RESEARCH NOTES

ON A DENSITY PROBLEM OF ERDÖS

SAFWAN AKBIK

(Received 13 April 1998 and in revised form 10 June 1998)

AbSTRACT. For a positive integer n, let $P(n)$ denotes the largest prime divisor of n and define the set: $\mathscr{G}(x)=\mathscr{G}=\{n \leq x: n$ does not divide $P(n)!\}$. Paul Erdös has proposed that $|S|=o(x)$ as $x \rightarrow \infty$, where $|S|$ is the number of $n \in S$. This was proved by Ilias Kastanas. In this paper we will show the stronger result that $|S|=O\left(x e^{-1 / 4} \sqrt{\log x}\right)$.
Keywords and phrases. Number theory, primes, factorial, density, divisibility.
1991 Mathematics Subject Classification. 11B05, 11N25.

Introduction. For a positive integer n, let $P(n)$ denote the largest prime divisor of n and define the set

$$
\begin{equation*}
\mathscr{S}(x)=\mathscr{S}=\{n \leq x: n \text { does not divide } P(n)!\} . \tag{1}
\end{equation*}
$$

Paul Erdös [1] proposed that $|S|=o(x)$ as $x \rightarrow \infty$, where $|S|$ is the number of $n \in S$. A solution [3] was provided by Ilias Kastanas. There was also [3] a claim of proving that $|S(x)|=O(x / \log x)$. In this paper, we show the stronger result.

Theorem. For some constant $a>0$, we have

$$
\begin{equation*}
|S|=O\left(x e^{-a \sqrt{\log x}}\right) \tag{2}
\end{equation*}
$$

In fact, $a=1 / 4$ suffices.
Lemma 1. Let $v(n)$ be the number of distinct prime divisors of n. Define

$$
\begin{equation*}
S_{1}=\{n \leq x: v(n)>4 k \log \log x, k \geq 1\} . \tag{3}
\end{equation*}
$$

Then

$$
\begin{equation*}
\left|S_{1}\right|=O\left(\frac{x}{(\log x)^{k}}\right) \tag{4}
\end{equation*}
$$

uniformly in k.
Proof. It is well known [2] that if $d(m)$ is the number of divisors of m, then $\sum_{m \leq x} d(m)=O(x \log x)$. Since $d(m) \geq 2^{v(m)}$,

$$
\begin{equation*}
O(x \log x) \geq \sum_{m \leq x} 2^{v(m)} \geq \sum_{m \in S_{1}} 2^{v(m)} \geq \sum_{m \in S_{1}}(\log x)^{(4 \log 2) k} \geq\left|S_{1}\right|(\log x)^{k+1}, \tag{5}
\end{equation*}
$$

and the lemma follows.

Lemma 2. Let $C(x)=C=(\log x)^{k}$, where $k=k(x)$ will be chosen later. Define

$$
\begin{equation*}
S_{2}=\left\{n \leq x: p^{2} \mid n \text { for some prime } p>C\right\} . \tag{6}
\end{equation*}
$$

Then

$$
\begin{equation*}
\left|S_{2}\right|=O\left(\frac{x}{(\log x)^{k}}\right) \tag{7}
\end{equation*}
$$

Proof. Since $n \in S_{2}$ if and only if $n=t p^{2}$ for some $C<p \leq \sqrt{x}$ and some $t \leq x / p^{2}$,

$$
\begin{equation*}
\left|S_{2}\right|=\sum_{C<p \leq \sqrt{x}}\left[\frac{x}{p^{2}}\right] \leq \sum_{C<p \leq \sqrt{x}} \frac{x}{p^{2}}=O\left(\frac{x}{C}\right)=O\left(\frac{x}{(\log x)^{k}}\right) . \tag{8}
\end{equation*}
$$

The first big O in (8) follows since $\sum_{p>C} 1 / p^{2} \leq \int_{[C]}^{\infty} d u / u^{2}=1 /[C]=O(1 / C)$, for $C \geq 1$.

Lemma 3. Let

$$
\begin{equation*}
S_{3}=\left\{n \leq x: p^{\alpha} \mid n \text { for some } \alpha \geq \text { Tand some prime } P \leq C\right\}, \tag{9}
\end{equation*}
$$

where $T=2 \log C$. Then

$$
\begin{equation*}
\left|S_{3}\right|=O\left(\frac{x}{(\log x)^{k}}\right) \tag{10}
\end{equation*}
$$

Proof.

$$
\begin{align*}
\left|S_{3}\right| & =\sum_{\substack{p \leq C \\
\alpha \geq T}}\left[\frac{x}{p^{\alpha}}\right] \leq 2 \sum_{p \leq C} \frac{x}{p^{T}} \leq 2\left(\frac{x}{2^{T}}\right) \sum_{p} \frac{4}{p^{2}}=O\left(\frac{x}{2^{T}}\right) \tag{11}\\
& =O\left(\frac{x}{C^{2 \log 2}}\right) \leq O\left(\frac{x}{C}\right)=O\left(\frac{x}{(\log x)^{k}}\right) .
\end{align*}
$$

The first inequality in (11) is valid because $\sum_{\alpha \geq T} 1 / p^{\alpha} \leq 1 / p^{T}+1 / p^{T+1}+\cdots \leq 2 / p^{T}$ and the second is valid because $p^{T}=2^{T}(p / 2)^{T} \geq 2^{T}(p / 2)^{2}$ for $T \geq 2$.

Lemma 4. Let $S^{\prime}(x)=S-\left(S_{1} \cup S_{2} \cup S_{3}\right)$, then, for any $n \in S^{\prime}$, we have

$$
\begin{equation*}
P(n) \leq 2 C T . \tag{12}
\end{equation*}
$$

Proof. Let $n \in S^{\prime}$. Then $n \in S$ and so n does not divide $P(n)$!. There exists a prime p_{0} dividing n such that

$$
\begin{equation*}
v_{p_{0}}(n)>v_{p_{0}}(P(n)!), \tag{13}
\end{equation*}
$$

where $v_{p}(m)$ denotes the largest integer t such that p^{t} divides m. Since $v_{p_{0}}(P(n)!) \geq$ 1 , (13) implies that $v_{p_{0}}(n) \geq 2$. Since $n \notin S_{2}$, it follows that $p_{0} \leq C$. Also $n \notin S_{3}$, so that $T \geq v_{p_{0}}(n)$. Hence,

$$
\begin{equation*}
T \geq v_{p_{0}}(n)>v_{p_{0}}(P(n)!) \geq \frac{P(n)}{2 p_{0}} \geq \frac{P(n)}{2 C} \tag{14}
\end{equation*}
$$

which implies (12). Note that the third inequality in (14) is true because $v_{p}(m!) \geq$ $m / 2 p$ for any m and any $p \mid m$. This is because

$$
\begin{equation*}
v_{p}(m!) \geq\left[\frac{m}{p}\right]>\frac{m}{p}-1 \geq \frac{m}{2 p}, \quad p \neq m \tag{15}
\end{equation*}
$$

and $[m / p]=1 \geq m / 2 p$ if $p=m$.
Proof of The Theorem. For $n \in S^{\prime}$, we have $n \notin S_{1} \cup S_{2} \cup S_{3}$. Thus, $v_{p}(n) \leq$ $4 k \log \log x$. Also, if p^{α} is any prime power dividing n, then one of the following two possibilities must occur:
(a) $p \leq C$ and $\alpha \leq T$,
(b) $p>C$ and $\alpha=0$ or 1 .

Case (a) generates at most $C(T+1) \leq 2 C T$ prime powers. For Case (b), the number of prime powers p^{α} with $p>C$ and $\alpha \leq 1$ is at most $P(n)$. By Lemma 4 , this is at most $2 C T$. Hence, the number of possible prime powers p^{α} that divide an $n \in S^{\prime}$ is at most $4 C T$. But such an n can be the product of at most $4 k \log \log x$ distinct prime powers. Therefore,

$$
\begin{align*}
\left|S^{\prime}\right| & \leq(4 C T)^{4 k \log \log x}=(8 C \log C)^{4 k \log \log x} \\
& =e^{4 k \log \log x(\log 8+k \log \log x+\log k+\log \log \log x)} \leq e^{8 k^{2}(\log \log x)^{2}} \tag{16}
\end{align*}
$$

since $\log 8+\log (k \log \log x) \leq k \log \log x$, for $k \log \log x \geq 4$.
Choosing

$$
\begin{equation*}
k=\frac{1}{4} \cdot \frac{\sqrt{\log x}}{\log \log x} \tag{17}
\end{equation*}
$$

(16) gives $\left|S^{\prime}\right| \leq e^{(1 / 2) \log x}=x^{1 / 2}$. Hence,

$$
\begin{equation*}
S^{\prime}=O\left(x e^{-(1 / 4) \sqrt{\log x}}\right) \tag{18}
\end{equation*}
$$

From (17), we have $x /(\log x)^{k}=x e^{-1 / 4 \sqrt{\log x}}$. Lemmas 1, 2, and 3 imply that

$$
\begin{equation*}
\left|S_{i}\right|=O\left(x e^{-1 / 4 \sqrt{\log x}}\right), \quad i=1,2,3 \tag{19}
\end{equation*}
$$

Finally, $S=S^{\prime} \cup\left[S \cap\left(S_{1} \cup S_{2} \cup S_{3}\right)\right]$. Hence, (18) and (19) yield

$$
\begin{equation*}
|S| \leq\left|S^{\prime}\right|+\left|S_{1}\right|+\left|S_{2}\right|+\left|S_{3}\right|=O\left(x e^{-(1 / 4) \sqrt{\log x}}\right) \tag{20}
\end{equation*}
$$

and (2) follows with $a=1 / 4$.
REMARK. If $\pi(x)$ is the number of prime integers that are less than or equal to x, an early version of the prime numbers theorem asserts that

$$
\begin{equation*}
\pi(x)=\int_{2}^{x} \frac{d u}{\log u}+O\left(x e^{-a \sqrt{\log x}}\right) \tag{21}
\end{equation*}
$$

for some constant a. Although the big O terms in (19) and (2) are similar, there is no apparent relationship between the PNT and (2).

References

[1] P. Erdös, A Proposed Problem, Amer. Math. Monthly 98 (1991), 965.
[2] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., The Clarendon Press, Oxford University Press, New York, 1979. MR 81i:10002. Zbl 423.10001.
[3] I. Kastanas, The smallest factorial that is a multiple of n, Amer. Math. Monthly 101 (1994), 179.

Akbik: Department of Mathematics, Hofstra University, Hempstead, NY 11550, USA

