right-hand side of the preceding inequality using the summation notation, we obtain

$$
\begin{align*}
g(k) & \leq \frac{S^{\alpha}}{\alpha\binom{k+\alpha}{k}} \sum_{i=0}^{k}\binom{i+\alpha-1}{i} S^{i} \\
& \leq \frac{S^{\alpha}}{\alpha\binom{k+\alpha}{k}} \sum_{i=0}^{\infty}\binom{i+\alpha-1}{i} S^{i} \tag{3.25}\\
& =\frac{S^{\alpha}}{\alpha\binom{k+\alpha}{k}} S^{-\alpha}=\frac{1}{\alpha\binom{k+\alpha}{k}} .
\end{align*}
$$

Consequently, we have

$$
\begin{equation*}
\sum_{n=0}^{\infty}\left|a_{n k}\right| \leq M\binom{k+\alpha}{k} g(k) \leq \frac{M\binom{k+\alpha}{k}}{\alpha\binom{k+\alpha}{k}}=\frac{M}{\alpha} \tag{3.26}
\end{equation*}
$$

Thus, by Knopp-Lorentz theorem [6], $A_{\alpha, t}$ is an $\ell-\ell$ matrix .
Conversely, if $A_{\alpha, t}$ is an $\ell-\ell$ matrix, then it follows, by Theorems 3 and 4 , that $q \geq 1$.

COROLLARY 8. Suppose that $t_{n}=1-(n+2)^{-q}, w_{n}=1-(n+2)^{-p}$ and $q<p$. Then $A_{\alpha, W}$ is an $\ell-\ell$ matrix whenever $A_{\alpha, t}$ is an $\ell \ell \ell$ matrix.

Proof. The result follows immediately from Theorems 1 and 5.
COROLLARY 9. Suppose that $\alpha>0, t_{n}=1-(n+2)^{-q}, w_{n}=1-(n+2)^{-p}$ and $(1 / q)+(1 / p)=1$. Then both $A_{\alpha, t}$ and $A_{\alpha, w}$ are $\ell-\ell$ matrices.

Proof. The hypotheses imply that both q and p are greater than 1 , and hence the corollary follows easily by Theorem 5 .

THEOREM 6. The following statements are equivalent:
(1) $A_{\alpha, t}$ is a $G_{w}-\ell$ matrix;
(2) $(1-t)^{\alpha+1} \in \ell$;
(3) $\arcsin (1-t)^{\alpha+1} \in \ell$;
(4) $\left((1-t)^{\alpha+1}\right) /\left(\sqrt{1-(1-t)^{2(\alpha+1)}}\right) \in \ell$;
(5) $A_{\alpha, t}$ is a $G^{-\ell}$ matrix.

Proof. We get $(1) \Rightarrow(2)$ by [9, Thm. 1.1] and $(2) \Rightarrow(3) \Rightarrow(4) \Rightarrow(5)$ follow easily from the following basic inequality

$$
\begin{equation*}
x<\arcsin x<\frac{x}{\sqrt{\left(1-x^{2}\right)}}, \quad 0<x<1, \tag{3.27}
\end{equation*}
$$

and by [4, Thm. 1]. The assertion that $(5) \Rightarrow(1)$ follows immediately as G_{w} is a subset of G.

Corollary 10. Suppose that $t_{n}=1-(n+2)^{-q}$. Then $A_{\alpha, t}$ is a $G-\ell$ matrix if and only if $\alpha>(1-q) / q$. For $q=1, A_{\alpha, t}$ is a $G^{-\ell}$ matrix if and only if it is an $\ell-\ell$ matrix.

Proof. The proof follows using Theorems 3 and 6 .
Theorem 7. The following statements are equivalent:
(1) $A_{\alpha, t}$ is a $G_{w}-G$ matrix ;
(2) $(1-t)^{\alpha+1} \in G$;
(3) $\arcsin (1-t)^{\alpha+1} \in G$;
(4) $A_{\alpha, t}$ is a $G-G$ matrix.

Proof. (1) \Rightarrow (2) follows by [9, Thm. 2.1] and $(2) \Rightarrow(3) \Rightarrow(4)$ follows easily from (3.27) and [4, Thm. 4]. The assertion that (4) $\Rightarrow(1)$ follows immediately as G_{w} is a subset of G.

Corollary 11. If $A_{\alpha, t}$ is a $G_{w}-G_{w}$ matrix, then it is a $G-G$ matrix.
Our next few results suggest that the Abel-type matrix $A_{\alpha, t}$ is ℓ-stronger than the identity matrix (see [7, Def. 3]). The results indicate how large the sizes of $\ell\left(A_{\alpha, t}\right)$ and $d\left(A_{\alpha, t}\right)$ are.

TheOrem 8. Suppose that $-1<\alpha \leq 0, A_{\alpha, t}$ is an $\ell-\ell$ matrix, and the series $\sum_{k=0}^{\infty} x_{k}$ has bounded partial sums. Then it follows that $x \in \ell\left(A_{\alpha, t}\right)$.

Proof. Since, for $-1<\alpha \leq 0,\binom{k+\alpha}{k}$ is decreasing, the theorem is proved by following the same steps used in the proof of [7, Thm. 4].

Remark 2. Although the preceding theorem is stated for $-1<\alpha \leq 0$, the conclusion is also true for $\alpha>0$ for some sequences. This is demonstrated as follows: let x be the bounded sequence given by

$$
\begin{equation*}
x_{k}=(-1)^{k} . \tag{3.28}
\end{equation*}
$$

Let Y be the $A_{\alpha, t}$-transform of the sequence x. Then it follows that the sequence Y is given by

$$
\begin{align*}
Y_{n} & =\left(1-t_{n}\right)^{\alpha+1} \sum_{k=0}^{\infty}\binom{k+\alpha}{k} x_{k} t_{n}^{k} \\
& =\left(1-t_{n}\right)^{\alpha+1} \sum_{k=0}^{\infty}\binom{k+\alpha}{k}(-1)^{k} t_{n}^{k} \tag{3.29}\\
& =\frac{\left(1-t_{n}\right)^{\alpha+1}}{\left(1+t_{n}\right)^{\alpha+1}}
\end{align*}
$$

which implies that

$$
\begin{equation*}
Y_{n}<\left(1-t_{n}\right)^{\alpha+1} . \tag{3.30}
\end{equation*}
$$

Hence, if $A_{\alpha, t}$ is an $\ell-\ell$ matrix, then by Theorem $1,(1-t)^{\alpha+1} \in \ell$, and so $x \in \ell\left(A_{\alpha, t}\right)$.
Corollary 12. Suppose that $-1<\alpha \leq 0, A_{\alpha, t}$ is an $\ell-\ell$ matrix. Then $\ell\left(A_{\alpha, t}\right)$ contains the class of all sequences x such that $\sum_{k=0}^{\infty} x_{k}$ is conditionally convergent.

REmARK 3. In fact, we can give a further indication of the size of $\ell\left(A_{\alpha, t}\right)$ by showing that if $A_{\alpha, t}$ is an $\ell-\ell$ matrix, then it also contains an unbounded sequence. To verify this, consider the sequence x given by

$$
\begin{equation*}
x_{k}=(-1)^{k} \frac{k+\alpha+1}{\alpha+1} . \tag{3.31}
\end{equation*}
$$

Let Y be the $A_{\alpha, t}$-transform of the sequence x. Then we have

$$
\begin{align*}
Y_{n} & =\left(1-t_{n}\right)^{\alpha+1} \sum_{k=0}^{\infty}\binom{k+\alpha}{k} x_{k} t_{n}^{k} \\
& =\left(1-t_{n}\right)^{\alpha+1} \sum_{k=0}^{\infty}\binom{k+\alpha}{k}(-1)^{k} \frac{k+\alpha+1}{\alpha+1} t_{n}^{k} \tag{3.32}\\
& =\frac{\left(1-t_{n}\right)^{\alpha+1}}{\left(1+t_{n}\right)^{\alpha+2}}
\end{align*}
$$

and, consequently,

$$
\begin{equation*}
Y_{n}<\left(1-t_{n}\right)^{\alpha+1} . \tag{3.33}
\end{equation*}
$$

Hence, if $A_{\alpha, t}$ is an $\ell-\ell$ matrix, then by Theorem $1,(1-t)^{\alpha+1} \in \ell$, and so $x \in \ell\left(A_{\alpha, t}\right)$. This example clearly indicates that $A_{\alpha, t}$ is a rather strong method in the $\ell-\ell$ setting for any $\alpha>-1$.
The $\ell-\ell$ strength of the $A_{\alpha, t}$ matrices can also be demonstrated by comparing them with the familiar Norland matrices (N_{p}) [3]. By using the same techniques used in the proof of [3, Thm. 8], we can show that the class of the $A_{\alpha, t}$ matrix summability methods is ℓ-stronger than the class of N_{p} matrix summability methods for some p.
When discussing the $\ell-\ell$ strength of $A_{\alpha, t}$, or the size of $\ell\left(A_{\alpha, t}\right)$, it is very important that we also determine the domain of $A_{\alpha, t}$. The following proposition, which can be easily proved, gives a characterization of the domain of $A_{\alpha, t}$.

Proposition 1. The complex number sequence x is in the domain of the matrix $A_{\alpha, t}$ if and only if

$$
\begin{equation*}
\lim \sup _{k}\left|x_{k}\right|^{1 / k} \leq 1 . \tag{3.34}
\end{equation*}
$$

Remark 4. Proposition 1 can be used as a powerful tool in making a comparison between the $\ell-\ell$ strength of the $A_{\alpha, t}$ matrices and some other matrices as shown by the following examples.

Example 1. The $A_{\alpha, t}$ matrix is not ℓ-stronger than the Borel matrix $\mathrm{B}[8, \mathrm{p} .53]$. To demonstrate this, consider the sequence x given by

$$
\begin{equation*}
x_{k}=(-3)^{k} . \tag{3.35}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
(B x)_{n}=\sum_{k=0}^{\infty} e^{-n} \frac{n^{k}}{k!}(-3)^{k}=e^{-4 n} \tag{3.36}
\end{equation*}
$$

Thus, we have $B x \in \ell$ and hence $x \in \ell(B)$, but by Proposition $1, x \notin \ell\left(A_{\alpha, t}\right)$. Hence, $A_{\alpha, t}$ is not ℓ-stronger than B.

Example 2. The $A_{\alpha, t}$ matrix is not ℓ-stronger than the familiar Euler-Knopp matrix E_{r} for $r \in(0,1)$. Also, E_{r} is not ℓ-stronger than $A_{\alpha, t}$. To demonstrate this, consider the sequence x defined by

$$
\begin{equation*}
x_{k}=(-q)^{k} \quad \text { and } \quad r=\frac{1}{q} \tag{3.37}
\end{equation*}
$$

where $q>1$. Let Y be the E_{r}-transform of the sequence x. Then it is easy to see that the sequence Y is defined by

$$
\begin{equation*}
Y_{n}=\left(\frac{-1}{q}\right)^{n} . \tag{3.38}
\end{equation*}
$$

Since $q>1$, we have $Y \in \ell$ and hence $x \in \ell\left(E_{r}\right)$, but $x \notin \ell\left(A_{\alpha, t}\right)$ by Proposition 1 . Hence, $A_{\alpha, t}$ is not ℓ-stronger than E_{r}. To show that E_{r} is not ℓ-stronger than $A_{\alpha, t}$, we let $-1<\alpha \leq 0$ and consider the sequence x that was constructed by Fridy in his example of [5, p. 424]. Here, we have $x \notin \ell\left(E_{r}\right)$, but $x \in \ell\left(A_{\alpha, t}\right)$ by Theorem 8 . Thus, E_{r} is not ℓ-stronger than $A_{\alpha, t}$.

Acknowledgement. I would like to thank professor J. Fridy for several helpful suggestions that significantly improved the exposition of these results. I also want to thank my wife Mrs. Tsehaye Dejene for her great encouragement.

References

[1] D. Borwein, On a scale of Abel-type summability methods, Proc. Cambridge Philos. Soc. 53 (1957), 318-322. MR 19,134f. Zbl 082.27602.
[2] L. K. Chu, Summability methods based on the Riemann zeta function, Internat. J. Math. Math. Sci. 11 (1988), no. 1, 27-36. MR 88m:40007.
[3] J. DeFranza, A general inclusion theorem for $l-l$ Norlund summability, Canad. Math. Bull. 25 (1982), no. 4, 447-455. MR 84k:40005. Zbl 494.40004.
[4] G. H. Fricke and J. A. Fridy, Matrix summability of geometrically dominated series, Canad. J. Math. 39 (1987), no. 3, 568-582. MR 89a:40003. Zbl 618.40003.
[5] J. A. Fridy, Abel transformations into l^{1}, Canad. Math. Bull. 25 (1982), no. 4, 421-427. MR 84d:40009. Zbl 494.40002.
[6] K. Knopp and G. G. Lorentz, Beitrage zur absoluten Limitierung, Arch. Math. 2 (1949), 10-16 (German). MR 11,346i. Zbl 041.18402.
[7] M. Lemma, Logarithmic Transformations into l^{1}, Rocky Mountain J. Math 28 (1998), no. 1, 253-266. MR 99k:40004. Zbl 922.40007.
[8] R. E. Powell and S. M. Shah, Summability Theory and Applications, Prentice-Hall of India, New Delhi, 1988. Zbl 665.40001.
[9] S. Selvaraj, Matrix summability of classes of geometric sequences, Rocky Mountain J. Math. 22 (1992), no. 2, 719-732. MR 93i:40002. Zbl 756.40005.

Lemma: Department of mathematics, Savannah state university, Savannah, Georgia 31404, USA

