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q-SERIES, ELLIPTIC CURVES, AND ODD VALUES
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Abstract. Letp(n) be the number of partitions of an integern. Euler proved the following
recurrence for p(n):

p(n)=
∞∑
k=1

(−1)k+1
(
p
(
n−ω(k))+p(n−ω(−k))), (∗)

whereω(k)= (3k2+k)/2. In view of Euler’s result, one sees that it is fairly easy to compute
p(n) very quickly. However, many questions remain open even regarding the parity of
p(n). In this paper, we use various facts about elliptic curves and q-series to construct,
for every i≥ 1, finite sets Mi for which p(n) is odd for an odd number of n∈Mi.
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1. The partition function. Apartition of a nonnegative integern is any non-increas-
ing sequence of positive integers whose sum is n. Let p(n) denote the number of par-
titions of n. Even though Euler’s recurrence (∗) gives a method for computing p(n),
there are many open problems and conjectures regarding the overall behavior of the
partition function. For instance, the following questions regard the parity of p(n).

Conjecture 1.1 (Parkin-Shanks [5]). The number of n≤ x for which p(n) is even
is ∼ (1/2)x.
Conjecture 1.2 (Subbarao [7]). In any arithmetic progression r(modt), there are

infinitely many integers N ≡ r (mod t) for which p(N) is even, and there are infinitely
many integers M ≡ r (mod t) for which p(M) is odd.

K. Ono [3] has recently proven most of this conjecture.

Newman’s problem (Newman [2]). Exhibit an infinite sequence of integers n1 <
n2 < ··· for which p(ni) is odd (resp., even).
Euler proved that the generating function for p(n) was given by the infinite product

∞∑
n=0

p(n)qn =
∞∏
n=1

1
1−qn . (1.1)

Euler also discovered the identity

∞∏
n=1

(
1−qn)= ∞∑

n=−∞
(−1)nq(3n2+n)/2. (1.2)
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2. Elliptic curves. An elliptic curve over the rationals is a non-singular curve of the
form

y2+a1xy+a3y = x3+a2x2+a4x+a6, (2.1)

where the coefficients ai are integers. Any curve of the above form is isomorphic to
one, say E, of the form

E : y2 = x3+ax2+bx+c, (2.2)

with integers a,b, and c. The discriminant of E, denoted by ∆(E), is given by

∆(E)=−4a3c+a2b2+18abc−4b3−27c2. (2.3)

If p is prime, then let GF (p) denote the finite field with p elements. If p is prime,
then Ēp is the reduction of E to GF (p). If the reduction is smooth, then we say E has
good reduction at p. Otherwise, E has bad reduction at p. If p �∆(E), then E has good
reduction at p.
The Hasse-Weil L-function of E, denoted by L(E,s), is obtained by examining the

reductions Ēp . If p is a prime of good reduction, then define the integer a(p) as

a(p)= p+1−Np, (2.4)

where Np is the number of points of Ēp rational over GF (p), including the point at
infinity. There are similar rules for those p with bad reduction. If p is prime and k≥ 2,
then

a
(
pk
)=


a(p)a

(
pk−1

)−pa(pk−2) p good reduction,

a(p)a
(
pk−1

)
p bad reduction.

(2.5)

Furthermore, if gcd(n,m)= 1, then
a(nm)= a(n)a(m). (2.6)

The L-function is then given by

L(E,s)=
∞∑
n=1

a(n)
ns . (2.7)

As a consequence of (2.5) and (2.6), we obtain:

Proposition 2.1. Let E be an elliptic curve and let L(E,s) = ∑∞
n=1

(
a(n)/ns) be

its Hasse-Weil function. Suppose that n > 1 is relatively prime to 2 ·∆(E) with prime
factorization

n=
∏
i
paii

∏
j
q
bj
j , (2.8)

where

a
(
pi
)≡ 0 (mod 2) and a

(
qj
)≡ 1 (mod 2). (2.9)

Then a(n) is odd if and only if every ai ≡ 0 (mod 2) and every bj �≡ 2 (mod 3).
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Proof. By hypothesis, every pi and qj are odd primes all with good reduction.
Then by (4), we find that for every k≥ 2,

a
(
pki
)≡ a(pk−2i

)
(mod 2),

a
(
qkj
)≡ a(qk−1j

)+a(qk−2j
)

(mod 2).
(2.10)

It is easy to verify then that a
(
pki
)
is odd if and only if k≡ 0 (mod 2), and that a

(
qkj
)

is odd if and only if k �≡ 2 (mod 3). The result now follows easily from (2.6).

Example 2.1. In this example, let E denote the curve

E : y2 = x3−x. (2.11)

Since ∆(E) = 4, E has good reduction at every prime p ≠ 2. If p = 5, then Ēp = Ē5 is
the collection of points (x,y)∈GF (5)×GF (5) satisfying the congruence

y2 ≡ x3−x (mod 5). (2.12)

An easy computation verifies that the only such points are

(0,0), (1,0), (2,1), (2,4), (3,2), (3,3), (4,0), ∞. (2.13)

So in this case N5 = 8, and so a(5) = 5+1−8 = −2. In fact, the first few terms of
L(E,s) are

L(E,s)= 1− 2
5s
− 3
9s
+ 6
13s

+··· . (2.14)

The Taniyama-Shimura-Weil conjecture states that all elliptic curves over the ra-
tionals are modular. A curve is modular if its L-function corresponds to the Fourier
expansion at infinity of a modular form. Specifically, if E is modular and L(E,s) =∑∞
n=1

(
a(n)/ns), then

FE(z)=
∞∑
n=1

a(n)qn
(
q = e2πiz) (2.15)

is amodular form. For a number of explicit examples (see [1]), the form FE(z) is given
as a product of Dedekind’s η-function defined by

η(z)= q1/24
∞∏
n=1

(
1−qn). (2.16)

For example, take the η-product

FE(z)= η4(6z)= q
∞∏
n=1

(
1−q6n)4. (2.17)

The coefficients of the L-function L(E,s) of the elliptic curve E : y2 = x3+1 are the
same as those in the Fourier expansion of FE(z).
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3. q-series results. In this section, we give two theorems which do not depend on
elliptic curves. They simply depend on q-series manipulations.

Theorem 3.1. If n= (2m+1)2, then an odd number of the values

p
(
n−1
4

−
(
a2+a
2

+6b2+2b
))

(3.1)

are odd, where a≥ 0 and b are integers.
Proof. Consider the η-product

η2(4z)η2(8z)=
∞∑
n=1

a(n)qn = q
∞∏
n=1

(
1−q4n)2(1−q8n)2. (3.2)

Factor this as

η2(4z)η2(8z)= η3(8z)η
2(4z)
η(8z)

. (3.3)

Recall the following identity due to Jacobi.

∞∏
n=1

(
1−qn)3 = ∞∑

a=0
(−1)a(2a+1)q(a2+a)/2. (3.4)

Using this identity and another well known identity, we obtain

η3(8z)=
∞∑
n=0

(−1)n(2n+1)q(2n+1)2 (3.5)

and

η2(4z)
η(8z)

= 1+2
∞∑
n=1

(−1)nq4n2 , (3.6)

so,

η3(8z)
η2(4z)
η(8z)

=

 ∞∑
n=0

(−1)n(2n+1)q(2n+1)2

·

1+2 ∞∑

n=1
(−1)nq4n2




≡
∞∑
n=0

q(2n+1)
2

(mod 2).

(3.7)

So,

η2(4z)η2(8z)≡ q+q9+q25+q49+··· (mod 2). (3.8)

Because
∏∞

n=1
(
1/(1−qn)) is the generating function for the partition function, we

find that

q


 ∞∑
n=0

p(n)q4n

· ∞∏

n=1

(
1−q4n)3 · ∞∏

n=1

(
1−q8n)2 = η2(4z)η2(8z). (3.9)
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Using Jacobi’s identity, (1.2) and the fact that (1−q8n)2 ≡ (1−q16n) (mod 2), this
becomes

 ∞∑
n=0

p(n)q4n+1

·

 ∞∑
a=0

q2a
2+2a


·

 ∞∑
b=−∞

q24b
2+8b


≡ η2(4z)η2(8z) (mod 2).

(3.10)

Therefore, we find that

∞∑
n=1

a(n)qn ≡

 ∞∑
n=0

p(n)q4n+1

·

 ∑
a≥0,b∈Z

q2a
2+2a+24b2+8b


 (mod 2). (3.11)

Therefore, it is easy to check that

a(n)≡
∑

a≥0,b∈Z
p
(
n−1
4

−
(
a2+a
2

+6b2+2b
))

(mod 2). (3.12)

The theorem now follows immediately.

Theorem 3.2. If n= (6m+1)2, then an odd number of the values

p
(
n−1
6

−
(
a2+a
2

+3b2+b
))

(3.13)

are odd, where a≥ 0 and b are integers.
Proof. Consider the η-product

η4(6z)=
∞∏
n=0

(
1−q6n)4. (3.14)

Since η4(6z)≡ η(24z) (mod 2), we can use (1.2) to give us

η(24z)=
∞∑

n=−∞
(−1)nq36n2+12n+1 ≡

∞∑
n=−∞

q(6n+1)
2

(mod 2). (3.15)

Thus, η4(6z)≡ 1+q25+q49+q121+q169+··· (mod 2). Because ∏∞
n=1

(
1/(1−qn)) is

the generating function for the partition function, we find that

q


 ∞∑
n=0

p(n)q6n

· ∞∏

n=1

(
1−q6n)3 · ∞∏

n=1

(
1−q6n)2 = η4(6z). (3.16)

Since (1−q6n)2 ≡ (1−q12n) (mod 2), we can use (3.4) and (1.2) to get

 ∞∑
n=0

p(n)q6n+1

·

 ∞∑
a=0

q3a
2+3a


·

 ∞∑
b=−∞

q18b
2+6b


≡ η4(6z) (mod 2). (3.17)

Therefore, we find that

∞∑
n=1

a(n)qn ≡

 ∞∑
n=0

p(n)q6n+1

·

 ∑
a≥0,b∈Z

q3a
2+3a+18b2+6b


 (mod 2). (3.18)
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Therefore, it is easy to check that

a(n)≡
∑

a≥0,b∈Z
p
(
n−1
6

−
(
a2+a
2

+3b2+b
))

(mod 2). (3.19)

The theorem now follows immediately.

Example 3.1. Here, we illustrate an example of Theorem 3.2. If m = 1, then n =
(6m+1)2 = 49. We must find pairs (a,b) with a≥ 0 and b integers such that

n−1
6

= 8≥
(
a2+a
2

+3b2+b
)
. (3.20)

These pairs are: (0,0) (0,−1) (0,1) (1,0) (1,−1) (1,1) (2,0) (2,−1) (2,1) (3,0) (3,−1).
Theorem 3.2 tells us that an odd number of the following values are odd:

p(8)= 22, p(6)= 11, p(4)= 5, p(7)= 15, p(5)= 7, p(3)= 3,
p(5)= 7, p(3)= 3, p(1)= 1, p(2)= 2, p(0)= 1. (3.21)

Nine of the eleven are indeed odd.

Group law for elliptic curves. If E is an elliptic curve, E : y2 = x3+ax2+
bx+c, the point at infinity is taken to be its identity element O, and P = (x1,y1) and
Q= (x2,y2) are points on E, then P+Q := (x3,y3), where

x3 = λ2−a−x1−x2 (3.22)

and

y3 = λx3+y1−λx1. (3.23)

If P =Q, then

λ= 3x
2+2ax+b
2y

, (3.24)

otherwise

λ= y2−y1
x2−x1 . (3.25)

The question of finding points of order two on a curve is the same as that of finding
all the points such that P+P =O but P ≠O. It is easily seen from the above that this
is satisfied only when y = 0.
Fundamental theorem. If E is an elliptic curve and p is a prime of good reduc-

tion, then Ēp with the point at infinity is a finite abelian group.

Theorem 3.3. Let E be the elliptic curve

E : y2 = x3+ax2+bx+c, (3.26)

and L(E,s) = ∑∞
n=1

(
a(n)/ns) its Hasse-Weil function. If the odd prime p has good

reduction, then a(p) is odd if and only if x3+ax2+bx+c ≡ 0 (mod p) has no solution.
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Proof. By definition, a(p)= p+1−Np , where Np is the number of rational points
of E over GF (p). Since p is an odd prime, we find that a(p) is odd if and only if

Np ≡ 1 (mod 2). (3.27)

The elliptic curve Ēp is a finite abelian group withNp elements, so Lagrange’s theorem
states that Np is a multiple of the order of each of the individual points. Thus, asking
when Np is odd is the same as asking for which Ēp are there no points of order two. A
point of order 2 on an elliptic curve is one whose y-coordinate is zero. Thus, Np and,
consequently, a(p) is odd if the equation y2 ≡ x3+ax2+bx+c ≡ 0 (mod p) has no
solution for which y = 0.
Theorem 3.4. Let p1 <p2 < ··· be the primes for which

x3−4x2−160x−1264≡ 0 (mod pi) (3.28)

have solutions in GF
(
pi
)
and let q1 < q2 < ··· be the primes for which

x3−4x2−160x−1264≡ 0 (mod qj) (3.29)

has no solutions in GF
(
qj
)
. Suppose that n > 1 is relatively prime to 2378 and that it

has the factorization

n=
∏
i
paii

∏
j
q
bj
j . (3.30)

If every ai ≡ 0 (mod 2) and every bj �≡ 2 (mod 3), then an odd number of the values

p
(
n−1−

(
a2+a
2

+33b2+11b
))

(3.31)

are odd, where a≥ 0 and b are integers.
Proof. In [1], it is proved that if E is the curve

E : y2 = x3−4x2−160x−1264, (3.32)

then its Hasse-Weil function L(E,s) =∑∞
n=1

(
a(n)/ns) has the property that its coef-

ficients a(n) are given by

η2(z)η2(11z)= q
∞∏
n=1

(
1−qn)2(1−q11n)2. (3.33)

However, since
(
1−q11n)2 ≡ (1−q22n) (mod 2), we find that

∞∑
n=1

a(n)qn ≡ q
∞∏
n=1

(
1−qn)2(1−q22n) (mod 2). (3.34)

Therefore, we find by (1.1) that
 ∞∑
n=0

p(n)qn+1

 ∞∏
n=1

(
1−qn)3 ∞∏

n=1

(
1−q22n)≡ ∞∑

n=1
a(n)qn (mod 2). (3.35)
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But by Jacobi’s identity (3.4) and Euler’s identity (1.2), this reduces to


 ∞∑
n=0

p(n)qn+1

·

 ∞∑
a=0

q(a
2+a)/2


·
( ∞∑
n=−∞

q33b
2+11b

)
≡

∞∑
n=1

a(n)qn (mod 2). (3.36)

Therefore, it turns out that

a(n)≡
∑

a≥0,b∈Z
p
(
n−1−

(
a2+a
2

+33b2+11b
))

(mod 2). (3.37)

The result now follows immediately from Theorem 3.3 and Proposition 2.1.

Example 3.2. It is easy to show that there is no solution to the equation

x3−4x2−160x−1264≡ 0 (mod pi) (3.38)

for the primes 3 and 5. So by (2.6),n= 15 is a suitable choice to illustrate Theorem 3.4.
We must, therefore, find all pairs (a,b) with a ≥ 0 and b ∈ Z such that 14 ≥ (a2+a2 +
33b2+11b). These pairs are: (0,0) (1,0) (2,0) (3,0) (4,0). So by Theorem 3.4, an odd
number of the following

p(14)= 135, p(13)= 101, p(11)= 56, p(8)= 22, p(4)= 5 (3.39)

are odd.

Theorem 3.5. Let p1 <p2 < ··· be the primes for which

x3+x2+72x−368≡ 0 (mod pi) (3.40)

have solutions in GF
(
pi
)
and q1 < q2 < ··· the primes for which

x3+x2+72x−368≡ 0 (mod qj) (3.41)

has no solutions in GF
(
qj
)
. Suppose that n > 1 is relatively prime to 14 and that its

prime factorization is

n=
∏
i
paii

∏
j
q
bj
j . (3.42)

If every ai ≡ 0 (mod 2) and every bj �≡ 2 (mod 3), then an odd number of the values

p
(
n−1−

(
7a2+7a

2
+6b2+2b

))
(3.43)

are odd, where a≥ 0 and b are integers.
Proof. In [1], it is proved that if E is the curve

E : y2 = x3+x2+72x−368, (3.44)



q-SERIES, ELLIPTIC CURVES, AND ODD VALUES OF THE PARTITION FUNCTION 63

then its Hasse-Weil function L(E,s) =∑∞
n=1

(
a(n)/ns) has the property that its coef-

ficients a(n) are given by

η(z)η(2z)η(7z)η(14z)= q
∞∏
n=1

(
1−qn)(1−q2n)(1−q7n)(1−q14n). (3.45)

Using Euler’s identity (1.2), Jacobi’s identity (3.4), and the fact that (1−q2n)≡ (1−qn)2
(mod 2), the theorem follows in a manner similar to that of Theorem 3.4.

Theorem 3.6. Let p1 <p2 < ··· be the primes for which

x3+x2+4x+4≡ 0 (mod pi) (3.46)

have solutions in GF
(
pi
)
and q1 < q2 < ··· the primes for which

x3+x2+4x+4≡ 0 (mod qj) (3.47)

has no solutions in GF
(
qj
)
. Suppose that n > 1 is relatively prime to 10 and that its

prime factorization is

n=
∏
i
paii

∏
j
q
bj
j . (3.48)

If every ai ≡ 0 (mod 2) and every bj �≡ 2 (mod 3), then an odd number of the values

p
(
n−1
2

−
(
a2+a+30b2+10b

))
, (3.49)

are odd, where a≥ 0 and b are integers.
Proof. If E is the curve

E : y2 = x3+x2+4x+4, (3.50)

then in [1], it was proved that the coefficients a(n) of its Hasse-Weil function L(E,s)=∑∞
n=1

(
a(n)/ns) are given by

η2(2z)η2(10z)= q
∞∏
n=1

(
1−q2n)2(1−q10n)2. (3.51)

The proof follows in a manner similar to Theorem 3.4.

Theorem 3.7. Let p1 <p2 < ··· be the primes for which

x3−x2−4x+4≡ 0 (mod pi) (3.52)

have solutions in GF
(
pi
)
and q1 < q2 < ··· the primes for which

x3−x2−4x+4≡ 0 (mod qj) (3.53)

has no solutions in GF
(
qj
)
. Suppose that n > 1 is relatively prime to 6 and that its

prime factorization is

n=
∏
i
paii

∏
j
q
bj
j . (3.54)
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If every ai ≡ 0 (mod 2) and every bj �≡ 2 (mod 3), then an odd number of the values

p
(
n−1
2

−
(
3a2+3a+12b2+4b

))
(3.55)

are odd, where a≥ 0 and b are integers.
Proof. If E is the curve

E : y2 = x3−x2−4x+4, (3.56)

then in [1], it was proved that the coefficients a(n) of its Hasse-Weil function L(E,s)=∑∞
n=1

(
a(n)/ns) are given by
η(2)η(4z)η(6z)η(12z)= q

∞∏
n=1

(
1−q2n)(1−q4n)(1−q6n)(1−q12n). (3.57)

The proof follows in a manner similar to Theorem 3.4.

Theorem 3.8. Let p1 <p2 < ··· be the primes for which

x3−432≡ 0 (mod pi) (3.58)

have solutions in GF
(
pi
)
and qj are the primes for which

x3−432≡ 0 (mod qj) (3.59)

has no solutions in GF
(
qj
)
. Suppose that n > 1 is relatively prime to 6 and that its

prime factorization is

n=
∏
i
paii

∏
j
q
bj
j . (3.60)

If every ai ≡ 0 (mod 2) and every bj �≡ 2 (mod 3), then an odd number of the values

p
(
n−1
3

−
(
3a2+3a

2
+27b2+9b

))
(3.61)

are odd, where a≥ 0 and b are integers.
Proof. If E is the curve

E : y2 = x3−432, (3.62)

then in [1], it was proved that the coefficients a(n) of its Hasse-Weil function L(E,s)=∑∞
n=1

(
a(n)/ns) are given by

η2(3z)η2(9z)= q
∞∏
n=1

(
1−q3n)2(1−q9n)2. (3.63)

The proof follows in a manner similar to Theorem 3.4.

Also, realize that the curves in Theorems 3.4, 3.5, and 3.8 were all changed from
the form they are normally shown into the form y2 = x3+ax2+bx+c by a simple
change of variables to ease the job of finding points of order two.
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