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LEVEL CROSSINGS AND TURNING POINTS OF RANDOM
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ABSTRACT. In this paper, we show that the asymptotic estimate for the expected num-
ber of K-level crossings of a random hyperbolic polynomial a; sinhx + ap sinh2x + - - - +
ansinhnx, where a;(j = 1,2,...,n) are independent normally distributed random vari-
ables with mean zero and variance one, is (1/71)logn. This result is true for all K inde-
pendent of x, provided K = K;; = O(y/n). It is also shown that the asymptotic estimate of
the expected number of turning points for the random polynomial a; coshx + a cosh2x
+- -+ +ancoshnx, with a;(j =1,2,...,n) as before, is also (1/7)logn.
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1. Introduction. Let

n

Ti(x) = > ajcoshjx (1.1)
and =
n

T>(x) = > a;sinhjx, (1.2)

Jj=1

where aq,a»,...,a, is a sequence of independent normally distributed random vari-
ables with mean zero and variance one. Let N,(f)((x,B) be the number of real roots
of the equation T;(x) — K = 0 and MY («, 8) be the number of real roots of T;(x).
In both cases, the interval is («,B) and i = 1,2. Clearly, M («x, ) represents the
number of turning points of T;(x) on the interval («, ). It proves convenient to de-
note the expected number of real roots of T;(x)—K and T} (x), on the interval (¢, ),
by EN, I(f) (,8) and EM® (x, B), respectively. Bharucha-Reid and Sambandham [1] re-
ported an unpublished result of Das [2], where it is stated that for K = 0, EN(()” (—00,00)
~ (1/1)logn, the random coefficients being the same as in (1.1). Farahmand [4] ob-
tained the same asymptotic value as Das for ENI(<1) (—o00,00), where K = O(,/n). Farah-
mand highlighted the surprising way the hyperbolic polynomial mimics certain char-
acteristics of both the trigonometric and the algebraic polynomials. In a more re-
cent work, Farahmand [5] showed that EM(?) (-0, o) ~ (1/1r)logn, where the ran-
dom coefficients are again those outlined in (1.1) and (1.2). Clearly, there remains two
unsolved complementary problems, that is EM(1) (—o0, ) and EN{ (— o0, ). These
problems are the subject of this paper. We prove the following theorems.
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THEOREM 1. Ifthe coefficients of T>(x) in (1.2) are independent normally distributed
random variables with mean zero and variance one and K,, = K such that K%/ (nlogn)
tends to zero as n tends to infinity, then

ENP (—00,00) ~ (%>logn. (1.3)

THEOREM 2. Ifthe coefficients of T; (x) in (1.1) are independent normally distributed
random variables with mean zero and variance one and n tends to infinity, then

EMW (—c0,00) ~ <%>logn. (1.4)

These results may not have been derived until now because of the difficulty in ap-
plying the conventional Rice formula to both of these cases near zero. In our method,
we make the unusual step of determining the expected number of roots for the poly-
nomial’s derivative to simplify the analysis. More comprehensive results are known
for the random algebraic polynomial Z;‘:l a;x/. We refer the reader to the pioneering
works of Littlewood and Offord [8, 7] and the more recent works of Wilkins [11] and
Offord [9].

2. Level crossings and turning points formulae. We employ the extension of a
formula obtained by Rice [10] given by Farahmand [3], where erf(x) = féc exp(—t2)dt,

that is
. B[ A, —B2K?
ENY (a, =J L ex L dx
B =] Az ) P\ oaz

B2 —-K? KD; (2.1)
‘2 )KD;A7R f( ! ) :
+Jo( ( T ) v exp<2A?>er Al‘Ai\/? dx

=11 (, B) + I} (, B).

The Rice formula applied to the roots of T; (x) gives

, B _
EMY (x,B) =j ( Ai )dx. (2.2)

TTB?

Before we give generic definitions for the individual elements in (2.1) and (2.2), we
note two fundamental facts that make these definitions easier,

var {T;(x) —L} = var {T;(x)} (2.3)
and

cov{Ti(x)—L,T; (x)} = cov{Ti(x), T{ (x)}. (2.4)

Using the properties (2.3) and (2.4), we define the variance and covariance elements
of (2.1) and (2.2) as

A? =var{T;(x)}, B?=var{T/(x)}, C?=var{T/(x)},
D; =cov{Ti(x),T;(x)},  Ei=cov{T;(x),T{(x)}, (2.5)
A? = AB?-D?, and A7 =BC?-E:.
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To enable us to prove Theorem 2 as simply as possible, we define Q¥ («, ) to be the
number of roots of T;"(x) (the second derivative of T;(x)) on the interval («, 8) and
we give the Rice formula for the expected number of roots of T}’ (x).

® (5 )a 2.6
EQ (fx,ﬁ)—L(nqz) X, 2.6)
where
F2 =var{T”(x)},  Gi=cov{Ti(x),T” (x)}, (2.7)
and
Y7 = C2F? - G7. (2.8)

3. Evaluation of variances and covariances. Since the coefficients of (1.1) and (1.2)
are independent normally distributed random variables with mean zero and variance
one,

n

A} = > sinh’ jx, (3.1)
Jj=1
n

B? = > j*sinh’® jx, (3.2)
j=1
n

B% =) j?cosh® jx, (3.3)
j=1
n

C?=> j*cosh® jx, (3.4)
j=1
n

C2 =3 j*sinh?jx, (3.5)
Jj=1
n

D, = > jcoshjxsinh jx, (3.6)
Jj=1

n
E1 =E» =) jcoshjxsinhjx, (3.7)
Jj=1

n

F = j®sinh®jx. (3.8)

Jj=1
At this point, we rewrite (3.1), (3.2), (3.3), (3.4), (3.6), and (3.7) in a form we utilize later.
We observe that
(cosh2jx—1)
5
and use the hyperbolic equivalent to the two formulae given at 1.342.2 in [6, p. 36],
that is

sinh? jx = (3.9)

_ cosh(n+1)xsinhnx +coshnxsinh(n+1)x 1
B 2sinhx 2

n
> cosh2jx
-1

(3.10)
_ sinh(2n+1)x 1

2sinhx 2"
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Thus, summing (3.9) and employing (3.10), we find that

> sinh(2n+1)x 3 2n+1)
Az = 4sinhx 4 (3.11)

By repeated differentiation of (3.11), we find that

B? = (2n2+2n+1)%—(2n+1)COthCO_Sh(22n+1)X
8sinhx 8sinh” x
) (3.12)
sinh(2n+1)x (-1)'n(n+1)2n+1) )
+ s 3 ) 1= 1121
8sinh” x 12
C? = (2nd +4n3 + 62 + 4n + 1) SMRERF DX
8sinhx
—(@n2+2n+1)(2n + 1) 05X COShER F D
8sinh” x
inh(2n+1) h h(2n+1) (3.13)
+(3n2+3n+2)sm .n;r x_3(2n+1)cos xco.s 4n+ X
4sinh’ x 8sinh™ x
sinhn+1)x nmn+1)2n+1)(3Bn?+2n-1)
8sinh® x 60 :
Dy = (2n+1) cosh(?n+ 1)x _ Coshxs1@(3n+ l)x’ (3.14)
8sinhx 8sinh” x
Fy=E» = (n?+n+1)(2n+1)08hCn+Dx
8sinhx
coshxsinh(2n+1)x
—-3n%+3n+1 , 3.15
( ) 8sinh’ x ( )
L (6n+3) cosh(2_n43— 1)x a 3coshx31¥1h(42n+ 1)x
16sinh’ x 16sinh™ x

4. Proof of the theorems. Looking at the properties of the random coefficients in
(1.1)and (1.2), it is clear that EN,"(0, c0)= ENy’ (~c0,0) and EM? (0, 00) = EM®) (~0,0).
In the proofs that follow, we consider the interval (0, o) only, it proves advantageous
to break this interval into the three subintervals (0, /Iogn/n), (ylogn/n,1), and
(1,00). We start by proving Theorem 1 and Theorem 2 on the interval (0, Iogn/n).

From Rolle’s theorem, it is evident that, for any differentiable function P(x) with r
roots in the interval (a,b), P’ (x) (the derivative of P(x)) has ' roots on (a, b), where

r<r +1. 4.1)
From (2.1), we know that
ENP («, B) < EN{? («,B), (4.2)

where N,(f) (e, B) and Néz) (e, B), are the numbers of K level and zero level crossings
of (1.2), respectively, on the interval (¢, 8). Employing (4.1), (4.2), (2.2), (3.3), and (3.5),
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we find that

\/logn/n 2
EN,?’(O,L’%) <EMW (0,7vl°g")+1 < (l)J £ )ax+1
n n ™/ Jo B; 4.3)

() ) e <o g

Obviously, taking advantage of the same analysis and using (2.6), (3.4), and (3.8), we
can show that

EM(D(O, 7V10gn) SEQ(D(O, 7Vlongn) +1

n

< (l) Jw/nndx+1 (4.4)

us 0

- 0lyogn).

We can show that the second integral on the right-hand side of (2.1) does not con-
tribute to the leading behaviour of ENIEZ)(O, o). Since we know that erf(x) < /1t/2,
for all values of x, and by making the simple substitution u = K/A,, it is clear that

1y (® : ~K?
IéZ)(O,OO) < (ﬁ) Jo KDzAE‘geXp (W)dx
2

1 © —u? 1
“ ()], e () au=3.

Having derived (4.5), it becomes apparent that we can handle the remaining analysis
required for both theorems in tandem. At this point, we concentrate on the interval
(vlogn/n,1); this is the only interval that contributes to the leading behaviour of
EN(0,00) and EM™) (0, ). To find the dominant terms in (3.11), (3.12), (3.13), (3.14),
and (3.15), we observe that, in this interval,

(4.5)

en

Jlogn®

Employing (4.6), it becomes a trivial task to show that the derivative of f, ,(x) =
sinhnx/(sinhx)? is positive for all p < e~!\/logn. Therefore, since sinh(x) < 4x in
(0,1),

cothx < e < (4.6)
X

Jnp(x) = sinh{wllogn} [n(4 10gn>_l]p 4.7)

for all sufficiently large n.
Hence,

Son+1,p(x) = <Z—8p) (logn)‘”/zexp{\llogn} (4.8)

for all p = 1,2,3,4,.... Now, using (3.11), (3.12), (3.13), (3.14), and (3.15) and since
sinhx > x /4 for all x € (0,1), we can show that, for all sufficiently large n,
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A%:Shﬂﬁ#{uo{%}}, 4.9)
Bf:B%:(2n2+2n+1)%{1+0{\ﬂ;@}}, (4.10)
Cf:(2n4+4n3+6n2+4n+1)mg(§#{1+0{@”, (4.11)
DZ:(2n+1)m¥+;M{1+o{ﬂsﬁ}}, 4.12)
El=E2=(n2+n+1)(2n+1)m2$7;h;1)x{1+0{@}}. (4.13)

Due to cancellation of terms, it is not sufficient to use (4.9), (4.10), and (4.12) to com-
pute A%. Instead, we use (3.11), (3.12), and (3.14) to show that

sinh2(2n+ 1)x 1
A2=—{1+ { H» 4.14
2 64 sinh®* x Jiogn ( )
We compute ‘I’f from (4.10), (4.11), and (4.13) directly to give
, inh®(2n+1)x 1
‘Ifzzn‘*sm—{uo{ H» 415
! 64 sinh* x Jlogn ( )

Since we have already determined I;Z) (0,00), we concentrate on 1{2)(«/logn/n, 1).
From (2.1), (4.9), (4.10), and (4.12), we have

/‘] 1
I{Z)(ﬂJ) = (ZW)’IJ cosechx{1+0{ 1 }}dx
n /logn/n \/logn

sinh® xK? )
sinh(2n+1)x

! 1
_ -1
=(2m) J lOgnmcosechx{1+0{ logn}}dx

+0 <K2n2 Jl __sioh®x dx)
J/logn/n Slnh(2n+ 1)x ’

X exp < —8n?
(4.16)

The first integral on the right-hand side of (4.16) can be evaluated directly. To deter-
mine the second integral, we use the fact that x < sinhx < 4x ontheinterval 0 < x < 1.
Thus,

n? (@; 1) = (217)—1{10g <tanh(%>) “log (tanh(m>>}

2n

2n
+O{K2nJ u? cosech(u)du} (4.17)
2./logn

2
= (2m) 'logn +0(loglogn) +O(Kn )
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Since K = o(y/nlogn), it is clear from (4.17) that I§2>(w/logn/n, 1) = (2m) " 'logn. We
now evaluate EM (\/logn/n,1) using (2.2), (4.10), and (4.15).

EM(I)(@J):(ZW)_IJ’I cosechxdx{lJrO{ L }}

= (2")_1{10g<tanh<%)>—log[tanh{\ﬂ;?ﬂ} (4.18)

= (2m) 'logn + O{loglogn}.

All that remains to complete the proofs of the two theorems is to evaluate EN ,22) (1,00)
and EM (1, %). The same function Jn,p(x), as used in the previous section, is obvi-
ously strictly increasing on the interval (1, ). Since sinhnx > exp(nx)/3 and sinhx <
exp(x)/2, it is clear that

exp(n —
Fop (X) 22710(3 P, (4.19)
Using inequality (4.19), it can be shown that
> sinh(2n+ l)x{ { B }}
Az_iélsinhx 1+0inexp(—2n) ¢, (4.20)
B2 = B2 = (2n2+2n+1)w{1+0{l}}, 4.21)
8sinhx n
C2 = (2n*+4n +6n2 +4n+ l)w{l+0{l}}, 4.22)
8sinh x n
D, = (2n+1)w{1+o{l}}, 4.23)
8sinhx n
Ei=FE»=(n+n+ 1><2n+1)w{1+0{3}}, (4.24)
8sinhx n
-
pj = SC2n b 1)x (?"jl)x{uo{l}}, (4.25)
64 sinh™ x n
)
A2 :n‘*w{uo{l}}. (4.26)
64 sinh™ x n

Employing (2.1), (4.2), (4.20), and (4.25), we find that

EN,EZ)(I,oo) < (%) JTO Cosechxdx{1+0{%}}
(g oe[wn ()] oot

=0{1}.

Similarly, using (2.2), (4.21), and (4.26), we find that

EM®M (1,0) = O{1}. (4.28)
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If we combine (4.3), (4.5), (4.16), and (4.27), it is obvious that Theorem 1 is proved.
Bringing together (4.4), (4.18), and (4.28), the proof of the second theorem is also
complete.
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