ON REAL HYPERSURFACES IN QUATERNIONIC PROJECTIVE SPACE WITH \mathscr{D}^{+}-RECURRENT SECOND FUNDAMENTAL TENSOR

YOUNG JIN SUH and JUAN DE DIOS PÉREZ

(Received 5 May 1997 and in revised form 16 October 1997)

Abstract

In this paper, we give a complete classification of real hypersurfaces in a quaternionic projective space $Q P^{m}$ with \mathscr{D}^{\perp}-recurrent second fundamental tensor under certain condition on the orthogonal distribution \mathscr{D}.

Keywords and phrases. Quaternionic projective space, \mathscr{D}^{\perp}-recurrent second fundamental tensor, orthogonal distribution.

1991 Mathematics Subject Classification. 53C15, 53C40.

1. Introduction. Throughout this paper M denotes a connected real hypersurface of the quaternionic projective space $Q P^{m}, m \geq 3$, endowed with the metric g of constant quaternionic sectional curvature 4 . Let N be a unit local normal vector field on M and $U_{i}=-J_{i} N, i=1,2,3$, where $\left\{J_{i}\right\}_{i=1,2,3}$ is a local basis of the quaternionic structure of $Q P^{m}$, [5]. Several examples of such real hypersurfaces are well known. See, for instance, [2, 1, 5, 8, 9, 13].
Now, let us define a distribution \mathscr{D} by $\mathscr{D}(x)=\left\{X \in T_{x} M: X \perp U_{i}(x), i=1,2,3\right\}$, $x \in M$, of a real hypersurface M in $Q P^{m}$, which is orthogonal to the structure vector fields $\left\{U_{1}, U_{2}, U_{3}\right\}$ and invariant with respect to structure tensors $\left\{\phi_{1}, \phi_{2}, \phi_{3}\right\}$, and by $\mathscr{D}^{\perp}=\operatorname{Span}\left\{U_{1}, U_{2}, U_{3}\right\}$ its orthogonal complement in $T M$.
There exist many studies about real hypersurfaces of quaternionic projective space $Q P^{m}$. Among them, Martinez and Perez [9] have classified real hypersurfaces of $Q P^{m}$ with constant principal curvatures when the distribution \mathscr{D} is invariant by the second fundamental tensor, that is, the shape operator A. It was shown that these real hypersurfaces of $Q P^{m}$ could be divided into three types which are said to be of type A_{1}, A_{2}, and B, where a real hypersurface of type B denotes a tube over a complex projective space $C P^{m}$. Hereafter, let us say A-invariant when the distribution \mathscr{D} is invariant by the shape operator A.
Without the additional assumption of constant principal curvatures and as a further improvement of this result, Berndt [2] showed recently that all real hypersurfaces of $Q P^{m}$ could be divided into the above three types when the distributions \mathscr{D} and \mathscr{D}^{\perp} satisfy $g\left(A \mathscr{D}, \mathscr{D}^{\perp}\right)=0$, that is, the distribution \mathscr{D} is A-invariant.

On the other hand, in [7], Kobayashi and Nomizu have introduced the notion of recurrent tensor field of type (r, s) on a manifold M with a linear connection. That is, a nonzero tensor field K of type (r, s) on M is said to be recurrent if there exists a 1 -form α such that $\nabla K=K \otimes \alpha$. Moreover, they gave some geometric interpretations of a manifold M with recurrent curvature tensor in terms of the holonomy group.

Now, let us consider a real hypersurface M with recurrent second fundamental tensor A in a quaternionic projective space $Q P^{m}$. Then from the definition, we have

$$
\begin{equation*}
\nabla A=A \otimes \alpha \tag{1.1}
\end{equation*}
$$

where ∇ denotes the induced connection defined on M. Then (1.1) means

$$
\begin{equation*}
\left[\nabla_{X} A, A\right]=\alpha(X)[A, A]=0 \tag{1.2}
\end{equation*}
$$

for any tangent vector field X defined on M. We can interpret its geometrical meaning in such a way that the eigen spaces of the shape operator A of M are parallel along any curve γ in M. Here, the eigenspaces of the shape operator A are said to be parallel along γ if they are invariant with respect to parallel translation along γ.
Recently, Hamada [4] has applied this notion to real hypersurfaces in a complex projective space $P_{n} C$ and asserted that there did not exist any real hypersurface in $P_{n} C$ which had recurrent second fundamental tensor. Moreover, in [4] he defined the notion of η-recurrent second fundamental form.
Now, in this paper, let us introduce the notion of \mathscr{D}^{\perp}-recurrent second fundamental form defined by

$$
\begin{equation*}
g\left(\left(\nabla_{X} A\right) Y, Z\right)=\alpha(X) g(A Y, Z) \tag{1.3}
\end{equation*}
$$

for a certain 1-form α defined on the distribution \mathscr{D} and any vector fields X, Y, Z in \mathscr{D}. Then the geometrical meaning of \mathscr{D}^{\perp}-recurrency can be interpreted as the eigen spaces of the shape operator A are parallel along the curve γ orthogonal to the distribution $\mathscr{D}^{\perp}=\operatorname{Span}\left\{U_{1}, U_{2}, U_{3}\right\}$.
In this paper, let us consider another condition on the distribution \mathscr{D} defined by

$$
\begin{equation*}
g\left(\left(A \phi_{i}-\phi_{i} A\right) X, Y\right)=0 \tag{1.4}
\end{equation*}
$$

for any X and Y in \mathscr{D}, which is weaker than the condition that the structure tensors ϕ_{i} and the second fundamental tensor A commute with each other. Then under this condition (1.4), we can give a complete classification of \mathscr{D}^{\perp}-recurrency of the second fundamental tensor. That is, we have the following.

THEOREM. Let M be a real hypersurface in $Q P^{m}, m \geq 3$, with \mathscr{D}^{\perp}-recurrent second fundamental tensor. If it satisfies (1.4), then M is congruent to one of the following spaces:
$\left(A_{1}\right)$ a tube of radius r over a hyperplane $Q P^{m-1}$, where $0<r<\pi / 2$,
$\left(A_{2}\right)$ a tube of radius r over a totally geodesic $Q P^{k}(1 \leq k \leq m-2)$, where $0<r<\pi / 2$.
(R) a ruled real hypersurface foliated by totally geodesic quaternionic hyperplanes $Q P^{m-1}$.

When the above 1-form α in (1.3) vanishes, that is, for any X, Y and Z in \mathscr{D}

$$
\begin{equation*}
g\left(\left(\nabla_{X} A\right) Y, Z\right)=0 \tag{1.5}
\end{equation*}
$$

then the second fundamental form A is said to be \mathscr{D}^{\perp}-parallel. About a ruled real hypersurface of $Q P^{m}$ some properties are investigated by Martinez [8] and Perez [10].

It is shown in Section 3 that the second fundamental form of a ruled real hypersurface is \mathscr{D}^{\perp}-parallel. Moreover, for real hypersurfaces of type A_{1}, A_{2}, and B in $Q P^{m}$, it can be easily seen that its second fundamental tensors are \mathscr{D}^{\perp}-parallel. Thus, by virtue of the Theorem, we can, also, give the following (see [12]).
Corollary. Let M be a real hypersurface in $Q P^{m}$, $m \geq 3$, with \mathscr{D}^{\perp}-parallel second fundamental tensor. If it satisfies (1.4), then M is congruent to one of the following spaces:
$\left(A_{1}\right)$ a tube of radius r over a hyperplane $Q P^{m-1}$, where $0<r<\pi / 2$,
$\left(A_{2}\right)$ a tube of radius r over a totally geodesic $Q P^{k}(1 \leq k \leq m-2)$, where $0<r<\pi / 2$.
(R) a ruled real hypersurface foliated by totally geodesic quaternionic hyperplanes $Q P^{m-1}$.

Under the condition $g\left(\left(A \phi_{i}-\phi_{i} A\right) X, Y\right)=0, X, Y \in \mathscr{D}$, we know that \mathscr{D}^{\perp}-recurrent implies \mathscr{D}^{\perp}-parallel. That is, by virtue of the above Theorem and Corollary, it can be seen that there do not exist real hypersurfaces satisfying (1.4) in $Q P^{m}$ with their second fundamental tensors \mathscr{D}^{\perp}-recurrent but not \mathscr{D}^{\perp}-parallel.
2. Preliminaries. Let X be a tangent field to M. We write $J_{i} X=\phi_{i} X+f_{i}(X) N, i=$ $1,2,3$, where $\phi_{i} X$ is the tangent component of $J_{i} X$ and $f_{i}(X)=g\left(X, U_{i}\right), i=1,2,3$. As $J_{i}^{2}=-\mathrm{id}, i=1,2,3$, where id denotes the identity endomorphism on TQP ${ }^{m}$, we get

$$
\begin{equation*}
\phi_{i}^{2} X=-X+f_{i}(X) U_{i}, \quad f_{i}\left(\phi_{i} X\right)=0, \quad \phi_{i} U_{i}=0, \quad i=1,2,3 \tag{2.1}
\end{equation*}
$$

for any X tangent to M. As $J_{i} J_{j}=-J_{j} J_{i}=J_{k}$, where (i, j, k) is a cyclic permutation of (1,2,3), we obtain

$$
\begin{equation*}
\phi_{i} X=\phi_{j} \phi_{k} X-f_{k}(X) U_{j}=-\phi_{k} \phi_{j} X+f_{j}(X) U_{k} \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{i}(X)=f_{j}\left(\phi_{k} X\right)=-f_{k}\left(\phi_{j} X\right) \tag{2.3}
\end{equation*}
$$

for any vector field X tangent to M, where (i, j, k) is a cyclic permutation of $(1,2,3)$. It is, also, easy to see that, for any X, Y tangent to M and $i=1,2,3$,

$$
\begin{equation*}
g\left(\phi_{i} X, Y\right)+g\left(X, \phi_{i} Y\right)=0, \quad g\left(\phi_{i} X, \phi_{i} Y\right)=g(X, Y)-f_{i}(X) f_{i}(Y) \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\phi_{i} U_{j}=-\phi_{j} U_{i}=U_{k}, \tag{2.5}
\end{equation*}
$$

(i, j, k) being a cyclic permutation of (1,2,3). From the expression of the curvature tensor of $Q P^{m}, m \geq 2$, we have the equations of Gauss and Codazzi, respectively, given by

$$
\begin{align*}
R(X, Y) Z= & g(Y, Z) X-g(X, Z) Y \\
& +\sum_{i=1}^{3}\left\{g\left(\phi_{i} Y, Z\right) \phi_{i} X-g\left(\phi_{i} X, Z\right) \phi_{i} Y+2 g\left(X, \phi_{i} Y\right) \phi_{i} Z\right\} \tag{2.6}\\
& +g(A Y, Z) A X-g(A X, Z) A Y,
\end{align*}
$$

and

$$
\begin{equation*}
\left(\nabla_{X} A\right) Y-\left(\nabla_{Y} A\right) X=\sum_{i=1}^{3}\left\{f_{i}(X) \phi_{i} Y-f_{i}(Y) \phi_{i} X+2 g\left(X, \phi_{i} Y\right) U_{i}\right\} \tag{2.7}
\end{equation*}
$$

for any X, Y, Z tangent to M, where R denotes the curvature tensor of M. See [9].
From the expressions of the covariant derivatives of $J_{i}, i=1,2,3$, it is easy to see that

$$
\begin{equation*}
\nabla_{X} U_{i}=-p_{j}(X) U_{k}+p_{k}(X) U_{j}+\phi_{i} A X \tag{2.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\nabla_{X} \phi_{i}\right) Y=-p_{j}(X) \phi_{k} Y+p_{k}(X) \phi_{j} Y+f_{i}(Y) A X-g(A X, Y) U_{i} \tag{2.9}
\end{equation*}
$$

for any X, Y tangent to $M,(i, j, k)$ being a cyclic permutation of $(1,2,3)$ and $p_{i}, i=$ 1,2,3, local 1-forms on $Q P^{m}$.
3. \mathscr{D}^{\perp}-recurrent second fundamental form. Let M be a real hypersurface in a quaternionic projective space $Q P^{m}$ and let \mathscr{D} be a distribution defined by $\mathscr{D}(x)=\{X \in$ $\left.T_{x} M: X \perp U_{i}(x), i=1,2,3\right\}$. Then a real hypersurface M in $Q P^{m}$ is said to be \mathscr{D}^{\perp} recurrent if there is a 1 -form α such that

$$
\begin{equation*}
g\left(\left(\nabla_{X} A\right) Y, Z\right)=\alpha(X) g(A Y, Z) \tag{3.1}
\end{equation*}
$$

for any X, Y and $Z \in \mathscr{D}$.
The second fundamental tensor A of real hypersurfaces of type A_{1} or A_{2} in $Q P^{m}$ must satisfy

$$
\begin{equation*}
\left(\nabla_{X} A\right) Y=-\sum_{i=1}^{3}\left\{f_{i}(Y) \phi_{i} X+g\left(\phi_{i} X, Y\right) U_{i}\right\} \tag{3.2}
\end{equation*}
$$

for any tangent vector fields X and Y of M (see [12]). From this expression, we know that its second fundamental form is \mathscr{D}^{\perp}-recurrent, in particular, \mathscr{D}^{\perp}-parallel. Moreover, also in [12], we have proved that the second fundamental tensor of real hypersurfaces of type B in $Q P^{m}$ is \mathscr{D}^{\perp}-parallel. Then, naturally, we say \mathscr{D}^{\perp}-recurrent.
As another example which has \mathscr{D}^{\perp}-recurrent second fundamental form, we have consructed ruled real hypersurfaces of $Q P^{m}$ in [12]. Then from the construction, its expression of the shape operator A can be given by

$$
\begin{equation*}
A U_{i}=\Sigma_{j} \alpha_{i j} U_{j}+\epsilon_{i} X_{i}, \quad A X_{i}=\Sigma_{j} \epsilon_{j} g_{i j} U_{j}, \quad A X=0 \tag{3.3}
\end{equation*}
$$

for any vector X orthogonal to U_{i} and X_{i}, where $g_{i j}=g\left(X_{i}, X_{j}\right)$ and $X_{i}, i=1,2,3$, denote unit vector fields in \mathscr{D}, and $\epsilon_{i}\left(\epsilon_{i} \neq 0\right), \alpha_{i j}$ are smooth functions on M. By investigating some fundamental properties of these ruled real hypersurfaces and the formula (3.3), we have, also, proved in [12] that their second fundamental forms are \mathscr{D}^{\perp}-parallel. Then, naturally, it should be \mathscr{D}^{\perp}-recurrent.
Now, in order to prove our theorem in the introduction, we need the following lemma which was proved in [6].

LEMMA 3.1. Let M be a real hypersurface of $Q P^{m}$. If it satisfies the condition (1.4) for any $i=1,2,3$ and for any vector fields X, Y in \mathscr{D}, then we have

$$
\begin{equation*}
\mathfrak{g}\left(\left(\nabla_{X} A\right) Y, Z\right)=\mathfrak{s} g(A X, Y) g\left(Z, V_{i}\right), \quad i=1,2,3 \tag{3.4}
\end{equation*}
$$

where \mathfrak{s} denotes the cyclic sum with respect to X, Y and Z in \mathscr{D} and V_{i} stands for the vector field defined by $\phi_{i} A U_{i}$.

REMARK 3.2. For real hypersurfaces of type B in $Q P^{m}$, it can be easily seen that they do not satisfy the condition (1.4). In fact, when $i=2$, we have

$$
\begin{equation*}
A \phi_{2} e_{k}-\phi_{2} A e_{k}=-(\tan r+\cot r) \phi_{2} e_{k} \tag{3.5}
\end{equation*}
$$

so that $g\left(A \phi_{2} e_{k}-\phi_{2} A e_{k}, \phi_{2} e_{k}\right)=-(\tan r+\cot r) \neq 0$ for $0<r<\pi / 4$ or $\pi / 4<r<$ $\pi / 2$.
4. Proof of the Theorem. Now, we prove the theorem in the introduction. In this section, we give a complete classification of real hypersurfaces in $Q P^{m}, m \geq 3$, with \mathscr{D}^{\perp}-recurrent second fundamental tensor under condition (1.4) on the distribution \mathscr{D}, where $\mathscr{D}^{\perp}=\operatorname{Span}\left\{U_{1}, U_{2}, U_{3}\right\}$. From (3.4) and the \mathscr{D}^{\perp}-recurrency of the second fundamental form, it follows that

$$
\begin{equation*}
\mathfrak{g}(A X, Y) \boldsymbol{g}\left(Z, V_{1}\right)+\left\{g\left(X, V_{1}\right)-\alpha(X)\right\} g(A Y, Z)+\boldsymbol{g}(A Z, X) \boldsymbol{g}\left(Y, V_{1}\right)=0 \tag{4.1}
\end{equation*}
$$

for any X, Y, Z in \mathscr{D}, where we have put $V_{1}=\phi_{1} A U_{1}$.
Putting $Z=V_{1}$ in (4.1), we get

$$
\begin{equation*}
\mathfrak{g}(A X, Y) g\left(V_{1}, V_{1}\right)+\left\{g\left(X, V_{1}\right)-\alpha(X)\right\} g\left(A Y, V_{1}\right)+g\left(A V_{1}, X\right) g\left(Y, V_{1}\right)=0 \tag{4.2}
\end{equation*}
$$

From this and, also, by putting $Y=V_{1}$, we get

$$
\begin{equation*}
2 g\left(A X, V_{1}\right) g\left(V_{1}, V_{1}\right)+\left\{g\left(X, V_{1}\right)-\alpha(X)\right\} g\left(A V_{1}, V_{1}\right)=0 \tag{4.3}
\end{equation*}
$$

So taking $X=V_{1}$, we get

$$
\begin{equation*}
\left\{3 g\left(V_{1}, V_{1}\right)-\alpha\left(V_{1}\right)\right\} g\left(A V_{1}, V_{1}\right)=0 \tag{4.4}
\end{equation*}
$$

Similarly, we can, also, find

$$
\begin{equation*}
\left\{3 g\left(V_{i}, V_{i}\right)-\alpha\left(V_{i}\right)\right\} g\left(A V_{i}, V_{i}\right)=0, \quad i=1,2,3 \tag{4.5}
\end{equation*}
$$

If the structure vector fields U_{1}, U_{2}, and U_{3} are principal on M, then, $g\left(A \mathscr{D}, \mathscr{D}{ }^{\perp}\right)=0$. Then by a theorem of Berndt [2], M is locally congruent to one of either type A_{1}, A_{2} or B.
Now, let us consider the case where at least one of them is not principal. For convenience sake, let us say U_{1} is not principal. Then there exists an open subset of M such that

$$
\begin{equation*}
\vartheta_{1}=\left\{p \in M \mid A U_{1}-g\left(A U_{1}, U_{1}\right) U_{1} \neq 0\right\}, \tag{4.6}
\end{equation*}
$$

on which $A U_{1}$ can be expressed in such a way that

$$
\begin{equation*}
A U_{1}=\alpha_{1} U_{1}+\beta_{1} X_{1} \tag{4.7}
\end{equation*}
$$

for some vector field X_{1} in \mathscr{D}. Moreover, on this \varkappa_{1}, we know that

$$
\begin{equation*}
V_{1}=\phi_{1} A U_{1}=\beta_{1} \phi_{1} X_{1} \tag{4.8}
\end{equation*}
$$

Now, let us consider the following cases
CASE (1). Let $\mathscr{V}=\left\{p \in U_{1}: 3 g\left(V_{1}, V_{1}\right) \neq \alpha\left(V_{1}\right)\right\}$. Then, on this open subset \mathscr{V} of U_{1}, formula (4.4) gives

$$
\begin{equation*}
g\left(A V_{1}, V_{1}\right)=0 \tag{4.9}
\end{equation*}
$$

From this together with (4.3), it follows that $g\left(A X, V_{1}\right)=0$ for any $X \in \mathscr{D}$. Thus, (4.2) implies $g(A X, Y)=0$ for any $X, Y \in \mathscr{D}$.

CASE (2). Let $\mathscr{W}=\operatorname{Int}\left(\mathscr{U}_{1}-\mathscr{V}\right)$. Then, on \mathscr{W}, we have

$$
\begin{equation*}
3 g\left(V_{1}, V_{1}\right)=\alpha\left(V_{1}\right) \tag{4.10}
\end{equation*}
$$

Unless otherwise stated, let us continue our discussion on \mathscr{W}. Now, formula (3.4) gives

$$
\begin{equation*}
\left(\nabla_{X} A\right) Y=g(A X, Y) V_{1}+g\left(X, V_{1}\right) A Y+g\left(Y, V_{1}\right) A X+\sum_{j} k_{j}(X, Y) U_{j} \tag{4.11}
\end{equation*}
$$

where k_{j} denotes a certain real valued function defined on the product distribution $\mathscr{D} \times \mathscr{D}$.

On the other hand, from the \mathscr{D}^{\perp}-recurrency of the second fundamental form, we have

$$
\begin{equation*}
\left(\nabla_{X} A\right) Y=\alpha(X) A Y+\sum_{j} h_{j}(X, Y) U_{j} \tag{4.12}
\end{equation*}
$$

where h_{j}, also, denotes a real valued function defined on $\mathscr{D} \times \mathscr{D}$.
Putting $X=Y=V_{1}$ in (4.11) and (4.12) and using (4.10), we get

$$
\begin{equation*}
g\left(A V_{1}, V_{1}\right) V_{1}+\sum_{j} k_{j}\left(V_{1}, V_{1}\right) U_{j}=g\left(V_{1}, V_{1}\right) A V_{1}+\sum_{j} h_{j}\left(V_{1}, V_{1}\right) U_{j} \tag{4.13}
\end{equation*}
$$

Thus, by virtue of $V_{1}=\beta_{1} \phi_{1} X_{1}$, (4.13) can be written as follows.

$$
\begin{equation*}
A \phi_{1} X_{1}=\gamma \phi_{1} X_{1}+\sum_{i} \delta_{i} U_{i} \tag{4.14}
\end{equation*}
$$

From this, taking the inner product with $\phi_{1} Y$ for any $Y \in \mathscr{D}$ and using the condition (1.4), we get $g\left(A X_{1}, Y\right)=\gamma g\left(X_{1}, Y\right)$, so that

$$
\begin{equation*}
A X_{1}=\gamma X_{1}+\sum_{i} \epsilon_{i} U_{i} \tag{4.15}
\end{equation*}
$$

Putting $X=V_{1}$ in (4.1), we have, for any Y and Z in \mathscr{D},

$$
\begin{equation*}
g\left(A V_{1}, Y\right) g\left(Z, V_{1}\right)+\left\{g\left(V_{1}, V_{1}\right)-\alpha\left(V_{1}\right)\right\} g(A Y, Z)+g\left(A Z, V_{1}\right) g\left(Y, V_{1}\right)=0 \tag{4.16}
\end{equation*}
$$

From this together with the fact $3 g\left(V_{1}, V_{1}\right)=\alpha\left(V_{1}\right)$ and (4.14), it follows that

$$
\begin{equation*}
g(A Y, Z)=\gamma g\left(\phi_{1} X_{1}, Y\right) g\left(\phi_{1} X_{1}, Z\right) . \tag{4.17}
\end{equation*}
$$

Thus, for any $Y, Z \in \mathscr{D}$ and orthogonal to $\phi_{1} X_{1}$, we have

$$
\begin{equation*}
g(A Y, Z)=0 . \tag{4.18}
\end{equation*}
$$

Now, let us show that the function γ in (4.17) identically vanishes. For this, let us combine (4.11) and (4.12). Then, for any $X, Y \in \mathscr{D}$,

$$
\begin{align*}
g(A X, Y) V_{1}+\left\{g\left(X, V_{1}\right)-\alpha(X)\right\} A Y+g(Y & \left.V_{1}\right) A X \\
& +\sum_{j}\left\{f_{j}(X, Y)-h_{j}(X, Y)\right\} U_{j}=0 . \tag{4.19}
\end{align*}
$$

From this, putting $X=\phi_{1} X_{1}$ and using (4.10) and (4.14), we get

$$
\begin{align*}
2 \beta_{1} \gamma g\left(\phi_{1} X_{1}, Y\right) \phi_{1} X_{1}-2 \beta_{1} A Y+ & \sum_{j} g\left(Y, \beta_{1} \phi_{1} X_{1}\right) \delta_{j} U_{j} \\
& +\sum_{j}\left\{k_{j}\left(\phi_{1} X_{1}, Y\right)-h_{j}\left(\phi_{1} X_{1}, Y\right)\right\} U_{j}=0, \tag{4.20}
\end{align*}
$$

where we have used the fact $3 \beta_{1}=\alpha\left(\phi_{1} X_{1}\right)$. From this together with (4.15) and by putting $Y=X_{1}$, we get

$$
\begin{equation*}
\beta_{1} \gamma X_{1}=0 . \tag{4.21}
\end{equation*}
$$

This implies that $\gamma=0$ on \mathscr{W}. On this open set \mathscr{W}, we can, also, assert that $g(A X, Y)=0$ for any X, Y in \mathscr{D}. Thus, summing up the above two Cases (1) and (2) and using the continuity of the above functions, we can assert the following.

$$
\begin{equation*}
g(A X, Y)=0 \tag{4.22}
\end{equation*}
$$

for any X, Y in \mathscr{D} defined on U_{1}. If there exist open subsets such that $U_{2}=\{p \in M \mid$ $\left.\beta_{2}(p) \neq 0\right\}$ and $U_{3}=\left\{p \in M \mid \beta_{3}(p) \neq 0\right\}$, then on these open subsets we can, also, apply the same method. Thus, on $\ddots_{1} \cup \vartheta_{2} \cup \vartheta_{3}$, we can assert that $g(A X, Y)=0$.
Now, let us suppose $\mathscr{V}=\operatorname{Int}\left\{M-\left(\vartheta_{1} \cup \ddots_{2} \cup U_{3}\right)\right\}$ is not empty. Then almost contact 3 structure vector fields U_{1}, U_{2} and U_{3} are principal on \mathscr{V}. This implies that $g\left(A \mathscr{D}, \mathscr{D}^{\perp}\right)=$ 0 on \mathscr{V}. So, by a theorem of Berndt [2], the open subset \mathscr{V} is congruent to an open part of real hypersurfaces of type A_{1}, A_{2} or B in a quaternionic projective space $Q P^{m}$.
Now, let us consider the case of \mathscr{V} being congruent to real hypersurfaces of type B in a quaternionic projective space $Q P^{m}$. Then the principal curvatures on the distributions \mathscr{D}^{\perp} and \mathscr{D} of such a tube are given by

$$
\begin{equation*}
\alpha_{1}=2 \cot 2 r, \quad \alpha_{2}=\alpha_{3}=-2 \tan 2 r, \quad \lambda=\cot r \quad \text { and } \quad \mu=-\tan r, \tag{4.23}
\end{equation*}
$$

with multiplicities $1,2,2(m-1)$, and $2(m-1)$, respectively. Moreover, it is, also, known that

$$
\begin{equation*}
A \phi_{i} X=\frac{\lambda \alpha_{i}+2}{2 \lambda-\alpha_{i}} \phi_{i} X, \quad i=1,2,3, \tag{4.24}
\end{equation*}
$$

for a principal vector X in \mathscr{D} with principal curvature λ.
When we consider the case where $\alpha_{2}=\alpha_{3}=-2 \tan 2 r$, we have

$$
\begin{equation*}
\left(A \phi_{i}-\phi_{i} A\right) X=-(\cot r+\tan r) \phi_{i} X, \quad i=2,3, \tag{4.25}
\end{equation*}
$$

for any X in \mathscr{D} with principal curvatures $\cot r$. Then from (1.4), we have $-\cot r-\tan r=$ 0 . This implies that $\cot ^{2} r=-1$, which is impossible. Thus, real hypersurfaces of type B cannot occur. But among them, real hypersurfaces of type A_{1} and A_{2} satisfy $A \phi_{i}-$ $\phi_{i} A=0$ on \mathscr{V}. Moreover, for real hypersurfaces of these types all of their principal curvatures are nonzero constant on \mathbb{V}. By continuity of principal curvatures again, $M-\mathscr{V}=M$ and then the subset \mathscr{V} is empty. That is, structure vector fields U_{1}, U_{2} and U_{3} are principal on M. This implies that $g\left(A \mathscr{D}, \mathscr{D}^{\perp}\right)=0$ on M. Thus, M is locally congruent to real hypersurfaces of type A_{1} and A_{2}.
When we suppose that the open set $\mathscr{V}=\operatorname{Int}\left\{M-U_{1} \cup U_{2} \cup U_{3}\right\}$ is empty, then the open subset $\vartheta_{1} \cup \vartheta_{2} \cup U_{3}$ becomes a dense subset of M. By continuity of principal curvatures, the shape operator satisfies

$$
\begin{equation*}
g(A X, Y)=0 \tag{4.26}
\end{equation*}
$$

on the whole set M. From this, we know that the distribution \mathscr{D} is integrable on M. In fact, for any $X, Y \in \mathscr{D}$, we have $[X, Y]=\nabla_{X} Y-\nabla_{Y} X \in \mathscr{D}$, because

$$
\begin{equation*}
g\left(\nabla_{X} Y, U_{i}\right)=-g\left(Y, \nabla_{X} U_{i}\right)=-g\left(Y,-p_{j}(X) U_{k}+p_{k}(X) U_{j}+\phi_{i} A X\right)=0 . \tag{4.27}
\end{equation*}
$$

Thus, its integral manifold can be regarded as the submanifold of codimension 4 in $Q P^{m}$ whose normal vectors are U_{1}, U_{2}, U_{3} and C. Moreover, the integral manifold of \mathscr{D} is totally geodesic in $Q P^{m}$. In fact, for any $X, Y \in \mathscr{D}$, if we put

$$
\begin{equation*}
D_{X} Y=\nabla_{X}^{\prime} Y+\sum_{i} \sigma_{i}(X, Y) U_{i}+\rho(X, Y) N, \tag{4.28}
\end{equation*}
$$

where D and ∇^{\prime} denote the connection of $Q P^{m}$ and the induced connection from ∇ defined on an integral manifold of the distribution \mathscr{D}, respectively.
For this, if we take the inner product with U_{i}, we get

$$
\begin{equation*}
\bar{g}\left(D_{X} Y, U_{i}\right)=g\left(\nabla_{X} Y, U_{i}\right)=-g\left(Y, \phi_{i} A X\right)=0 . \tag{4.29}
\end{equation*}
$$

This means that $\sum_{i} \sigma_{i}(X, Y)=0$. Also, taking an inner product with the unit normal N, we obtain $\rho(X, Y)=0$. Moreover, it can be easily verified that \mathscr{D} is J_{i}-invariant, $i=1,2$, and 3 , and its integral manifold is a quaternionic manifold and, therefore, a quaternionic hyperplane $Q P^{m-1}$ of $Q P^{m}$. Thus, M is locally congruent to a ruled real hypersurface. From this, we complete the proof of our theorem.

Acknowledgement. The first author was supported by grants from the BSRI program, Ministry of Education, Korea, 1998, BSRI-98-1404 and TGRC-KOSEF. This work was done while the first author was a visiting professor at the University of Granada, Spain.
The present authors would like to express their sincere gratitude to the referee who gave some valuable comments on the original manuscript.

References

[1] J. Berndt, Personal communications.
[2] , Real hypersurfaces in quaternionic space forms, J. Reine Angew. Math. 419 (1991), 9-26. MR 92i:53048. Zbl 718.53017.
[3] T. E. Cecil and P. J. Ryan, Focal sets and real hypersurfaces in complex projective space, Trans. Amer. Math. Soc. 269 (1982), no. 2, 481-499. MR 83b:53049. Zbl 492.53039.
[4] T. Hamada, On real hypersurfaces of a complex projective space with η-recurrent second fundamental tensor, Nihonkai Math. J. 6 (1995), no. 2, 153-163. MR 96k:53083.
[5] S. Ishihara, Quaternion Kahlerian manifolds, J. Differential Geometry 9 (1974), 483-500. MR 50 1184. Zbl 297.53014.
[6] U-Hang Ki, Y. J. Suh, and J. D. Pérez, Real hypersurfaces of type A in quaternionic projective space, Internat. J. Math. Math. Sci. 20 (1997), no. 1, 115-122. CMP 9707. Zbl 878.53018.
[7] S. Kobayashi and K. Nomizu, Foundations of differential geometry. I, Interscience Publishers, a division of John Wiley \& Sons, New York, 1963. MR 27\#2945.
[8] A. Martinez, Ruled real hypersurfaces in quaternionic projective space, Şti. Univ. "Al. I. Cuza" Iaşi Secț. I a Mat. 34 (1988), no. 1, 73-78. MR 89k:53052. Zbl 659.53042.
[9] A. Martinez and J. D. Pérez, Real hypersurfaces in quaternionic projective space, Ann. Mat. Pura Appl. (4) 145 (1986), 355-384. MR 89a:53062. Zbl 615.53012.
[10] J. D. Pérez, A characterization of real hypersurfaces of quaternionic projective space, Tsukuba J. Math. 15 (1991), no. 2, 315-323. MR 93d:53075. Zbl 766.53005.
[11] , Real hypersurfaces of quaternionic projective space satisfying $\nabla_{U_{i}} A=0$, J. Geom. 49 (1994), no. 1-2, 166-177. MR 94j:53068. Zbl 799.53018.
[12] J. D. Pérez and Y. J. Suh, On real hypersurfaces in quaternionic projective space with \mathscr{D}^{\perp}-parallel second fundamental form, Nihonkai Math. J. 7 (1996), no. 2, 185-195. MR 97i:53068.
[13] , Real hypersurfaces of quaternionic projective space satisfying $\nabla_{U_{i}} R=0$, Differ. Geom. Appl. 7 (1997), no. 3, 211-217. Zbl 980.26709.

Suh: Department of Mathematics, Kyungpook University, Taegu 702-701, Republic of Korea

E-mail address: yjsuh@bh.kyungpook.ac.kr
Pérez: Departamento de Geometría y Topología, Facultad de Ciencias, Universidad de Granada, 18071-Granada, Spain

E-mail address: jdperez@goliat.ugr.es

