STABILITY FOR RANDOMLY WEIGHTED SUMS OF RANDOM ELEMENTS

TIEN-CHUNG HU and HEN-CHAO CHANG

(Received 12 May 1998)

ABSTRACT. Let $\{X_n : n = 1, 2, 3, ...\}$ be a sequence of i.i.d. random elements taking values in a separable Banach space of type p and let $\{A_{n,i} : i = 1, 2, 3, ...; n = 1, 2, 3, ...\}$ be an array of random variables. In this paper, under various assumptions of $\{A_{n,i}\}$, the necessary and sufficient conditions for $\sum_{i=1}^{\infty} A_{n,i}X_i \to 0$ a.s. are obtained. Also, the necessity of the assumptions of $\{A_{n,i}\}$ is discussed.

Keywords and phrases. Randomly weighted sums, arrays of random elements, almost sure convergence, Banach spaces of type p, law of large numbers.

1991 Mathematics Subject Classification. 60B12.

1. Introduction. Let $\{X_n : n = 1, 2, 3, ...\}$ be a sequence of independent identically distributed (i.i.d.) random variables and let $\{a_{n,i} : i = 1, 2, ..., n; n = 1, 2, 3, ...\}$ be a triangular array of constants. Many papers were devoted to extending various types of convergence modes to weighted sums $W_n = \sum_{i=1}^n a_{n,i} X_i$ in the literature. However, we are only interested in the work of almost sure convergence. The sequence $\{\sum_{i=1}^n a_{n,i}\}$ converging to 0 at a certain rate as $n \to \infty$ is a traditional assumption. For example, under the assumption $\sum_{i=1}^n a_{n,i}^2 = O(n^{-2/r}), W_n \to 0$ a.s. if $E|X_1|^r < \infty$ and $EX_1 = 0$ (See Chow and Lia [3] and Choi and Sung [2]). On the other hand, Padgett and Taylor [4] extended the usual convergence theorems to weighted sums of random elements in a separable Banach space. It would be interesting to extend the results with random weights.

Let $\{A_{n,i} : i = 1, 2, ..., n; n = 1, 2, 3, ...\}$ be a triangular array of random variables such that $\sum_{i=1}^{n} A_{n,i}^2 = O(n^{-2/r})$ a.s., Ahmad [1] obtained $W_n = \sum_{i=1}^{n} A_{n,i}X_i \to 0$ a.s. if $E ||X_1||^r < \infty$ and $EX_1 = 0$. We note that, for the Marcinkiewicz-Zygmund law of large numbers, we take the uniform weight $a_{n,i} = n^{-1/r}$ but the condition $\sum_{i=1}^{n} a_{n,i}^2 = O(n^{-2/r})$ cannot be satisfied. The purpose of this paper is to extend the randomly weighted sums of a triangular array of random variables to that of an infinite array of random elements such that the Marcinkiewicz-Zygmund law of large numbers can be obtained as a corollary.

In Section 2, we establish the Marcinkiewicz-Zygmund law of large numbers in a separable Banach space of Type *p*. In Section 3, we consider an infinite array of random variables $\{A_{n,i} : n, i = 1, 2, 3, ...\}$ as the weight under various assumptions of $\{A_{n,i}\}$, we obtain that $W_n = \sum_{i=1}^{\infty} A_{n,i} X_i \to 0$ a.s. if and only if $EX_1 = 0$ (when it exists) and $E ||X_1||^r < \infty$.

2. The Marcinkiewicz law in a space of type *p*. Let (Ω, F, P) be a probability space and **B** be a real separable Banach space with norm $\| \bullet \|$. A random element is defined to be an *F*-measurable mapping of Ω into **B** with the Borel σ -field. The concept of independent random elements is a direct extension of the concept of independent random variables. A detailed account of basic properties of random elements in real Banach spaces can be found in Taylor [6].

In this section, we prove the Marcinkiewicz-Zygmund law of large numbers in a space of type p. First, we introduce a space of type p.

DEFINITION 1. Let $1 \le p \le 2$ and $\{r_i : i = 1, 2, 3, ...\}$ be a sequence of independent random variables with $Pr(r_i = \pm 1) = 1/2$. A separable Banach space **B** is said to be of type *p* if there exists a constant *C* such that

$$E\left\|\sum_{i=1}^{n} r_{i} x_{i}\right\| \leq C\left(\sum_{i=1}^{n} \|x_{i}\|^{p}\right)^{1/p}$$

$$(2.1)$$

for every $n \in N$ and all $x_1, \ldots, x_n \in \mathbf{B}$.

Woyczyński [7] proved the equivalent condition of a space of type *p*.

LEMMA 1 (Woyczyński [7]). Let $1 \le p \le 2$ and $q \ge 1$. The following properties of **B** are equivalent :

(i) *The separable Banach space* **B** *is of type p.*

(ii) There exists *C* such that, for every $n \in N$ and for any sequence $\{X_i : i = 1, 2, ..., n\}$ of independent random elements in **B** with $EX_i = 0, i = 1, 2, ..., n$,

$$E\left(\left\|\sum_{i=1}^{n} X_{i}\right\|^{q}\right) \leq CE\left(\left(\sum_{i=1}^{n} \|X_{i}\|^{p}\right)^{q/p}\right).$$
(2.2)

Using Lemma 1, some elementary properties of spaces of type p can be easily proved. Every separable Hilbert space and finite-dimensional Banach space are of type 2. Every separable Banach space is at least of type 1, and the ℓ^p and L^p are of type min{2, p} for $p \ge 1$. If **B** is a space of type p and $1 \le q \le p$, then **B** is a space of type q. Before considering the Marcinkiewicz-Zygmund law of large numbers in a space of type p, we need the following definition and lemmas.

DEFINITION 2. Let **B** be a separable Banach space, \mathbf{B}^* the dual space of **B**, and **B**' the unit ball in \mathbf{B}^* . *X* is a random element in **B**. The directionally maximum median of *X* is defined by

$$\rho(X) \equiv \sup_{f \in \mathbf{B}'} |\mu(f(X))|, \qquad (2.3)$$

where $\mu(Y)$ denotes the minimum median in absolute value of the random variable *Y*.

LEMMA 2 (Sakhanenko [5]). Let $X_1, ..., X_n$ be independent random elements in **B** and $S_k = \sum_{i=1}^k X_i$, then, for every t > 0,

$$\Pr\left(\max_{1\le k\le n} ||S_k|| > t\right) \le 2\Pr\left(||S_n|| > t - \max_{1\le k\le n} \rho\left(S_n - S_k\right)\right).$$

$$(2.4)$$

LEMMA 3. Let $\{X_n : n = 1, 2, 3, ...\}$ be a sequence of independent random elements in a separable Banach space. If $S_n = \sum_{i=1}^n X_i$ converges to a random element S in probability, then S_n converges to S a.s.

PROOF. Since S_n converges to S in probability, take ϵ such that $0 < \epsilon < 1/2$, then there exists an integer n_0 such that if $m > n \ge n_0$,

$$\Pr\left(||S_m - S|| > \frac{\epsilon}{2}\right) < \frac{\epsilon}{2} \quad \text{and} \quad \Pr\left(||S_n - S|| > \frac{\epsilon}{2}\right) < \frac{\epsilon}{2}. \tag{2.5}$$

So,

$$\Pr\left(||S_m - S_n|| > \epsilon\right) < \Pr\left(||S_m - S|| > \frac{\epsilon}{2}\right) + \Pr\left(||S_n - S|| > \frac{\epsilon}{2}\right) < \epsilon < \frac{1}{2}.$$
 (2.6)

We have $\mu(||S_m - S_n||) < \epsilon$ for any $m > n \le n_0$, where $\mu(Y)$ is minimum median in absolute value of the random variable *Y*.

By Lemma 2, if $m_1 > n > n_0$,

$$\Pr\left(\max_{n < m < m_1} ||S_m - S_n|| > 2\epsilon\right) \le 2\Pr\left(||S_{m_1} - S_n|| > 2\epsilon - \max_{n < m < m_1} \rho\left(S_{m_1} - S_m\right)\right)$$
$$\le 2\Pr\left(||S_{m_1} - S_n|| > 2\epsilon - \max_{n < m < m_1} \mu\left(||S_{m_1} - S_m||\right)\right) \quad (2.7)$$
$$\le 2\Pr\left(||S_{m_1} - S_n|| > \epsilon\right) < 2\epsilon.$$

Let $m_1 \to \infty$, then if $m > n > n_0$, we have $\Pr(\max_{n < m} \|S_m - S_n\| > 2\epsilon) < 2\epsilon$.

We obtain S_n converges to some random element a.s., and S_n converges to S in probability. Hence, S_n converges to S a.s.

Now, we prove the Marcinkiewicz-Zygmund law of large numbers in a space of type p.

THEOREM 1. Let **B** be a separable Banach space of type *P* and $\{X_n : n = 1, 2, 3, ...\}$ be a sequence of independent and identically distributed random elements in **B**. Then, for any 0 < r < p,

$$\frac{S_n - nc}{n^{1/r}} \longrightarrow 0 \quad a.s. \tag{2.8}$$

for some constant *c* if and only if $E||X_1||^r < \infty$.

Moreover, if $r \ge 1$, $c = EX_1$ and 0 < r < 1, c is arbitrary.

PROOF.

NECESSARY PART. Since (2.8) holds,

$$\frac{X_n}{n^{1/r}} = \frac{S_n - nc}{n^{1/r}} - \left(\frac{n-1}{n}\right)^{1/r} \frac{S_{n-1} - nc}{(n-1)^{1/r}} \longrightarrow 0 \quad \text{a.s.,}$$
(2.9)

whence, by the Borel-Cantelli lemma, $\sum_{n=1}^{\infty} \Pr(\|X_1\| > n^{1/r}) < \infty$. Thus, $E\|X_1\|^r < \infty$.

SUFFICIENT PART. Since $E ||X_1||^r < \infty$, define $Y_n = n^{-1/r} X_n I(||X_n|| \le n^{1/r})$ and $A_j = \{(j-1)^{1/r} < ||X_1|| \le j^{1/r}\}$. Choose a positive number α such that $r < \alpha \le p$ and $\alpha \ge 1$. We have

$$\sum_{n=1}^{\infty} E \|Y_n\|^{\alpha} = \sum_{n=1}^{\infty} \sum_{j=1}^{n} n^{-\alpha/r} \int_{A_j} \|X_1\|^{\alpha} dp = \sum_{j=1}^{\infty} \sum_{n=j}^{\infty} n^{-\alpha/r} \int_{A_j} \|X_1\|^{\alpha} dp$$

T.-C. HU AND H.-C. CHANG

$$\leq c_{1} \sum_{j=1}^{\infty} j^{1-\alpha/r} \int_{A_{j}} \|X_{1}\|^{\alpha} dp \leq c_{1} \sum_{j=1}^{\infty} \int_{A_{j}} \|X_{1}\|^{r} dp$$

= $c_{1} E \|X_{1}\|^{r} < \infty$, for some constant c_{1} . (2.10)

From Lemma 1,

$$E \left\| \sum_{i=n}^{m} (Y_i - EY_i) \right\|^{\alpha} \le c_2 E \left(\sum_{i=n}^{m} ||Y_i - EY_i||^p \right)^{\alpha/p} \le c_2 \sum_{i=n}^{m} E ||Y_i - EY_i||^{\alpha} \le 2^{\alpha} c_2 \sum_{i=n}^{m} E ||Y_i||^{\alpha}.$$
(2.11)

We have $\sum_{i=1}^{n} (Y_i - EY_i)$ converges to some random element Y_0 in L^{α} . Therefore, $\sum_{i=1}^{n} (Y_i - EY_i) \to Y_0$ in probability. By Lemma 3, $\sum_{i=1}^{n} (Y_i - EY_i) \to Y_0$ a.s. Since

$$\sum_{n=1}^{\infty} \Pr\left(\frac{X_n}{n^{1/r}} \neq Y_n\right) = \sum_{n=1}^{\infty} \Pr\left(\|X_1\| > n^{1/r}\right) \le E\|X_1\|^r < \infty,$$
(2.12)

so,

$$\sum_{n=1}^{\infty} \frac{X_n - E(X_n I(||X_n|| \le n^{1/r}))}{n^{1/r}} = \sum_{n=1}^{\infty} \left(\frac{X_n}{n^{1/r}} - EY_n\right) \quad \text{converges a.s.}$$
(2.13)

If 0 < r < 1, we can choose $\alpha = 1$. Then $\sum_{n=1}^{\infty} E ||Y_n|| < \infty$. We have $\sum_{n=1}^{\infty} (X_n)/(n^{1/r})$ converges a.s. By Kronecker lemma, $(S_n - nc)/(n^{1/r})$ converges a.s. for any constant *c*.

If r = 1, by Kronecker lemma, $(S_n/n) - (1/n) \sum_{i=1}^n E(X_i I(||X_i|| \le n))$ converges a.s. and $E(X_n I(||X_n|| \le n)) \rightarrow EX_1$, we have (2.8) holds.

If r > 1, we can show that

$$\sum_{n=1}^{\infty} n^{-1/r} E ||X_n I(||X_n|| > n^{1/r})|| \leq \sum_{n=1}^{\infty} n^{-1/r} E(||X_1|| I(||X_1|| > n^{1/r})) = \sum_{n=1}^{\infty} n^{-1/r} \sum_{j=n+1}^{\infty} \int_{A_j} ||X_1|| dp = \sum_{j=2}^{\infty} \sum_{n=1}^{j-1} n^{-1/r} \int_{A_j} ||X_1|| dp \leq \frac{r}{r-1} \sum_{j=1}^{\infty} (j-1)^{(r-1)/r} \int_{A_j} ||X_1|| dp \leq \frac{r}{r-1} \sum_{j=1}^{\infty} \int_{A_j} ||X_1||^r dp = \frac{r}{r-1} E ||X_1||^r < \infty.$$

$$(2.14)$$

Therefore, $\sum_{n=1}^{\infty} (X_n - EX_1)/n^{1/r}$ converges a.s. We have (2.8) holds by Kronecker lemma.

3. The convergence of the weighted sums. Throughout this section, we deal with the almost sure convergence of randomly weighted sums $\sum_{i=1}^{\infty} A_{n,i}X_i$, where $\{X_n : n = 1, 2, 3, ...\}$ is a sequence of independent and identically distributed random elements in a space of type p and $\{A_{n,i} : n, i = 1, 2, 3, ...\}$ is an array of random variables satisfying some conditions.

562

THEOREM 2. Let **B** be a separable Banach space of type p. Let $\{X_n : n = 1, 2, 3, ...\}$ be a sequence of independent and identically distributed random elements in **B** such that $E||X_1||^r < \infty$ and r < p. Moreover, we assume that $EX_1 = 0$ when $r \ge 1$. Let $\{A_{n,i} : n, i = 1, 2, 3, ...\}$ be an array of random variables such that $\{A_{n,i}\}$ and $\{X_i\}$ are independent and satisfying

$$A_{n,i} = O(i^{-1/r}) \quad a.s. \text{ for every } n, \tag{3.1}$$

$$\lim_{n \to \infty} A_{n,i} = 0 \qquad a.s. \text{ for every } i, \tag{3.2}$$

$$\sum_{i=1}^{\infty} E |A_{n,i}|^r < \infty \quad \text{for every } n, \tag{3.3}$$

and

$$\sum_{i=1}^{\infty} i^{1/r} |A_{n,i} - A_{n,i+1}| < M \quad a.s. \text{ for every } n \text{ and some constant } M > 0.$$
(3.4)

Then

$$\lim_{n \to \infty} \sum_{i=1}^{\infty} A_{n,i} X_i = 0 \quad a.s.$$
(3.5)

Conversely, if

$$\lim_{n \to \infty} \sum_{i=1}^{\infty} A_{n,i} X_i = 0 \quad a.s.$$
(3.6)

for all arrays $\{A_{n,i}\}$ satisfying the above conditions, then $E ||X_1||^r < \infty$.

PROOF. Since $\{A_{n,i}\}$ and $\{X_i\}$ are independent, if r > 1, we choose p = q = r in Lemma 1, then

$$E\left(\sum_{i=1}^{\infty} \|A_{n,i}X_i\|\right)^r \le \sum_{i=1}^{\infty} E|A_{n,i}|^r E\|X_1\|^r < \infty.$$
(3.7)

If $r \leq 1$, it is obvious that

$$E\left(\sum_{i=1}^{\infty} \|A_{n,i}X_i\|\right)^r \le \sum_{i=1}^{\infty} E|A_{n,i}|^r E\|X_1\|^r < \infty.$$
(3.8)

Therefore, $\sum_{i=1}^{\infty} A_{n,i} X_i$ converges a.s.

Since $A_{n,i} = A_{n,i}^+ - A_{n,i}^-$, without loss of generality, we can assume that $A_{n,i} \ge 0$. Let $S_k = \sum_{i=1}^k X_i$, $Y_k = (S_k/k^{1/r})$ for every $k \ge 1$ and $S_0 = 0$. By Theorem 1, we have $\lim_{k\to\infty} Y_k = 0$ a.s.

$$\sum_{i=1}^{\infty} A_{n,i} X_i = \sum_{i=1}^{\infty} A_{n,i} (S_i - S_{i-1}) = \lim_{N \to \infty} \left(\sum_{i=1}^{N-1} (A_{n,i} - A_{n,i+1}) S_i + A_{n,N} S_N \right).$$
(3.9)

Since $\{i^{1/r}A_{n,i}\}$ is bounded a.s. for every *n* and *r*,

$$\lim_{N \to \infty} A_{n,N} S_N = \lim_{N \to \infty} \left(N^{1/r} A_{n,N} \right) Y_N = 0 \quad \text{a.s.}$$
(3.10)

We have

$$\sum_{i=1}^{\infty} A_{n,i} X_i = \sum_{i=1}^{\infty} i^{1/r} (A_{n,i} - A_{n,i+1}) Y_i \quad \text{a.s.}$$
(3.11)

Let $B_{n,i} = i^{1/r} (A_{n,i} - A_{n,i+1})$. Hence, $\sum_{i=1}^{\infty} |B_{n,i}| \le M$ a.s. for every n and $\lim_{n\to\infty} B_{n,i} = 0$ a.s. for every i. Define $D^0 = \{w : \lim_{n\to\infty} Y_i(w) = 0\}$ and $D_n^1 = \{w : \sum_{i=1}^{\infty} |B_{n,i}(w)| \le M\}$ for each n and $D_i^2 = \{w : \lim_{n\to\infty} B_{n,i}(w) = 0\}$ for each i. For every $w \in D^0 \cap \bigcap_{i=1}^{\infty} (D_i^1 \cap D_i^2)$ and every $\epsilon > 0$, we can choose A such that $||Y_i(w)|| < \epsilon$ for $i \ge A$,

$$\sum_{i=1}^{\infty} \|B_{n,i}(w)Y_i(w)\| \le \sum_{i=1}^{A-1} |B_{n,i}(w)| \|Y_i(w)\| + \sum_{i=A}^{\infty} |B_{n,i}(w)| \|Y_i(w)\| \le \max_{i\le A-1} \|Y_i(w)\| \sum_{i=1}^{A-1} |B_{n,i}(w)| + M\epsilon \longrightarrow M\epsilon \quad \text{as } n \longrightarrow \infty.$$
(3.12)

Since $\Pr(D^0 \cap \bigcap_{i=1}^{\infty} (D_i^1 \cap D_i^2)) = 1$, $\lim_{n \to \infty} \sum_{i=1}^{\infty} \|B_{n,i}Y_i\| = 0$ a.s. Therefore,

$$\lim_{n \to \infty} \sum_{i=1}^{\infty} A_{n,i} X_i = \lim_{n \to \infty} \sum_{i=1}^{\infty} B_{n,i} Y_i = 0 \quad \text{a.s.}$$
(3.13)

If $\lim_{n\to\infty}\sum_{i=1}^{\infty}A_{n,i}X_i = 0$ a.s. for all arrays $\{A_{n,i}\}$ satisfying the above conditions, we can choose

$$A_{n,i} = \begin{cases} n^{-1/r} & \text{if } i \le n, \\ 0 & \text{if } i > n. \end{cases}$$
(3.14)

Then (2.8) holds. By Theorem 1, we have $E ||X_1||^r < \infty$.

REMARK 1. The following example claims that condition (3.4) cannot be omitted. Consider the real number space *R* as a space of type 2. Choose a sequence $\{X_n : n = 1, 2, 3, ...\}$ of independent and identically distributed random variables with $EX_1^2 < \infty$ and $EX_1 = 0$. Define

$$A_{n,i} = \begin{cases} n^{-1/2} & \text{if } i \le n, \\ 0 & \text{if } i > n. \end{cases}$$
(3.15)

Choose any r < 2 so that condition (3.4) does not hold. By the Central Limit Theorem, $\sum_{i=1}^{\infty} A_{n,i}X_i$ cannot converge to 0 a.s.

Choi and Sung [2] considered the almost sure convergence of $\sum_{i=1}^{\infty} a_{n,i}X_i$ for triangular array of constants. Their Theorem 3 can be regarded as a corollary of Theorem 2.

COROLLARY 1 (Choi and Sung [2, Theorem 3]). Let $\{X_n : n = 1, 2, 3, ...\}$ be independent and identically distributed random variables with $EX_1 = 0$ and $E|X_1|^r < \infty$ for some $1 \le r < 2$. Let $\{a_{n,i} : i = 1, 2, ..., n; n = 1, 2, 3, ...\}$ be a triangular array of constants satisfying $\sum_{i=1}^{n} |a_{n,i} - a_{n,i+1}| = O(n^{-1/r})$, where $a_{n,n+1} = 0$. Then

$$\lim_{n \to \infty} \sum_{i=1}^{n} a_{n,i} X_i = 0 \quad a.s.$$
(3.16)

PROOF. By Theorem 2, we must show that there is a constant M > 0 such that

$$\lim_{n \to \infty} a_{n,i} = 0 \quad \text{for every } i \tag{3.17}$$

and

$$\sum_{i=1}^{\infty} i^{1/r} |a_{n,i} - a_{n,i+1}| < M \quad \text{for every } n.$$
(3.18)

There is a constant C > 0 such that $\sum_{i=1}^{n} |a_{n,i} - a_{n,i+1}| \le Cn^{-1/r}$. We have $|a_{n,i}| \le Cn^{-1/r}$ for every *i*. So, $\lim_{n\to\infty} a_{n,i} = 0$ for every *i*.

Therefore,

$$\sum_{i=1}^{\infty} i^{1/r} |a_{n,i} - a_{n,i+1}| = \sum_{i=1}^{n} i^{1/r} |a_{n,i} - a_{n,i+1}|$$

$$\leq n^{1/r} \sum_{i=1}^{n} |a_{n,i} - a_{n,i+1}| \leq C.$$
(3.19)

So, the proof is complete.

The assumptions of $\{A_{n,i}\}$ in Theorem 2 can be simplified as in Theorem 3 for r < 1 and Theorem 4 for $r \ge 1$.

LEMMA 4. Let $\{b_n : n = 1, 2, 3, ...\}$ be a sequence of positive numbers. If $\sum_{i=1}^{\infty} i |b_i - b_{i+1}| < \infty$ and $\sum_{i=1}^{\infty} b_i < \infty$, then there exists C > 0 such that $ib_i < C$ for all i.

PROOF. Since $\sum_{i=1}^{\infty} i|b_i - b_{i+1}| < \infty$, there exists N > 0 such that $\sum_{k=N}^{\infty} i|b_i - b_{i+1}| < 1$. If the result of this Lemma is false, then any n, l > 0, there exists i > l such that $b_i > n/i$. We define

$$n_i \equiv \inf\left\{i: i > 2n_{j-1} \text{ and } b_i > \frac{J}{i}\right\} \quad \text{if } j \ge 2.$$
(3.20)

And

$$n_0 \equiv 0, \qquad n_1 \equiv \inf \left\{ i : i > N \text{ and } b_i > \frac{1}{i} \right\}.$$
 (3.21)

We see that

$$\sum_{i=1}^{\infty} b_i = \sum_{i=1}^{\infty} \sum_{k=n_{i-1}+1}^{n_i} b_k = \sum_{i=1}^{\infty} \sum_{k=n_{i-1}+1}^{n_i} (b_{n_i} + (b_k - b_{n_i})).$$
(3.22)

If $m > n \ge N$, then

$$\sum_{i=n}^{m} b_i - b_m \le \sum_{i=n}^{m} \sum_{k=i}^{m-1} |b_k - b_{k+1}| = \sum_{k=n}^{m-1} \sum_{i=n}^{k} |b_k - b_{k+1}| \le \sum_{k=n}^{m-1} K |b_k - b_{k+1}| < 1.$$
(3.23)

Therefore,

$$\sum_{i=1}^{\infty} b_i = \sum_{i=1}^{\infty} \sum_{k=n_{i-1}+i}^{n_i} (b_{n_i} + (b_k - b_{n_i}))$$

$$\geq \sum_{i=2}^{\infty} \left(\frac{i}{n_i} (n_i - n_{i-1}) - 1\right) \geq \sum_{i=2}^{\infty} \left(\frac{i}{n_i} \times \frac{n_i}{2} - 1\right) = \infty.$$
(3.24)

But $\sum_{i=1}^{\infty} b_i < \infty$ and the proof is complete.

When r < 1, Theorem 2 can be rewritten as follows.

565

THEOREM 3. Let **B** be a separable Banach space of type p. Let $\{X_n : n = 1, 2, 3, ...\}$ be a sequence of independent and identically distributed random elements in **B** such that $E||X_1||^r < \infty$ and r < 1. Let $\{A_{n,i} : n, i = 1, 2, 3, ...\}$ be an array of random variables such that $\{A_{n,i}\}$ and $\{X_i\}$ are independent, and satisfying

$$\lim_{n \to \infty} A_{n,i} = 0 \quad a.s. \text{ for every } i, \tag{3.25}$$

$$\sum_{i=1}^{\infty} E|A_{n,i}|^r < \infty \quad a.s. \text{ for every } n,$$
(3.26)

and

$$\sum_{k=1}^{\infty} i |A_{n,i} - A_{n,i+1}|^r < M \quad a.s. \text{ for every } n \text{ and some constant } M > 0.$$
(3.27)

Then $\lim_{n\to\infty} \sum_{i=1}^{\infty} A_{n,i} X_i = 0$ a.s.

Conversely, if $\lim_{n\to\infty} \sum_{i=1}^{\infty} A_{n,i}X_i = 0$ a.s. for all arrays $\{A_{n,i}\}$ satisfying the above conditions, then $E||X_1||^r < \infty$.

PROOF. Since $A_{n,i} = A_{n,i}^+ - A_{n,i}^-$, without loss of generality, we can assume that $A_{n,i} \ge 0$. We consider $A_{n,i}^r = b_i$ in Lemma 4. Since $\sum_{i=1}^{\infty} i |A_{n,i}^r - A_{n,i+1}^r| \le \sum_{i=1}^{\infty} i |A_{n,i} - A_{n,i+1}|^r$, for r < 1, we have $A_{n,i} = O(i^{-1/r})$ a.s. for every *n*. From the proof of Theorem 2, we have $\lim_{n\to\infty} Y_i = 0$ a.s. and $\sum_{i=1}^{\infty} A_{n,i}X_i = \sum_{i=1}^{\infty} i^{1/r} (A_{n,i} - A_{n,i+1})Y_i$ a.s., where $Y_i = (1/i^{1/r}) \sum_{j=1}^{i} X_j$.

Define $B_{n,i} = i^{1/r} (A_{n,i} - A_{n,i+1})$. Hence, $\sum_{i=1}^{\infty} |B_{n,i}|^r \le M$ a.s. and $\lim_{n\to\infty} B_{n,i} = 0$ a.s. Let $D = D^0 \cap \bigcap_{i=1}^{\infty} (D_i^1 \cap D_i^2)$, where the definitions of D^0 , D_i^1 , and D_i^2 are the same as in Theorem 2. For every $w \in D$ and every $\epsilon > 0$, we can choose A such that $||Y_i(w)|| < \epsilon$ for $i \ge A$,

$$\sum_{i=1}^{\infty} \|B_{n,i}Y_{i}(w)\|^{r} \leq \sum_{i=1}^{A-1} |B_{n,i}|^{r} \|Y_{i}(w)\|^{r} + \sum_{i=A}^{\infty} |B_{n,i}|^{r} \|Y_{i}(w)\|^{r}$$

$$\leq \max_{i \leq A-1} \|Y_{i}(w)\|^{r} \sum_{i=1}^{A-1} |B_{n,i}|^{r} + M\epsilon \longrightarrow M\epsilon \quad \text{as } n \longrightarrow \infty.$$
(3.28)

Since Pr(D) = 1, $\lim_{n \to \infty} \sum_{i=1}^{\infty} ||B_{n,i}Y_i||^r = 0$ a.s. Therefore,

$$\lim_{n \to \infty} A_{n,i} X_i = \lim_{n \to \infty} \sum_{i=1}^{\infty} B_{n,i} Y_i = 0 \quad \text{a.s.}$$
(3.29)

The proof of the converse part is the same as the proof of Theorem 2. So the proof is complete. $\hfill \Box$

When $r \ge 1$, we can obtain the following theorem:

THEOREM 4. Let **B** be a separable Banach space of type p. Let $\{X_n : n = 1, 2, 3, ...\}$ be a sequence of independent and identically distributed random elements in **B** such that $EX_1 = 0$ and $E||X_1||^r < \infty$ for $1 \le r < p$. Let $\{A_{n,i} : n, i = 1, 2, 3, ...\}$ be an array of

random variables such that $\{A_{n,i}\}$ and $\{X_i\}$ are independent, and satisfying

$$\lim_{n \to \infty} A_{n,i} = 0 \quad a.s. \text{ for every } i, \tag{3.30}$$

$$\sum_{i=1}^{\infty} E|A_{n,i}|^r < \infty \quad \text{for every } n,$$
(3.31)

and

$$\sum_{i=1}^{\infty} i^{1/r} |A_{n,i}^{r} - A_{n,i+1}^{r}|^{1/r} < M \quad a.s. \text{ for every } n \text{ and some constant } M > 0.$$
(3.32)

Then

$$\lim_{n \to \infty} \sum_{i=1}^{\infty} A_{n,i} X_i = 0 \quad a.s.$$
(3.33)

Conversely, if

$$\lim_{n \to \infty} \sum_{i=1}^{\infty} A_{n,i} X_i = 0 \quad a.s.$$
(3.34)

for all arrays $\{A_{n,i}\}$ satisfying the above conditions, then $E ||X_1||^r < \infty$.

PROOF. We see that

$$\sum_{i=1}^{\infty} i^{1/r} |A_{n,i} - A_{n,i+1}| < \sum_{i=1}^{\infty} i^{1/r} |A_{n,i}^r - A_{n,i+1}^r|^{1/r} < M$$
(3.35)

and

$$\sum_{i=1}^{\infty} i^{1/r} \left| A_{n,i}^{r} - A_{n,i+1}^{r} \right|^{1/r} < \infty \Longrightarrow \sum_{i=1}^{\infty} i \left| A_{n,i}^{r} - A_{n,i+1}^{r} \right| < \infty \quad \text{(since } r \ge 1\text{).}$$
(3.36)

So, from the proofs of Theorem 2 and Theorem 3, we can obtain this theorem. \Box

Now, we consider a very special case of $\{A_{n,i}\}$. Let $A_{n,i} = n^{-1/r}$ for i = 1, 2, ..., n and $A_{n,i} = 0$ for i > n. The assumptions of $\{A_{n,i}\}$ in Theorem 4 can be easily verified. Therefore, the Marcinkiewicz-Zygmund law of large numbers in a space of type p can be obtained as the following corollary.

COROLLARY 2. Let **B** be a separable Banach space of type p and $\{X_n : n = 1, 2, 3, ...\}$ be a sequence of independent and identically distributed random elements in **B** with zero means. For any $1 \le r < p$, we have if $E ||X_1||^r < \infty$, then

$$\left(\frac{1}{n}\right)^{1/r} \sum_{i=1}^{n} X_i \longrightarrow 0 \quad a.s.$$
(3.37)

PROOF. Let $A_{n,i} = n^{-1/r}$ for i = 1, 2, ..., n and $A_{n,i} = 0$ for i > n. Since

$$\lim_{n \to \infty} A_{n,i} = \lim_{n \to \infty} n^{-1/r} = 0,$$
(3.38)

$$\sum_{i=1}^{\infty} E|A_{n,i}|^r = \sum_{i=1}^{n} \frac{1}{n} = 1,$$
(3.39)

and

$$\sum_{k=1}^{\infty} i^{1/r} \left| A_{n,i}^{r} - A_{n,i+1}^{r} \right|^{1/r} = n^{1/r} \cdot n^{-1/r} = 1,$$
(3.40)

the proof is complete by Theorem 4.

References

- I. A. Ahmad, An almost sure convergence theorem for weighted sum of random elements in separable Banach spaces with random weights, Sankhyā Ser. A 44 (1982), no. 2, 262-268. MR 84c:60010. Zbl 586.60008.
- B. D. Choi and S. H. Sung, Almost sure convergence theorems of weighted sums of random variables, Stochastic Anal. Appl. 5 (1987), no. 4, 365-377. MR 88m:60079. Zbl 633.60049.
- [3] Y. S. Chow and T. L. Lai, *Limiting behavior of weighted sums of independent random variables*, Ann. Probab. 1 (1973), 810–824. MR 50 5909. Zbl 303.60025.
- W. J. Padgett and R. L. Taylor, *Convergence of weighted sums of random elements in Banach spaces and Fréchet spaces*, Bull. Inst. Math. Acad. Sinica 2 (1974), 389-400, Collection of articles in celebration of the sixtieth birthday of Ky Fan. MR 50 11360. Zbl 301.60004.
- [5] A. I. Sakhanenko, On Lévy-Kolmogorov Inequalities for Banach-space-valued Random Variables, Theory Probab. Appl. 29 (1984), 830–836.
- [6] R. L. Taylor, Stochastic convergence of weighted sums of random elements in linear spaces, Lecture Notes in Mathematics, vol. 672, Springer-Verlag, Berlin, 1978. MR 80g:60006. Zbl 443.60004.
- [7] W. A. Woyczyński, On Marcinkiewicz-Zygmund laws of large numbers in Banach spaces and related rates of convergence, Probab. Math. Statist. 1 (1980), no. 2, 117–131. MR 82i:60026. Zbl 502.60006.

Hu: Department of Mathematics, National Tsing Hua University, Hsinchu, 30043, Taiwan

CHANG: INSTITUTE OF MATHEMATICS, ACADEMIC SINICA, TAIPEI, 11529, TAIWAN