RECURSIVE FORMULAE FOR THE MULTIPLICATIVE PARTITION FUNCTION

JUN KYO KIM and SANG GUEN HAHN

(Received 28 February 1996)

Abstract

For a positive integer n, let $f(n)$ be the number of essentially different ways of writing n as a product of factors greater than 1 , where two factorizations of a positive integer are said to be essentially the same if they differ only in the order of the factors. This paper gives a recursive formula for the multiplicative partition function $f(n)$.

Keywords and phrases. Partitions, multiplicative partitions.
1991 Mathematics Subject Classification. 11P82.

A multi-partite number of order j is a j-dimensional vector, the components of which are nonnegative integers. A partition of $\left(n_{1}, n_{2}, \ldots, n_{j}\right)$ is a solution of the vector equation

$$
\begin{equation*}
\sum_{k}\left(n_{1 k}, n_{2 k}, \ldots, n_{j k}\right)=\left(n_{1}, n_{2}, \ldots, n_{j}\right) \tag{1}
\end{equation*}
$$

in multi-partition numbers other than $(0,0, \ldots, 0)$. Two partitions which differ only in the order of the multi-partite numbers are regarded as identical. We denote by $p\left(n_{1}, n_{2}, \ldots, n_{j}\right)$ the number of different partitions of ($n_{1}, n_{2}, \ldots, n_{j}$). For example, $p(3)=3$ since $3=2+1=1+1+1$ and $p(2,1)=4$ since $(2,1)=(2,0)+(0,1)=$ $(1,0)+(1,0)+(1,0)=(1,0)+(1,1)$. Let $f(1)=1$ and for any integer $n>1$, let $f(n)$ be the number of essentially different ways of writing n as a product of factors greater than 1 , where two factorizations of a positive integer are said to be essentially the same if they differ only in the order of the factors. For example, $f(12) p(2,1)=4$ since $12=$ $2 \cdot 6=3 \cdot 4=2 \cdot 2 \cdot 3$. In general, if $n=p_{1}^{n_{1}} p_{2}^{n_{2}} \cdots p_{j}^{n_{j}}$, then $f(n)=p\left(n_{1}, n_{2}, \ldots, n_{j}\right)$. We find recursive formulas for the multi-partite partition function $p\left(n_{1}, n_{2}, \ldots, n_{j}\right)$. The most useful formula known to this day for actual evaluation of the multi-partite partition function is presented in Theorem 4.
For convenience, we define some sets used in this paper. For a positive integer r, let M_{r}^{0} be the set of r-dimensional vectors with nonnegative integer components and M_{r} be the set of r-dimensional vectors with nonnegative integer components not all of which are zero. The following three theorems are well known.

Theorem 1 (Euler [3]; see also [1, p. 2]). If $n \geq 0$, then

$$
\begin{equation*}
p(n)=\sum_{m=1}^{\infty}(-1)^{m+1}\left(p\left(n-\frac{1}{2} m(3 m-1)\right)+p\left(n-\frac{1}{2}(3 m+1)\right)\right), \tag{2}
\end{equation*}
$$

where we recall that $p(k)=0$ for all negative integers k.

THEOREM 2. If $n \geq 0$, then $p(0)=1$ and

$$
\begin{equation*}
n \cdot p(n)=\sum_{k=1}^{n} \sigma(k) \cdot p(n-k), \tag{3}
\end{equation*}
$$

where $\sigma(m)=\sum_{d \mid m} d$.
Theorem 3 ([1, Ch. 12]). If g $\left(x_{1}, x_{2}, \ldots, x_{r}\right)$ is the generating function for $p(\vec{n})$ and $\left|x_{i}\right|<1$ for $i \leq r$, then

$$
\begin{align*}
g\left(x_{1}, x_{2}, \ldots, x_{r}\right) & =\prod_{\vec{n} \in M_{r}} \frac{1}{1-x_{1}^{n_{1}} x_{2}^{n_{2}} \cdots x_{r}^{n_{r}}} \tag{4}\\
& =1+\sum_{\vec{m} \in M_{r}} p(\vec{m}) x_{1}^{m_{1}} x_{2}^{m_{2}} \cdots x_{r}^{m_{r}} .
\end{align*}
$$

Similarly, we can extend the equation of Theorem 2 to multi-partite numbers as follows.

Theorem 4. For $\vec{n} \in M_{r}$, we have

$$
\begin{equation*}
n_{i} \cdot p(\vec{n})=\sum_{\substack{l_{j} \leq n_{j} \text { for } \\ \vec{l} \in M_{r} \leq r}} \frac{\sigma(\operatorname{gcd}[\vec{l}])}{\operatorname{gcd}[\vec{l}]} \cdot l_{i} \cdot p(\vec{n}-\vec{l}) . \tag{5}
\end{equation*}
$$

Proof. Let $g\left(x_{1}, x_{2}, \ldots, x_{r}\right)$ be the function defined in Theorem 3. Taking the i th partial logarithmic derivative of the product formula for $g\left(x_{1}, x_{2}, \ldots, x_{r}\right)$ in (4), we get

$$
\begin{align*}
\frac{\partial g\left(x_{1}, x_{2}, \ldots, x_{r}\right)}{\partial x_{i}} \cdot \frac{x_{i}}{g\left(x_{1}, x_{2}, \ldots, x_{r}\right)} & =\sum_{i \in M_{r}} \frac{l_{i} \cdot \prod_{j=1}^{r} x_{j}^{l_{j}}}{1-\prod_{j=1}^{r} x_{j}^{l_{j}}} \\
& =\sum_{i \in M_{r}} \sum_{k=1}^{\infty} l_{i} \cdot\left(\prod_{j=1}^{r} x_{j}^{l_{j}}\right)^{k} . \tag{6}
\end{align*}
$$

Taking the i th partial derivative of the right-hand side of (4), we get

$$
\begin{align*}
\sum_{\vec{n} \in M_{r}} n_{i} \cdot p(\vec{n}) x_{1}^{n_{1}} x_{2}^{n_{2}} \cdot x_{r}^{n_{r}} & =\frac{\partial g\left(x_{1}, x_{2}, \ldots, x_{r}\right)}{\partial x_{i}} \cdot x_{i} \\
& =g\left(x_{1}, x_{2}, \ldots, x_{r}\right) \sum_{\vec{t} \in M_{r}} \sum_{k=1}^{\infty} t_{i} \cdot\left(\prod_{j=1}^{r} x_{j}^{t_{j}}\right)^{k} \\
& =\left(\sum_{\vec{m} \in M_{r}^{0}} p(\vec{m}) x_{1}^{m_{1}} x_{2}^{m_{2}} \cdots x_{r}^{m_{r}}\right) \sum_{\vec{t} \in M_{r}} \sum_{k=1}^{\infty} t_{i} \cdot\left(\prod_{j=1}^{r} x_{j}^{t_{j}}\right)^{k} . \tag{7}
\end{align*}
$$

Comparing the coefficients of both sides of (7), we get

$$
\begin{align*}
n_{i} \cdot p(\vec{n}) & =\sum_{\substack{\vec{m}, \vec{i} \in M_{,}^{0}, k \in M_{1} \\
\vec{m}+k t=\vec{n}}} t_{i} \cdot p(\vec{m}) \\
& =\sum_{\vec{l} \in M_{r}} p(\vec{n}-\vec{l}) \sum_{k \mid \operatorname{gcd}(\vec{l})} \frac{l_{i}}{k} \tag{8}\\
& =\sum_{\substack{l_{j} \leq n_{j} \text { for } \\
\vec{l} \in M_{r}}} \frac{\sigma(\operatorname{gcd}[\vec{l}])}{\operatorname{gcd}[\vec{l}]} \cdot l_{i} \cdot p(\vec{n}-\vec{l}) .
\end{align*}
$$

The theorem is proved.
Corollary 5. For $\vec{n} \in M_{r}$, we have

$$
\begin{equation*}
\left(\sum_{i=1}^{r} n_{i}\right) \cdot p(\vec{n})=\sum_{\substack{l_{j} \leq n_{j} f o r \\ \vec{l} \in M_{r}}} \frac{\sigma(\operatorname{gcd}[\vec{l}])}{\operatorname{gcd}[\vec{l}]}\left(\sum_{i=1}^{r} l_{i}\right) \cdot p(\vec{n}-\vec{l}) . \tag{9}
\end{equation*}
$$

For positive integers m and n, let

$$
\begin{equation*}
(m, n)_{\vDash}=\max _{\substack{k \mid m \\ n^{1 / k} \text { is an integer }}} k . \tag{10}
\end{equation*}
$$

The following properties of $(m, n)_{\vDash}$ are easy to obtain:
(1) $\left(m, p_{1}^{n_{1}} p_{2}^{n_{2}} \cdot p_{k}^{n_{k}}\right)=\operatorname{gcd}\left(m, n_{1}, n_{2}, \ldots, n_{k}\right)$
(2) $(m, n k)_{\vDash}=\operatorname{gcd}\left[(m, n)_{\vDash},(m k)_{\vDash}\right]$ for $\operatorname{gcd}(n, k)=1$
(3) $(m k, n)_{\vDash}=(m, n)_{\vDash} \cdot(k, n)_{\vDash}$ for $\operatorname{gcd}(m, k)=1$.

From the point of view of the multiplicative partition function, Theorem 4 can be restated as the following theorem.

Theorem 6. let n, t be positive integers and let p be a prime number such that $p \nmid m$. Then we get

$$
\begin{equation*}
t \cdot f\left(m p^{t}\right)=\sum_{i=1}^{t} \sum_{l \mid m} \frac{\sigma\left((i, l)_{\vDash}\right)}{(i, l)_{\vDash}} i \cdot f\left(\frac{m}{l} p^{t-i}\right) . \tag{11}
\end{equation*}
$$

In [4], MacMahon presents a table of values of $f(n)$ for those n which divide one of $2^{10} \cdot 3^{8}, 2^{10} \cdot 3 \cdot 5,2^{9} \cdot 3^{2} \cdot 5^{1}, 2^{8} \cdot 3^{3} \cdot 5^{1}, 2^{6} \cdot 3^{2} \cdot 5^{2}, 2^{5} \cdot 3^{3} \cdot 5^{2}$. In [2], Canfield, Erdös, and Pomerance commented that they doubted the correctness of MacMahon's figures. Specifically,

$$
\begin{align*}
p(10,5) & =3804, & & \text { not } 3737, \tag{12}\\
p(9,8) & =13715, & & \operatorname{not} 13748, \tag{13}\\
p(10,8) & =21893, & & \text { not } 21938, \tag{14}\\
p(4,1,1) & =38, & & \text { not } 28 . \tag{15}
\end{align*}
$$

From Theorem 4 we can easily be sure that Canfield, Erdös and Pomerance comment is true.

References

[1] G. E. Andrews, The theory of partitions, Encyclopedia of Mathematics and its Applications, vol. 2, Addison-Wesley Publishing Co., London,Amsterdam, 1976. MR 5827738. Zbl 371.10001.
[2] E. R. Canfield, Paul Erdos, and Carl Pomerance, On a problem of Oppenheim concerning "factorisatio numerorum", J. Number Theory 17 (1983), no. 1, 1-28. MR 85j:11012. Zbl 513.10043.
[3] L. Euler, Introductio in Analysin Infinitorum, ch. 16, Marcum-Michaelem Bousquet Lausannae, 1748 (Latin).
[4] P. A. Macmahon, The enumeration of the partitions of multipartite numbers, Math. Proc. Cambridge Philos. Soc. 22 (1927), 951-963.

Kim and Hahn: Korea Advanced Institute of Science and Technology 373-1, Kusong Don, Yusung Gu, Taejon 305-701, South Korea

