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Abstract. In a previous note the author gave an example of a strong Ditkin algebra which
does not have bounded relative units in the sense of Dales. In this note we investigate a
certain family of Banach function algebras on the one point compactification of N, and
see that within this family are many easier examples of strong Ditkin algebras without
bounded relative units in the sense of Dales.
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1. Introduction. Regularity conditions for Banach function algebras have impor-
tant applications in several areas of functional analysis, including automatic conti-
nuity theory and the theory of Wedderburn decompositions (see, for example, [2]).
There is also a close connection between regularity and the theory of decomposable
operators, as was shown by Neumann in [6]. It is thus important both to investigate
the connections between these regularity conditions and other conditions that a Ba-
nach function algebra may satisfy, and also to find out what the relationships are
between these regularity conditions. For a survey of many regularity conditions and
their relationships to each other, see [5].
The aim of this note is to investigate some of the stronger regularity conditions

for a particular class of Banach function algebras, following on from the work in [4].
In [4], the author solved a problem posed by Bade (see [3]), by showing that every
strong Ditkin algebra has bounded relative units at each point of its character space.
The proof was very short and elementary. In fact, unknown to the author, essentially
the same argument had been used earlier by Bachelis, Parker and Ross [1] to prove
a special case of the same result. (I am grateful to Jan Stegeman for later pointing
out the existence of this paper to me.) Also in [4], the author constructed an example
of a strong Ditkin algebra which does not satisfy the stronger condition of having
bounded relative units in the sense of Dales (see below). In Section 2 we shall intro-
duce a particular class of Banach function algebras on N∞, and determine precisely
which combinations of regularity properties are possible for algebras in this class.
In particular we shall show that this class includes many further examples of strong
Ditkin algebras which do not have bounded relative units in the sense of Dales. These
examples are easier than the example constructed in [4], and show that interesting
combinations of properties are possible even when working with Banach function
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algebras on N∞. First, we recall the standard notation and definitions which we shall
need.

Notation. For any compact, Hausdorff space X we denote the algebra of all con-
tinuous, complex-valued functions on X by C(X). Let A be a commutative, unital al-
gebra. We denote by ΦA the character space of A. Let S, T be subsets of A. We denote
by S ·T the set

{ab : a∈ S,b ∈ T}. (1.1)

We denote the one point compactification of N by N∞ (so that N∞ = N∪{∞}). For
f ∈ C(N∞), ‖f‖∞ denotes the usual uniform norm of f on N∞, so that

‖f‖∞ = sup
{|f(n)| :n∈N}. (1.2)

Definition 1.1. Let X be a compact space. A function algebra on X is a subalgebra
of C(X)which contains all of the constant functions and which separates the points of
X. A Banach function algebra on X is a function algebra on X with a complete algebra
norm.

Throughout we shall consider only unital Banach algebras. Using the Gelfand trans-
form, every commutative, semisimple Banach algebra may be regarded as a Banach
function algebra on its character space.

Notation. Let A be a (unital) Banach function algebra on ΦA and let E be a closed
subset of ΦA. We define two ideals J(E), I(E) in A as follows

J(E)= {f ∈A : f vanishes on some neighbourhood of E}; (1.3)

I(E)= {f ∈A : f(E)⊆ {0}}. (1.4)

For φ∈ ΦA, we set Mφ = I({φ}) and we denote J({φ}) by Jφ.
Definition 1.2. Let A be a Banach function algebra on ΦA and let φ ∈ ΦA. Then

A is strongly regular at φ if Jφ is dense in Mφ; A satisfies Ditkin’s condition at φ if
Jφ ·Mφ is dense in Mφ. We say that A has bounded relative units at φ if there exists
C ≥ 1 such that, for all compact sets E ⊆ ΦA\{φ}, there is f ∈ Jφ with ‖f‖ ≤ C such
that f(E)⊆ {1}. The algebraA is strongly regular if it is strongly regular at every point
of ΦA; A is a Ditkin algebra if it satisfies Ditkin’s condition at every point of ΦA; A is a
strong Ditkin algebra if every maximal ideal of A has a bounded approximate identity
and A is strongly regular. The Banach function algebra A has spectral synthesis if, for
every closed set E ⊆ ΦA, J(E) is dense in M(E).
Clearly every Ditkin algebra is strongly regular. In the special case where ΦA = N∞

it is easy to see that if A is a Ditkin algebra, then A has spectral synthesis (this is not
true in general).
There are two definitions for a Banach function algebra A to have bounded relative

units. One is that, for everyφ∈ ΦA,A has bounded relative units atφ. If this condition



STRONG DITKIN ALGEBRAS WITHOUT BOUNDED RELATIVE UNITS 439

holds we shall say that A has bounded relative units in the sense of Bade. The other
definition, used more frequently, is stronger, insisting that the constant C involved
does not depend onφ. If this stronger condition holds we shall say thatA has bounded
relative units in the sense of Dales. For uniform algebras, these two conditions are
equivalent. But they differ for general Banach function algebras, as was shown in [4].
The following result combines some standard theory with [4, Thm. 5].

Proposition 1.3. Let A be a Banach function algebra. Then A is a strong Ditkin
algebra if and only if A is strongly regular and has bounded relative units in the sense
of Bade.

As we mentioned earlier, in [4] there is an example of a strong Ditkin algebra which
does not have bounded relative units in the sense of Dales. In the next section we shall
give some easier examples of this.

2. Banach function algebras on N∞. We shall now introduce the class of Banach
function algebras that we shall work with. From now on we shall use α to denote a
sequence of positive real numbers, with α = (αn)∞n=1. Given such a sequence α, we
define Aα by

Aα =
{
f ∈ C(N∞) :

∞∑
n=1

αn
∣∣f(n+1)−f(n)∣∣<∞

}
. (2.1)

It is easy to see that Aα is a subalgebra of C(N∞), and that Aα is a Banach function
algebra, where the norm of a function f ∈Aα is given by

‖f‖ = ‖f‖∞+
∞∑
n=1

αn
∣∣f(n+1)−f(n)∣∣. (2.2)

It is also easy to see that the character space of Aα is just N∞ (this follows from
[4, Prop. 6], for example).
We shall now investigate the further properties of these algebras. We shall see that

Aα is always a Ditkin algebra (and hence strongly regular). In fact we will see that
Aα has a stronger property: for all x ∈ N∞, Mx has an approximate identity (not
necessarily bounded) consisting of a sequence of elements of Jx . Of course, for each
x ∈N, it is clear that Jx =Mx , and that these ideals have an identity. So we only need
to check what happens at the point∞. We begin by looking at the particular sequence
of functions (ek)⊆Aα defined by

ek(n)=


1, if n≤ k,
0, otherwise.

(2.3)

We shall see that this sequence of functions in J∞ always has a subsequence which is
an approximate identity for M∞, although the sequence (ek) need not itself be such
an approximate identity. First we need an elementary lemma.

Lemma 2.1. Let (nk)∞k=1 be a strictly increasing sequence of natural numbers. Then
the following conditions are equivalent
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(a) (enk) is an approximate identity for M∞;
(b) for all f ∈M∞, limk→∞αnkf(nk+1)= 0;
(c) for all f ∈M∞, limk→∞αnkf(nk)= 0.

Proof. For any f ∈ Aα we know that
∑∞
k=1αn|f(n+1)−f(n)| < ∞, and so

limn→∞αn|f(n+1)−f(n)| = 0. From this it is clear that (b) and (c) are equivalent.
Now let f ∈M∞. Then

(
f −enkf

)
(j)=



0, if j ≤nk,
f (j), otherwise.

(2.4)

We have that

∥∥f −enkf
∥∥= ∥∥f −enkf

∥∥∞+
∞∑

j=nk+1

(
αj
∣∣f(j+1)−f(j)∣∣)+αnk

∣∣f(nk+1)∣∣. (2.5)

Since the first two terms on the right hand side of (2.1) tend to zero as k→∞, it is clear
that limk→∞‖f −enkf‖ = 0 if and only if limk→∞αnkf(nk+1)= 0. It is now immediate
that (a) and (b) are equivalent, as required.

The sequence (ek) is not always an approximate identity for M∞. For example, sup-
pose that α is the sequence (αn) defined by

αn =


1, if n is odd,
n
2
, if n is even.

(2.6)

Then (ek) is not an approximate identity for M∞. This can be seen by considering the
function f ∈ C(N∞) which satisfies

f(j)= 2−k, (2.7)

whenever j,k∈N are such that 2k−1 ≤ j < 2k.
When j = 2k−1, αj|f(j+1)−f(j)| = 2−k−1. All other |f(j+1)−f(j)| are 0, so that

f ∈Aα, and f ∈M∞. But α2kf (2k)= 1/4 for all k, and so αnf(n) does not tend to 0
as n→∞. Thus, by Lemma 2.1, (ek) is not an approximate identity for M∞.
We now continue our investigation into when (enk) is an approximate identity.

Theorem 2.2. Let (nk) be as in Lemma 2.1
(a) Suppose that, for all k ∈N, αnk = inf{αj : j ≥ nk}. Then (enk) is an approximate

identity for M∞.
(b) The sequence (enk) is a bounded approximate identity for M∞ if and only if the

sequence (αnk) is bounded.

Proof. To prove (a), suppose that (αnk) satisfies the given condition. Let f ∈M∞.
Then we have, for k∈N,

f(nk)=
∞∑

j=nk

(
f(j)−f(j+1)). (2.8)
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Thus

∣∣αnkf(nk)
∣∣≤

∞∑
j=nk

αnk
∣∣f(j)−f(j+1)∣∣

≤
∞∑

j=nk
αj
∣∣f(j)−f(j+1)∣∣.

(2.9)

Since the last sum tends to 0 as k → ∞, it follows that limk→∞αnkf(nk) = 0. It now
follows from Lemma 2.1 that (enk) is an approximate identity for M∞.
To prove (b), first note that, for all k,

∥∥enk
∥∥= 1+αnk. (2.10)

Thus it is clear that the sequence (enk) is bounded in norm if and only if (αnk) is
bounded. It remains to show that, in this case, (enk) is also an approximate identity
for M∞. But this is immediate from Lemma 2.1. The result follows.

We can now see that (ek) is itself often an approximate identity.

Corollary 2.3. If the sequence α is either nondecreasing or bounded then (ek) is
an approximate identity for M∞.

Proof. This is immediate from Theorem 2.2.

We can now prove our main result about the existence of approximate identities
in M∞.

Theorem 2.4. The sequence (ek) always has a subsequence which is an approxi-
mate identity in M∞ in Aα.

Proof. If (αn) has a bounded subsequence, then the result is immediate from
Theorem 2.2(b). Thus we may assume that (αn) diverges to ∞. But then it is easy to
choose (nk) such that the conditions of Theorem 2.2(a) are satisfied, and so (enk) is
an approximate identity for M∞.

As a corollary, we obtain immediately the fact that each Aα is a Ditkin algebra.

Corollary 2.5. For every sequence of positive real numbersα, the Banach function
algebra Aα is a Ditkin algebra.

Proof. For x ∈N it is clear that Jx =Mx and that these ideals have an identity. It
remains to check that J∞·M∞ is dense inM∞, but this is immediate from Theorem 2.4.
The result follows.

Of course this means thatAα is always strongly regular. By the nature of the algebra,
it follows that Aα is always separable. Since ΦAα = N∞, it also follows that Aα has
spectral synthesis.
We now characterise those sequences α for which the algebra Aα has various regu-

larity properties.
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Theorem 2.6. Let α= (αn)∞n=1 be any sequence of positive real numbers. Then
(a) Aα is a strong Ditkin algebra if and only if liminfn→∞αn <∞, i.e., (αn) does not

diverge to ∞.
(b) In Aα, M∞ has a bounded approximate identity if and only if liminfn→∞αn <∞.
(c) The Banach function algebra Aα has bounded relative units in the sense of Bade

if and only if liminfn→∞αn <∞.
(d) The algebra A has bounded relative units in the sense of Dales if and only if the

sequence (αn) is bounded.

Proof. We know that Aα is a Ditkin algebra (and hence strongly regular). Also,
for all x ∈ N, Jx = Mx , and Mx has an identity. Thus, by Proposition 1.3, it is clear
that (a), (b), (c) are equivalent, and that for each of these we only need to check the
relevant condition at the point ∞. Suppose first that liminfn→∞αn < ∞. Then (αn)
has a bounded subsequence, and so it follows from Theorem 2.2(b) that M∞ has a
bounded approximate identity. Thus Aα is a strong Ditkin algebra, and has bounded
relative units in the sense of Bade.
Conversely, suppose that Aα has bounded relative units in the sense of Bade. Then

there is a norm bounded sequence of functions (fn) ⊆ J∞ such that, for all n ∈ N ,
fn({n}) = {1}. Set M = supn‖fn‖. We show that liminfn→∞αn ≤ M . Suppose, for
contradiction, that liminfn→∞αn > M . Choose N ∈ N such that inf{αj : j ≥ N} > M .
Then we have

1= |fN(N)|

=
∣∣∣∣∣∣
∞∑
j=N

(
fN(j)−fN(j+1)

)
∣∣∣∣∣∣

≤
∞∑
j=N

∣∣(fN(j)−fN(j+1))∣∣

≤ ‖fN‖
inf{αj : j ≥N} < 1.

(2.11)

This contradiction proves that, as claimed, liminfn→∞αn ≤M <∞. Parts (a) to (c) now
follow.
To see (d), suppose first that (αn) is bounded. SetM = supnαn. For n∈N, the norm

of the identity ofMn is at most 2M+1. Also, with en as above, ‖en‖ ≤M+1, and so Aα
has bounded relative units in the sense of Dales, with bound 2M+1. Conversely, since
the norm of the identity in Mn is at least αn, it is immediate that if Aα has bounded
relative units in the sense of Dales then (αn) must be bounded. The result follows.

This result can be used to give many elementary examples of strong Ditkin algebras
which do not have bounded relative units in the sense of Dales.

Corollary 2.7. Let α be any sequence of positive real numbers such that α is
unbounded but does not diverge to ∞. Then Aα is a strong Ditkin algebra which does
not have bounded relative units in the sense of Dales.

Proof. This is immediate from Theorem 2.6.
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