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Abstract. In this paper, we show that the asymptotic estimate for the expected num-
ber of K-level crossings of a random hyperbolic polynomial a1 sinhx+a2 sinh2x+···+
an sinhnx, where aj(j = 1,2, . . . ,n) are independent normally distributed random vari-
ables with mean zero and variance one, is (1/π) logn. This result is true for all K inde-
pendent of x, provided K ≡Kn =O(

√
n). It is also shown that the asymptotic estimate of

the expected number of turning points for the random polynomial a1 coshx+a2 cosh2x
+···+an coshnx, with aj(j = 1,2, . . . ,n) as before, is also (1/π) logn.
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1. Introduction. Let

T1(x)=
n∑
j=1

aj coshjx (1.1)

and

T2(x)=
n∑
j=1

aj sinhjx, (1.2)

where a1,a2, . . . ,an is a sequence of independent normally distributed random vari-
ables with mean zero and variance one. Let N(i)

K (α,β) be the number of real roots
of the equation Ti(x)−K = 0 and M(i)(α,β) be the number of real roots of T ′i (x).
In both cases, the interval is (α,β) and i = 1,2. Clearly, M(i)(α,β) represents the
number of turning points of Ti(x) on the interval (α,β). It proves convenient to de-
note the expected number of real roots of Ti(x)−K and T ′i (x), on the interval (α,β),
by EN(i)

K (α,β) and EM(i)(α,β), respectively. Bharucha-Reid and Sambandham [1] re-
ported an unpublished result of Das [2], where it is stated that forK = 0, EN(1)

0 (−∞,∞)
∼ (1/π) logn, the random coefficients being the same as in (1.1). Farahmand [4] ob-
tained the same asymptotic value as Das for EN(1)

K (−∞,∞), where K =O(
√
n). Farah-

mand highlighted the surprising way the hyperbolic polynomial mimics certain char-
acteristics of both the trigonometric and the algebraic polynomials. In a more re-
cent work, Farahmand [5] showed that EM(2)(−∞,∞) ∼ (1/π) logn, where the ran-
dom coefficients are again those outlined in (1.1) and (1.2). Clearly, there remains two
unsolved complementary problems, that is EM(1)(−∞,∞) and EN(2)

K (−∞,∞). These
problems are the subject of this paper. We prove the following theorems.
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Theorem 1. If the coefficients of T2(x) in (1.2) are independent normally distributed
random variables with mean zero and variance one and Kn ≡K such that K2/(n logn)
tends to zero as n tends to infinity, then

EN(2)
K (−∞,∞)∼

(
1
π

)
logn. (1.3)

Theorem 2. If the coefficients of T1(x) in (1.1) are independent normally distributed
random variables with mean zero and variance one and n tends to infinity, then

EM(1)(−∞,∞)∼
(

1
π

)
logn. (1.4)

These results may not have been derived until now because of the difficulty in ap-
plying the conventional Rice formula to both of these cases near zero. In our method,
we make the unusual step of determining the expected number of roots for the poly-
nomial’s derivative to simplify the analysis. More comprehensive results are known
for the random algebraic polynomial

∑n
j=1ajxj . We refer the reader to the pioneering

works of Littlewood and Offord [8, 7] and the more recent works of Wilkins [11] and
Offord [9].

2. Level crossings and turning points formulae. We employ the extension of a
formula obtained by Rice [10] given by Farahmand [3], where erf(x)= ∫ x0 exp(−t2)dt,
that is

EN(i)
k (α,β)=

∫ β

α

(
∆i

πA2
i

)
exp

(−B2
i K2

2∆2
i

)
dx

+
∫ β

α

(√
2
π

)
KDiA−3

i exp

(
−K2

2A2
i

)
erf

(
KDi

Ai∆i
√

2

)
dx

= I(i)1 (α,β)+I(i)2 (α,β).

(2.1)

The Rice formula applied to the roots of T ′i (x) gives

EM(i)(α,β)=
∫ β

α

(
Λi

πB2
i

)
dx. (2.2)

Before we give generic definitions for the individual elements in (2.1) and (2.2), we
note two fundamental facts that make these definitions easier,

var
{
Ti(x)−L

}= var
{
Ti(x)

}
(2.3)

and

cov
{
Ti(x)−L,T ′i (x)

}= cov
{
Ti(x),T ′i (x)

}
. (2.4)

Using the properties (2.3) and (2.4), we define the variance and covariance elements
of (2.1) and (2.2) as

A2
i = var

{
Ti(x)

}
, B2

i = var
{
T ′i (x)

}
, C2

i = var
{
T ′′i (x)

}
,

Di = cov
{
Ti(x),T ′i (x)

}
, Ei = cov

{
T ′i (x),T

′′
i (x)

}
, (2.5)

∆2
i =A2

i B
2
i −D2

i , and Λ2
i = B2

i C
2
i −E2

i .
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To enable us to prove Theorem 2 as simply as possible, we define Q(i)(α,β) to be the
number of roots of T ′′i (x) (the second derivative of Ti(x)) on the interval (α,β) and
we give the Rice formula for the expected number of roots of T ′′i (x).

EQ(i)(α,β)=
∫ β

α

(
Ψi
πC2

i

)
dx, (2.6)

where

F2
i = var

{
T(3)
i (x)

}
, Gi = cov

{
Ti(x),T

(3)
i (x)

}
, (2.7)

and

Ψ2
i = C2

i F
2
i −G2

i . (2.8)

3. Evaluation of variances and covariances. Since the coefficients of (1.1) and (1.2)
are independent normally distributed random variables with mean zero and variance
one,

A2
2 =

n∑
j=1

sinh2 jx, (3.1)

B2
1 =

n∑
j=1

j2 sinh2 jx, (3.2)

B2
2 =

n∑
j=1

j2 cosh2 jx, (3.3)

C2
1 =

n∑
j=1

j4 cosh2 jx, (3.4)

C2
2 =

n∑
j=1

j4 sinh2 jx, (3.5)

D2 =
n∑
j=1

j coshjx sinhjx, (3.6)

E1 = E2 =
n∑
j=1

j3 coshjx sinhjx, (3.7)

F2
1 =

n∑
j=1

j6 sinh2 jx. (3.8)

At this point, we rewrite (3.1), (3.2), (3.3), (3.4), (3.6), and (3.7) in a form we utilize later.
We observe that

sinh2 jx = (cosh2jx−1)
2

, (3.9)

and use the hyperbolic equivalent to the two formulae given at 1.342.2 in [6, p. 36],
that is

n∑
j=1

cosh2jx = cosh(n+1)x sinhnx+coshnx sinh(n+1)x
2sinhx

− 1
2

= sinh(2n+1)x
2sinhx

− 1
2
.

(3.10)
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Thus, summing (3.9) and employing (3.10), we find that

A2
2 =

sinh(2n+1)x
4sinhx

− (2n+1)
4

. (3.11)

By repeated differentiation of (3.11), we find that

B2
i = (2n2+2n+1)

sinh(2n+1)x
8sinhx

−(2n+1)
coshx cosh(2n+1)x

8sinh2x

+ sinh(2n+1)x
8sinh3x

+ (−1)in(n+1)(2n+1)
12

, i= 1,2,

(3.12)

C2
1 = (2n4+4n3+6n2+4n+1)

sinh(2n+1)x
8sinhx

−(2n2+2n+1)(2n+1)
coshx cosh(2n+1)x

8sinh2x

+(3n2+3n+2)
sinh(2n+1)x

4sinh3x
−3(2n+1)

coshx cosh(2n+1)x
8sinh4x

+3
sinh(2n+1)x

8sinh5x
+ n(n+1)(2n+1)(3n2+2n−1)

60
,

(3.13)

D2 = (2n+1)
cosh(2n+1)x

8sinhx
− coshx sinh(2n+1)x

8sinh2x
, (3.14)

E1 = E2 = (n2+n+1)(2n+1)
cosh(2n+1)x

8sinhx

−(3n2+3n+1)
coshx sinh(2n+1)x

8sinh2x

+(6n+3)
cosh(2n+1)x

16sinh3x
− 3coshx sinh(2n+1)x

16sinh4x
.

(3.15)

4. Proof of the theorems. Looking at the properties of the random coefficients in
(1.1) and (1.2), it is clear that EN(i)

k (0,∞)=EN(i)
K (−∞,0) and EM(i)(0,∞)=EM(i)(−∞,0).

In the proofs that follow, we consider the interval (0,∞) only, it proves advantageous
to break this interval into the three subintervals (0,

√
logn/n), (

√
logn/n,1), and

(1,∞). We start by proving Theorem 1 and Theorem 2 on the interval (0,
√

logn/n).
From Rolle’s theorem, it is evident that, for any differentiable function P(x) with r

roots in the interval (a,b), P ′(x) (the derivative of P(x)) has r ′ roots on (a,b), where

r ≤ r ′ +1. (4.1)

From (2.1), we know that

EN(2)
K (α,β)≤ EN(2)

0 (α,β), (4.2)

where N(2)
K (α,β) and N(2)

0 (α,β), are the numbers of K level and zero level crossings
of (1.2), respectively, on the interval (α,β). Employing (4.1), (4.2), (2.2), (3.3), and (3.5),
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we find that

EN(2)
K

(
0,
√

logn
n

)
≤ EM(2)

(
0,
√

logn
n

)
+1≤

(
1
π

)∫√logn/n

0



√√√√C2

2

B2
2


dx+1

≤
(

1
π

)∫√logn/n

0
ndx+1=O

(√
logn

)
.

(4.3)

Obviously, taking advantage of the same analysis and using (2.6), (3.4), and (3.8), we
can show that

EM(1)
(

0,
√

logn
n

)
≤ EQ(1)

(
0,
√

logn
n

)
+1

≤
(

1
π

)∫√logn/n

0
ndx+1

=O
(√

logn
)
.

(4.4)

We can show that the second integral on the right-hand side of (2.1) does not con-
tribute to the leading behaviour of EN(2)

K (0,∞). Since we know that erf(x) ≤ √π/2,
for all values of x, and by making the simple substitution u=K/A2, it is clear that

I(2)2 (0,∞)≤
(

1√
2π

)∫∞
0
KD2A−3

2 exp
(−K2

2A2
2

)
dx

=
(

1√
2π

)∫∞
0

exp
(−u2

2

)
du= 1

2
.

(4.5)

Having derived (4.5), it becomes apparent that we can handle the remaining analysis
required for both theorems in tandem. At this point, we concentrate on the interval
(
√

logn/n,1); this is the only interval that contributes to the leading behaviour of
EN(2)

K (0,∞) and EM(1)(0,∞). To find the dominant terms in (3.11), (3.12), (3.13), (3.14),
and (3.15), we observe that, in this interval,

cothx <
e
x
<

en√
logn

. (4.6)

Employing (4.6), it becomes a trivial task to show that the derivative of fn,p(x) =
sinhnx/(sinhx)p is positive for all p < e−1

√
logn. Therefore, since sinh(x) < 4x in

(0,1),

fn,p(x)≥ sinh
{√

logn
}[

n
(
4
√

logn
)−1

]p
(4.7)

for all sufficiently large n.
Hence,

f2n+1,p(x)≥
(
np

48

)
(logn)−p/2 exp

{√
logn

}
(4.8)

for all p = 1,2,3,4, . . . . Now, using (3.11), (3.12), (3.13), (3.14), and (3.15) and since
sinhx ≥ x/4 for all x ∈ (0,1), we can show that, for all sufficiently large n,
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A2
2 =

sinh(2n+1)x
4sinhx

{
1+O

{ √
logn

exp
(√

logn
)}}, (4.9)

B2
1 = B2

2 = (2n2+2n+1)
sinh(2n+1)x

8sinhx

{
1+O

{
1√

logn

}}
, (4.10)

C2
1 = (2n4+4n3+6n2+4n+1)

sinh(2n+1)x
8sinhx

{
1+O

{
1√

logn

}}
, (4.11)

D2 = (2n+1)
cosh(2n+1)x

8sinhx

{
1+O

{
1√

logn

}}
, (4.12)

E1 = E2 = (n2+n+1)(2n+1)
cosh(2n+1)x

8sinhx

{
1+O

{
1√

logn

}}
. (4.13)

Due to cancellation of terms, it is not sufficient to use (4.9), (4.10), and (4.12) to com-
pute ∆2

2. Instead, we use (3.11), (3.12), and (3.14) to show that

∆2
2 =

sinh2(2n+1)x
64sinh4x

{
1+O

{
1√

logn

}}
. (4.14)

We compute Ψ2
1 from (4.10), (4.11), and (4.13) directly to give

Ψ2
1 =n4 sinh2(2n+1)x

64sinh4x

{
1+O

{
1√

logn

}}
. (4.15)

Since we have already determined I(2)2 (0,∞), we concentrate on I(2)1 (
√

logn/n,1).
From (2.1), (4.9), (4.10), and (4.12), we have

I(2)1

(√
logn
n

,1
)
= (2π)−1

∫ 1

√
logn/n

cosechx
{

1+O
{

1√
logn

}}
dx

×exp
(
−8n2 sinh3xK2

sinh(2n+1)x

)
dx

= (2π)−1
∫ 1

√
logn/n

cosechx
{

1+O
{

1√
logn

}}
dx

+O
(
K2n2

∫ 1

√
logn/n

sinh2x
sinh(2n+1)x

dx
)
.

(4.16)

The first integral on the right-hand side of (4.16) can be evaluated directly. To deter-
mine the second integral, we use the fact thatx ≤ sinhx ≤ 4x on the interval 0≤ x ≤ 1.
Thus,

I(2)1

(√
logn
n

,1
)
= (2π)−1

{
log

(
tanh

(
1
2

))
− log

(
tanh

(√
logn
2n

))}

+O
{
K2n

∫ 2n

2
√

logn
u2 cosech(u)du

}

= (2π)−1 logn+O( log logn
)+O(K2

n

)
.

(4.17)
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Since K = o(
√
n logn), it is clear from (4.17) that I(2)2 (

√
logn/n,1) = (2π)−1 logn. We

now evaluate EM(1)(
√

logn/n,1) using (2.2), (4.10), and (4.15).

EM(1)
(√

logn
n

,1
)
= (2π)−1

∫ 1

√
logn/n

cosechxdx
{

1+O
{

1√
logn

}}

= (2π)−1
{

log
(

tanh
(

1
2

))
− log

[
tanh

{√
logn
2n

}]}

= (2π)−1 logn+O{ log logn
}
.

(4.18)

All that remains to complete the proofs of the two theorems is to evaluate EN(2)
K (1,∞)

and EM(1)(1,∞). The same function fn,p(x), as used in the previous section, is obvi-
ously strictly increasing on the interval (1,∞). Since sinhnx > exp(nx)/3 and sinhx ≤
exp(x)/2, it is clear that

fn,p(x)≥ 2
exp(n−p)

3
. (4.19)

Using inequality (4.19), it can be shown that

A2
2 =

sinh(2n+1)x
4sinhx

{
1+O

{
nexp(−2n)

}}
, (4.20)

B2
1 = B2

2 = (2n2+2n+1)
sinh(2n+1)x

8sinhx

{
1+O

{
1
n

}}
, (4.21)

C2
1 = (2n4+4n3+6n2+4n+1)

sinh(2n+1)x
8sinhx

{
1+O

{
1
n

}}
, (4.22)

D2 = (2n+1)
cosh(2n+1)x

8sinhx

{
1+O

{
1
n

}}
, (4.23)

E1 = E2 = (n2+n+1)(2n+1)
cosh(2n+1)x

8sinhx

{
1+O

{
1
n

}}
, (4.24)

∆2
2 =

sinh2(2n+1)x
64sinh4x

{
1+O

{
1
n

}}
, (4.25)

Λ2
1 =n4 sinh2(2n+1)x

64sinh4x

{
1+O

{
1
n

}}
. (4.26)

Employing (2.1), (4.2), (4.20), and (4.25), we find that

EN(2)
K (1,∞)≤

(
1

2π

)∫∞
1

cosechxdx
{

1+O
{

1
n

}}

=
(

1
2π

)
log

[
tanh

(
x
2

)]∣∣∣∣
∞

1

{
1+O

{
1
n

}}

=O{1}.

(4.27)

Similarly, using (2.2), (4.21), and (4.26), we find that

EM(1)(1,∞)=O{1}. (4.28)
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If we combine (4.3), (4.5), (4.16), and (4.27), it is obvious that Theorem 1 is proved.
Bringing together (4.4), (4.18), and (4.28), the proof of the second theorem is also
complete.
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