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DIRAC STRUCTURES ON HILBERT SPACES
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Abstract. For a real Hilbert space (H,〈 ,〉), a subspace L ⊂ H ⊕H is said to be a Dirac
structure on H if it is maximally isotropic with respect to the pairing 〈(x,y),(x′,y′)〉+ =
(1/2)(〈x,y′〉+ 〈x′,y〉). By investigating some basic properties of these structures, it is
shown that Dirac structures on H are in one-to-one correspondence with isometries on
H, and, any two Dirac structures are isometric. It is, also, proved that any Dirac structure
on a smooth manifold in the sense of [1] yields a Dirac structure on some Hilbert space.
The graph of any densely defined skew symmetric linear operator on a Hilbert space is,
also, shown to be a Dirac structure. For a Dirac structure L on H, every z ∈H is uniquely
decomposed as z = p1(l)+p2(l) for some l ∈ L, where p1 and p2 are projections. When
p1(L) is closed, for any Hilbert subspace W ⊂ H, an induced Dirac structure on W is
introduced. The latter concept has also been generalized.
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1. Introduction. Dirac structures on smoothmanifoldswere introduced by Courant
and Weinstein [1, 2] as a generalization of Poisson and presymplectic structures. The
algebraic counterpart of this structure is given by Dorfman [3]. Our approach to these
structures is via functional analysis. As a first step, in this paper, we study Dirac
structures on Hilbert spaces. Our definition of a Dirac structure is a minor variation
of the one given in [1], and the two definitions are equivalent in the finite dimensional
case. Indeed, our construction includes the Dirac structures on smooth manifolds in
the sense of [1] as a special case. One of the natural applications of these structures
is in the area of partial differential equations. This is illustrated by giving a simple
example (see Example 2.21). It is worthwhile to note that most of the techniques in
finite dimension may not be applied to the infinite dimensional case. For example, the
use of coordinate systems is not possible. The main properties we have employed in
dealing with Dirac structures are the maximality of these structures with respect to
the proposed pairing and the basic properties of Hilbert spaces.
In Section 1, we study some basic properties of Dirac structures on a real Hilbert

space. This leads to some decompositions of elements in Hilbert spaces with regard
to Dirac structures (see Theorem 2.10 and Corollary 2.15). As a useful application, it
is shown that the graph of any densely defined skew symmetric linear operator on a
Hilbert space is indeed a Dirac structure (Theorem 2.19). The interconnection of Dirac
structures and certain skew symmetric linear maps is given in Theorem 2.24. Then
the correspondence between the set of Dirac structures and the set of isometries on a
Hilbert space is established in Theorem 2.27. In Section 3, we study the situations in
which a Dirac structure on a Hilbert space, in certain sense, induces a Dirac structure
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on a Hilbert subspace. It turns out that when the subspace is admissible with respect
to the Dirac structure, (see Definition 3.7), the induced Dirac structure exists (Theorem
3.6). We show that the induced Dirac structure introduced here, is consistent with the
one given by Courant [1, Sec. 1.4] in the finite dimensional case.

2. Dirac structures on Hilbert spaces. Let (H,〈 ,〉) be a real Hilbert space. The
componentwise inner product on H⊕H is, also, denoted by 〈 ,〉. The orthogonality on
H and H⊕H are both denoted by ⊥. Let 〈 ,〉+ be the pairing on H⊕H defined by

〈
(x,y),(x′,y ′)

〉
+ =

1
2

(〈x,y ′〉+〈x′,y〉). (1)

The orthogonality with respect to 〈 ,〉+ is denoted by ⊥.
Definition 2.1. With the above notations, a Dirac structure on a Hilbert space

(H, 〈 ,〉) is a subspace of H⊕H which is maximally isotropic under the pairing 〈 ,〉+.
Example 2.2. Let A :H �→H be a skew symmetric linear map and let L= graph(A)

⊂H⊕H. For (x,y), (x′,y ′)∈ L,
〈
(x,y),(x′,y ′)

〉
+ =

(〈x,y ′〉+〈x′,y〉)/2
= (〈x,Ax′〉+〈x′,Ax〉)/2
= (〈x,Ax′〉−〈x,Ax′〉)/2= 0.

(2)

Therefore, L is isotropic. Let (a,b)∈H⊕H, and assume that for all x ∈H,

〈
(x,Ax),(a,b)

〉
+ = 0. (3)

Then 〈x,b〉+〈a,Ax〉 = 0, i.e., 〈b−Aa,x〉 = 0 for all x ∈H. Thus, b = Aa and, hence,
(a,b)∈ L. This means that L is a Dirac structure on H.

The above example is strengthened in Theorem 2.19.

Lemma 2.3. Let M ⊂H⊕H be isotropic with respect to 〈 ,〉+. Then the closure of M
in H⊕H is, also, isotropic.

Proof. Assume that (a,b) ∈M . Take a sequence (xn,yn) of elements of M con-
verging to (a,b). Let (x,y)∈M , then

〈
(a,b),(x,y)

〉
+ =

(〈a,y〉+〈x,b〉)/2
= (〈 lim

n �→∞xn,y
〉+〈x, lim

n �→∞yn
〉)
/2

= lim
n �→∞(〈xn,y〉+〈x,yn〉)/2

= lim
n �→∞〈(xn,yn),(x,y)〉+ = 0.

(4)

Similarly, for (c,d)∈M, 〈(a,b),(c,d)〉+ = 0. Therefore, M is isotropic.

Corollary 2.4. Every Dirac structure on H is a closed subspace of H ⊕H and,
consequently, it is a Hilbert subspace.



DIRAC STRUCTURES ON HILBERT SPACES 99

Corollary 2.5 (Hellinger-Toeplitz theorem). Any skew symmetric linear map on
a Hilbert space is continuous.

Proof. This follows from Example 2.2, Corollary 2.4 and the closed graph
theorem.

Lemma 2.6. Let L be a Dirac structure on H and let pi : H⊕H �→ H, (i = 1,2), be
the first and the second projections. Let H1 = {0}×H, H2 =H×{0}. Then
(i) ker(p1 |L)=H1∩L,
(ii) ker(p2 |L)=H2∩L,
(iii) p2(L∩H1)= p1(L)⊥,
(iv) p1(L∩H2)= p2(L)⊥,
(v) p1(L)= (p2(L∩H1))⊥,
(vi) p2(L)= (p1(L∩H2))⊥.

Proof. (i) and (ii) are clear. To prove (iii) let y ∈ p2(L∩H1) and x ∈ p1(L), then
(0,y)∈ L and there exists z ∈H such that (x,z)∈ L. Now,

〈
(0,y),(x,z)

〉
+ =

1
2
〈x,y〉 = 0. (5)

Therefore, p2(L∩H1) ⊂ p1(L)⊥. Assume that y ∈ p1(L)⊥. Then, for each (x,z) ∈ L,
we have 〈(0,y),(x,z)〉+ = 1/2〈x,y〉 = 0. Since L is maximally isotropic, (0,y) ∈ L.
Therefore, y ∈ p2(L∩H1), i.e., p2(L∩H1) ⊂ p1(L)⊥. The proof of (iv) is similar. The
identities (v) and (vi) are consequences of (iii) and (iv) and the following lemma whose
proof is straightforward.

Lemma 2.7. Let M be a subspace of a Hilbert space H, then M = (M⊥)⊥.

Proposition 2.8. A Dirac structure L induces a skew symmetric linear form Ω1 on
p1(L)⊂H defined by

Ω1
(
p1(x,y)

)= x∗, x∗(z)= 〈z,y〉 for all z ∈ p1(L). (6)

Moreover,

kerΩ1 = p1
{
L∩(p1(L)×p1(L)⊥)

}
. (7)

A similar statement holds for Ω2 on p2(L) and

kerΩ2 = p2
{
L∩(p2(L)⊥×p1(L)

)}
. (8)

Proof. Let E = p1(L) and let E∗ be the topological dual of E. The map Ω1 is
well defined: Suppose that (x,y), (x,y ′) ∈ L. Then (0,y −y ′) ∈ L∩H1. Thus, by
Lemma 2.6, y −y ′ ∈ E⊥. Assume that z ∈ E. Then 0 = 〈z,y −y ′〉 = 〈z,y〉−〈z,y ′〉.
Therefore, 〈z,y〉 = 〈z,y ′〉. Since z is arbitrary, Ω1(p1(x,y)) = Ω1(p1(x,y ′)). Now,
we show that Ω1 is skew symmetric: In fact, for (x,y), (u,v)∈ L,
〈
Ω1
(
p1(x,y)

)
,p1(u,v)

〉+〈Ω1
(
p1(u,v)

)
,p1(x,y)

〉
= 〈u,y〉+〈x,v〉 = 2〈(x,y),(u,v)〉+ = 0. (9)
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Finally,

kerΩ1 =
{
p1(x,y) | (x,y)∈ L and Ω1

(
p1(x,y)

)= 0
}

= {x | (x,y)∈ L and x∗ | E = 0}
= {x | (x,y)∈ L and y ∈ p1(L)⊥

}
= p1

{
L∩(E×E⊥)}.

(10)

The proof of the statement about Ω2 is similar.

Lemma 2.9. With the above notations, if p1±p2 : L �→ H are surjective, then they
are isomorphisms of Hilbert spaces.

Proof. Let z = (x,y) ∈ ker(p1+p2), then x+y = 0. Hence, (x,−x) ∈ L. There-
fore, −2‖x‖2 = 0, i.e., z = 0. Thus, p1+p2 is injective. Observe that p1+p2 is norm
preserving because, for (x,y)∈ L,

‖(x,y)‖2 = 〈(x,y),(x,y)〉= ‖x‖2+‖y‖2 = 〈(x+y),(x+y)〉= ‖x+y‖2. (11)

Therefore, ‖(x,y)‖ = ‖x +y‖. Consequently, Banach’s theorem implies that when
p1+p2 is surjective, it is an isomorphism of Hilbert spaces. The proof of the statement
about p1−p2 is similar.

Theorem 2.10. The maps p1±p2 : L �→H are isomorphisms of Hilbert spaces.

Proof. By Lemma 2.9, it is enough to show that p1±p2 are surjective. Let z ⊥ (p1+
p2)(L). By the decomposition theorem in Hilbert spaces, there are (x,y),(x′,y ′)∈ L
such that (z,z)= (x,y)+(y ′,x′). Therefore,

2‖z‖2 = 〈(z,z),(z,z)〉= 〈(z,z),(x,y)〉+〈(z,z),(y ′,x′)〉= 0, (12)

i.e., z = 0. Hence, (p1+p2)(L) is dense in H. Now, let ((p1+p2)(xn))n∈N be a Cauchy
sequence in H. Since p1+p2 is norm preserving, (xn)n∈N is a Cauchy sequence in L
and, hence, (p1+p2)(L)=H. Similarly, p1−p2 is an isomorphism.

Lemma 2.11. Let (x,y)∈H⊕H such that, for all (a,b)∈ L,

〈
(x,y),(a,b)

〉
+ =

〈
(x,y),(a,b)

〉= 0. (13)

Then (x,y)= 0.

Proof. Assume that 〈(y,x),(a,b)〉+ = 〈(y,x),(a,b)〉 = 0. Then 〈(x+y,y+x),(a,
b)〉+ = 〈(x +y,y +x),(a,b)〉 = 0. Let x +y = p1(l)+p2(l) for some l ∈ L. Then,
by Lemma 2.9, (x+y,y +x) = (p1(l),p2(l))+ (p2(l),p1(l)) = l+ t(l), where t(l) =
(p2(l),p1(l)). But then 0 = 〈l+ t(l),l〉+ = 〈t(l),l〉+ = ‖l‖2, which implies that l = 0.
Therefore, x+y = 0, and, hence, y = −x. Again by Lemma 2.9, x = p1(l′)−p2(l′).
Then (x,−x)= l′ −p(l′) and, as above, l′ = 0. Therefore, x = 0 and y = 0.

The following is a consequence of Corollary 2.4 and Lemma 2.11.

Corollary 2.12. Let L be a Dirac structure on H. Then
(i) If (x,y)⊥L, then (x,y)∈ L.
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(ii) L⊥ = t(L).
(iii) L⊥ is a Dirac structure.

Theorem 2.13. Let L be a Dirac structure on a Hilbert space H. Then, for λ �= 0 and
µ �= 0, the linear mappingpλ,µ : L �→H defined bypλ,µ = λp1+µp2 is a homomorphism,
which is an isometry for |λ| = |µ| = 1.

Proof. Clearly, pλ,µ is continuous. Assume that z = (x,y)∈ ker(λp1+µp2), then
λx+µy = 0. Therefore, (x,−(λ/µ)x) ∈ L and, hence, −2(λ/µ)‖x‖2 = 0, i.e., z = 0.
Therefore, pλ,µ is injective. Now, let λµ > 0 and v ∈ pλ,µ(L)⊥, i.e., 〈v,λx+µy〉 = 0
for all (x,y) ∈ L. Since, by Lemma 2.9, v = x+y for some (x,y) ∈ L, we have, 0 =
〈x+y,λx+µy〉 = λ‖x‖2+µ‖y‖2. Therefore, x =y = 0 and, hence, v = 0. For λµ < 0,
let v = x−y with (x,y) ∈ L. Then 0 = 〈x−y,λx+µy〉 = λ‖x‖2−µ‖y‖2. Thus, x =
y = 0 and, hence, v = 0. Therefore, pλ,µ(L) is dense in H. Without loss of generality,
we may assume that |λ| ≤ |µ|. Then |λ|‖(x,y)‖ ≤ ‖pλ,µ(x,y)‖ ≤ |µ|‖(x,y)‖. Thus,
if (pλ,µ(xn))n∈N is a Cauchy sequence in pλ,µ(L), then (xn)n∈N is a Cauchy sequence
in L. Therefore, the inequality above and Corollary 2.4 implies that pλ,µ(L)=H. Now,
the continuity of p−1λ,µ follows from Banach’s theorem.

The following can be deduced from the proof of Theorem 2.13.

Proposition 2.14. Let L⊂H⊕H be isotropic. Then,
(i) For each λ,µ ∈ R, λ �= 0, µ �= 0, the map pλ,µ : L �→ H defined by (x,y) � �→

λx+µy is injective.
(ii) For L to be a Dirac structure, it is sufficient that, for some λ,µ ∈ R, λ �= 0, µ �=

0, pλ,µ : L �→H is surjective.

Corollary 2.15. Let A : H �→ H be a skew symmetric linear map. Then every
h∈H has a unique representation h= x+Ax for some x ∈H such that

‖h‖2 = ‖x‖2+‖Ax‖2. (14)

Proof. Let L = graph(A). By Example 2.2, L is a Dirac structure on H. Thus, by
Theorem 2.13, p1+p2 : L �→ H is an isometry. Hence, for some x ∈ H, h = x+Ax
with the required identity on norms.

The following example explains the relation between the Dirac structures on smooth
manifolds in the sense of [1] and our definition of Dirac structures on Hilbert spaces.

Example 2.16. Let (M,g) be a Riemannianmanifold endowed with an almost Dirac
structure L as in [1]. Using the natural isomorphism TM �→ T∗M induced by g, L can
be considered as a subbundle of TM⊕TM. L is maximal with respect to the pairing

〈
(u,v)(x,y)

〉
+m =

1
2

(
gm(u,y)+gm(x,v)

)
. (15)

Let pi : TM⊕TM �→ TM be the ith projection, i = 1,2. Clearly, pi is a strong bundle
map. By a well-known result on bundle maps and the finite dimensional case of The-
orem 2.13, p1+p2 : L �→ TM is a strong bundle isomorphism which is an isometry
on each fibre. Let H be the space of L2-sections of TM. Then H ⊕H is the space of
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L2-sections of TM⊕TM. Clearly, the space of L2-sections of L is an isotropic subspace
of H⊕H. We denote this space by Λ. If pi# is defined by (pi#(X))m = pi(Xm), then it
follows that p1#+p2# : Λ �→H is an isometric isomorphism. By Theorem 2.13, Λ is a
Dirac structure on H.

As special cases, one can see that the graph of the symmetric (resp., Hamiltonian)
operator of a presymplectic (resp., Poisson) Riemannian manifold M acting on the
Hilbert space of L2-sections of TM (resp., T∗M) is a Dirac structure on these Hilbert
spaces.
The following is an example of a Dirac structure with our definition which is not a

Dirac structure in the sense of [1].

Example 2.17. LetH = L2(R,µ), where µ is the Lebesguemeasure onR. ThenH⊕H
is the Hilbert space of all L2-sections of the trivial vector bundle p1 : R2 �→ R. Let L be
the singular subbundle of the vector bundle defined by

Lλ =


R×{0} for λ �= 0,

0 for λ= 0.
(16)

Using Theorem 2.13, it follows that the subspace Λ of H ⊕H consisting of all L2-
sections of L is a Dirac structure on H. But L is not an almost Dirac structure on R in
the sense of [1].

In order to present some interesting examples of Dirac structures, we need the
following well-known lemma.

Lemma 2.18. Let A :H �→H be a densely defined skew symmetric linear map. Then
graph(A) is closed.

Proof. Let (xn,Axn)n∈N be a sequence in graph(A) converging to (x,y), and let
u∈Dom(A). Then

lim
n �→∞(u,−Axn)= lim

n �→∞(Au,xn). (17)

Therefore, 〈u,−y〉 = 〈Au,x〉 and, consequently,x ∈Dom(A∗)=Dom(A) and 〈u,y〉=
〈u,−Ax〉. Thus, u ⊥ (y + Ax) for all u ∈ Dom(A). Since Dom(A) = H, we have
y+Ax = 0 and, hence, (x,y)∈ graph(A).

Theorem 2.19. Let A : H �→ H be a densely defined skew symmetric linear map.
Then graph(A) is a Dirac structure on H.

Proof. By Lemma 2.18, graph(A) is a closed subspace of H⊕H. Let graph(A)∪
{(a,b)} be an isotropic subset of H ⊕H with (a,b) ⊥ graph(A). Then, for all x ∈
Dom(A), we have,

〈a,Ax〉+〈b,x〉 = 〈a,x〉+〈b,Ax〉 = 0. (18)

Consequently, 〈a+b,x+Ax〉 = 0 for all x ∈Dom(A). Let u= a+b, then we have

0= 〈u,x+Ax〉 = 〈u,x〉+〈u,Ax〉, (19)
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i.e., 〈x,−u〉 = 〈Ax,u〉. Therefore, u ∈ Dom(A∗) = Dom(A) and 〈x,−u〉 = 〈x,−Au〉
for all x ∈Dom(A). Consequently, Au=u. Now, we have

‖u‖2 = 〈Au,u〉 = 〈u,−Au〉 = −‖u‖2, (20)

which implies that a = −b. Since graph(A)∪{(a,b)} is isotropic, we have a = b = 0.
This shows that the graph(A) is a maximally isotropic subspace of H⊕H, i.e., it is a
Dirac structure on H.

Corollary 2.20. Let A :H �→H be a densely defined skew symmetric linear map.
Then the map (I+A) : Dom(A) �→H is bijective.

Proof. This follows from Theorems 2.13 and 2.19.

Under the hypotheses of Corollary 2.20, since themap I+A is bijective, the pull-back
of the inner product of H by this map is an inner product on Dom(A). We denote this
inner product and the associated norm by 〈 ,〉p and ‖‖p , respectively. Then Dom(A)
is a Hilbert space with this inner product. Since, for every x ∈Dom(A),

‖x‖2p = ‖x+Ax‖2 = ‖x‖2+‖Ax‖2 ≥ ‖Ax‖2, (21)

the linear operator A : Dom(A) �→H is a contracting operator.

Example 2.21. LetH = L2(R) and letA= d/dx be the differential operator defined
on the subspace C1

0 (R) ⊂ H, the space of continuously differentiable real functions
with compact support. Using integration by parts, it can be seen that A is skew sym-
metric. Thus, by Theorem 2.19, graph (A) is a Dirac structure on H.

Now, we study the properties of left and right Dirac structures.

Definition 2.22. A Dirac structure L on H is said to be a left (resp., right ) Dirac
structure if p1(L) (resp., p2(L)) is closed. The mapping t :H⊕H �→H⊕H, defined by
t(x,y)= (y,x), changes any left Dirac structures to a right one.
Let L be a Dirac structure on H and L1 = {(0,y)∈ L} =H1∩L, with the notation of

Lemma 2.6. Clearly, L1 is a closed subspace of L. Let L2 = (L1)⊥ be the orthocomple-
ment of L1 in L. Clearly, L2 is a closed subspace of L.

Lemma 2.23. With the above notations, p2(L2)⊂ p1(L).

Proof. Let z ∈ p1(L)⊥ = p2(L∩H1) and w ∈ p2(L2). Then there exists y ∈ p1(L)
such that (y,w)∈ L2. On the other hand, (0,z)∈ L1. Since L1⊥L2 in L,

0= 〈(y,w),(0,z)〉= 〈w,z〉. (22)

Therefore, z⊥w. Since z ∈ p1(L)⊥ is arbitrary,w⊥p1(L)⊥, i.e.,w ∈ (p1(L)⊥
)⊥ = p1(L).

Consequently, p2(L2)⊂ p1(L).

With the notations above, the mapping p1 : L2 �→ p1(L) is bijective. We denote the
inverse map by q1 : p1(L) �→ L2. LetΩ : p1(L) �→ p1(L) be defined byΩ = p2◦q1 which
is well-defined by the previous lemma. Clearly, Ω is a skew symmetric linear map.
Conversely, let E be a closed subspace of H and let Ω : E �→ E be a skew symmetric
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linearmap. Let L2 = graph (Ω) and L1 = {0}×E⊥. Clearly, L1 is a closed subspace ofH⊕
H and L1⊥L2. Let L= L1⊕L2. Then L is an isotropic subspace of H⊕H. To see this, let
(x,y)∈H⊕H such that {(x,y)}∪L is isotropic. Then, for z ∈ E⊥, 〈(x,y),(0,z)〉+ =
(1/2)〈x,z〉 = 0. Therefore, x ∈ E and (x,Ω(x)) ∈ L. Consequently, (0,y−Ω(x))⊥L.
Therefore, y−Ω(x)∈ E⊥ and L is a Dirac structure with p1(L)= E.
The above discussion can be summarized in the following theorem.

Theorem 2.24. Let H be a Hilbert space. Then
(i) For any Dirac structure L on H, there corresponds a skew symmetric linear map

Ω : p1(L) �→ p1(L) such that L is the direct sum of graph(Ω) and the vector space
L1 = {(0,y) |y ∈ p1(L)⊥}. Moreover, graph(Ω)⊥L1.

(ii) Conversely, let E be a closed subspace of H and let Ω : E �→ E be a skew sym-
metric linear map. Then graph(Ω)⊕{(0,y) | y ∈ E⊥} is a Dirac structure on H and
graph(Ω)⊥{(0,y) |y ∈ E⊥}.
Let L be a Dirac structure on H. As we have seen earlier, the mappings p1±p2 : L �→

H are isometries. Thus, the map A :H �→H, defined by A= (p1−p2)◦(p1+p2)−1, is
an isometry. We claim that

L=
{((

I+A
2

)
(x),

(
I−A
2

)
(x)

) ∣∣∣ x ∈H
}
. (23)

Because x ∈H, there exists (z,w)∈ L such that x = z+w. Then
(
I+A
2

(x),
I−A
2

(x)
)
=
(
z+w+z−w

2
,
z+w−z+w

2

)
= (z,w). (24)

On the other hand, for every (z,w) ∈ L,( I+A2 (z+w), I−A2 (z+w)) = (x,y). The con-
verse of the above observation is, also, true in the following sense.

Proposition 2.25. Let A :H �→H be a surjective linear isometry. Then the vector
space LA ⊂H⊕H is defined by

LA =
{(

I+A
2

(x),
I−A
2

(x)
) ∣∣∣ x ∈H

}
(25)

is a Dirac structure on H.

Proof. Let x ∈H. Then〈(
I+A
2

(x),
I−A
2

(x)
)
,
(
I+A
2

(y),
I−A
2

(y)
)�

+

= 1
8

〈
(I+A)(x),(I−A)(y)〉+ 1

8

〈
(I−A)(x),(I+A)(x)〉

= 1
4

(〈x,y〉−〈Ax,Ay〉)= 0.

(26)

Therefore, LA is isotropic under the pairing 〈 ,〉+. Let (z,w) ∈ H⊕H such that LA∪
{(z,w)} is isotropic. Then, for each x ∈H,0= 〈(z,w),( I+A2 x, I−A2 x)〉+ = (〈z, I−A2 x〉+
〈 I+A2 x,w〉)/2, i.e., 〈z,x−Ax〉+〈x+Ax,w〉 = 0. Therefore, 〈z,x〉−〈z,Ax〉+〈x,w〉+
〈Ax,w〉 = 0 and, hence, 〈z+w,x〉+〈Ax,w−z〉 = 0. Since A is a surjective isometry,
〈A(z+w),Ax〉+〈Ax,w−z〉 = 0, i.e., z−w = A(z+w). Therefore, (z,w) = ( I+A2 (z+
w), I−A2 (z+w)). Thus, LA is a Dirac structure.
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Lemma 2.26. Let A,B : H �→ H be two surjective linear isometries on the Hilbert
space H. If LA = LB , then A= B.

Proof. Assume that LA = LB and let x,y ∈H. Since LA is isotropic,

〈(
(I+A)x,(I−A)x),((I+B)y,(I−B)y)〉+ = 0. (27)

Hence,

〈
(I+A)x,(I−B)y〉+〈(I+B)y,(I−A)x〉= 0. (28)

Consequently, 〈(I−B)∗(I+A)x,y〉+〈(I+B)∗(I−A)x,y〉 = 0. Thus, (I−B)∗(I+A)+
(I+B)∗(I−A)= 0. This implies that B∗A= I. Since A and B are surjective isometries,
it follows that A= B.
Proposition 2.25 and Lemma 2.26 can be summarized in the following.

Theorem 2.27. The set of Dirac structures on a Hilbert space H is in one-to-one
correspondence with the set of isometries on H.

Proposition 2.28. Let E ⊂ H be a subspace. Then L = E×E⊥ is a Dirac structure
on H if and only if E is closed.

Proof. Clearly, L is isotropic. Let E be closed and let (a,b)∈H⊕H such that for all
(x,y) ∈ L,〈(x,y),(a,b)〉+ = 0. Observe that (x,0) ∈ L and (0,y) ∈ L because, x ∈ E
and y ∈ E⊥. Thus, 〈a,y〉 = 0 and 〈b,x〉 = 0, i.e., a∈ E and b ∈ E⊥. Conversely, let L=
E×E⊥ be a Dirac structure on H. Let c ∈ E−E and b ∈ E⊥. Since L= E×E⊥ = E×(E)⊥,
we have (c,b)⊥(x,y). Now, the maximality of L implies that (c,b) ∈ L = E×E⊥, i.e.,
c ∈ E. Therefore, E is closed.

Corollary 2.29. Let H be a Hilbert space.
(i) Let L be a Dirac structure on H and assume that p2(L) = p1(L)⊥. Then L =

p1(L)×p2(L).
(ii) Let E and F be two closed subspaces of H such that L= E×F is a Dirac structure

on H. Then E⊥ = F and F⊥ = E.
(iii) Let E and F be two subspaces of H and let L = E×F be a Dirac structure on H.

Then L is both a left and a right Dirac structure on H.

Remark 2.30. Let E ⊂H be a Hilbert subspace and letM be a dense subspace of E.
LetΩ : E �→ E be a skew symmetric linear map and assume that L is the Dirac structure
on H induced by Ω. Set

LM =
{(
x,Ω(x)

) | x ∈M}⊕{(0,y) |y ∈M⊥}. (29)

Similar to the proof of Theorem 2.24, it can be seen that L= LM .
Remark 2.31. As we have seen earlier, for any Dirac structure L on a Hilbert space

H, the map p1 +p2 : L �→ H is a bijective linear isometry. Thus, for any two Dirac
structures Li,(i = 1,2), on H, there are bijective linear isometries φ1 : L1 �→ L2 and
φ2 : L⊥1 �→ L⊥2 . Therefore, there exists a bijective linear isometryφ :H⊕H = L1⊕L⊥1 �→
L2⊕L⊥2 =H⊕H defined by φ(x,y)= (φ1(x),φ2(y)) such that φ(L1)= L2.
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Remark 2.32. Since a Dirac structure L is isotropic under the pairing 〈 ,〉+, it does
not intersect with any subspace of H⊕H which is definite under the pairing 〈 ,〉+. Let
P = {(x+y,y+x) | (x,y)∈ L},N = {(x−y,y−x) | (x,y)∈ L}. Then, as subspaces
of H⊕H,P is maximal positive definite and N is maximal negative definite under the
above pairing. Clearly, L is the graph of the map AL :N �→ P defined by AL(x−y,y−
x)= (x+y,y+x).
The following proposition deals with Dirac structures on two Hilbert spaces and the

proof is straightforward.

Proposition 2.33. Let (H,〈 ,〉) and (G,〈 ,〉) be two Hilbert spaces.
(i) Let L be a Dirac structure onH and letφ :H �→G be a surjective linear isometry.

Then K = {(φ(x),φ(y)) | (x,y)∈ L} is a Dirac structure on G.
(ii) Let L and M be Dirac structures on H and G, respectively. Then L⊕M is a Dirac

structure on H⊕G.

3. Induced Dirac structures. Let (H,〈 ,〉) be a real Hilbert space and let H =W⊕V ,
where W and V are closed subspaces of H. For x ∈H and E ⊂H, the components of
x and E in W are denoted by xW and EW , respectively. Let L be a left Dirac structure
on H. Consider the space

L(W)= {(x,y)∈W ×W | ∃z ∈H such that (x,z)∈ L and zW =y
}
. (30)

As in Section 1, the projections on L �→H are denoted byp1 andp2. LetW1 =W∩p1(L)
and let W2 be the orthocomplement of W1 in W . We define

LW = L(W)+
({0}×W2

)
. (31)

Clearly, LW is isotropic with respect to 〈 ,〉+. We show that it is indeed maximally
isotropic in W ⊕W . Let (a,b)∈ (W ×W)∩(LW)⊥. Then, for y ∈W2,〈a,y〉 = 0. Hence,
a ∈ W⊥

2 ∩W = W1 since W1 is closed. Consequently, there exists t ∈ W such that
(a,t) ∈ L(W). It follows that (0,b− t) ∈ (LW)⊥. This implies that b− t ∈ W2. Thus,
(a,b)= (a,t)+(0,b−t)∈ LW .
Therefore, we have proven the following.

Theorem 3.1. Let L be a left Dirac structure on H and let W be a closed subspace
of H. Then LW is a left Dirac structure on W . �

Definition 3.2. With the above notations, LW is called the induced left Dirac struc-
ture on W .

Remark 3.3. Following the notations above, let x ∈ p1(L)⊥, then (0,x) ∈ L. Since
H =W ⊕W⊥,x = xW +xW⊥ . Observing that W =W1⊕W2, we have, x = xWW1+xWW2+
xW⊥ while xWW1 ∈W1,xWW2 ∈W2, with the expected meaning. Therefore, there exists
z ∈W such that (xWW1 ,z)∈ LW . Now, we have

0= 〈(0,xW),(xWW1 ,z
)〉
+ =

〈
xW ,xWW1

〉= ∥∥xWW1

∥∥2+〈xWW2 ,xWW1

〉= ∥∥xWW1

∥∥2. (32)

Thus, xWW1 = 0, i.e.,
(
p1(L)⊥

)
W ⊂W2. Let z ∈W2 and let z⊥(p1(L)⊥

)
W . Then, for every

y ∈ p1(L)⊥,
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〈z,y〉 = 〈z,yW2+yW⊥
2

〉= 0. (33)

Therefore, z ∈ W1 ∩W2. Thus, z = 0, i.e.,
(
p1(L)⊥

)
W is dense in W2. Consequently,

in the finite dimensional case, {0}×W2 = {0}×
(
p1(L)⊥

)
W ⊂ L(W). Therefore, LW =

L(W)+{(x,y) ∈ W ×W | ∃z ∈ H such that (x,z) ∈ L and zW = y} as proved in [1,
Sec. 1.4].

In the following, we introduce the induced structures on some special subspaces of
real Hilbert spaces for Dirac structures which are not necessarily left or right. Never-
theless, this generalizes the induced left Dirac structures.

Definition 3.4. Let L be a Dirac structure onH and letW ⊂H be a closed subspace
of H. We say that W is L-admissible if pλ,µ(LW)=W , for some λ≠ 0 and µ ≠ 0, where
pλ,µ = λp1+µp2, and LW ⊂ W ⊕W is the same as introduced above. Let LW be the
closure of LW in W ⊕W .

Theorem 3.5. Let L be a Dirac structure onH and letW be an L-admissible subspace
of H with some λ = µ and some λ = −µ. Assume that (u,v) ∈ (LW)⊥ ∩ (LW)⊥, where
the orthocomplements are taken in W ⊕W . Then (u,v)= 0.

Proof. Suppose that x ∈W and (x,z)∈ L. Then (x,zW)∈ LW and
〈
(u,v),

(
x,zW

)〉
+ =

〈
(u,v),

(
x,zW

)〉= 0. (34)

Hence,
〈
(u,v),(x,z)

〉
+ =

〈
(u,v),

(
x,zW

)〉
++

〈
(u,v),

(
0,zW⊥

)〉
+ = 0, (35)

and

〈
(u,v),(x,z)

〉= 〈(u,v),(x,zW )〉+〈(u,v),(0,zW⊥
)〉= 0. (36)

Therefore,

〈u+v,x+z〉 = 2
〈
(u,v),(x,z)

〉
++

〈
(u,v),(x,z)

〉= 0. (37)

Thus, (u+v)⊥W , i.e.,u=−v and, hence, 〈u,x−z〉 = 0 for all (x,z)∈ L. Consequently,
by Theorem 2.10, u⊥W and, hence u= 0,v = 0.

Theorem 3.6. Let L be a Dirac structure onH and letW be an L-admissible subspace
of H with some λ= µ and some λ=−µ. Then, LW is a Dirac structure on W .

Proof. Clearly, LW is an isotropic subspace ofW⊕W . Let (a,b)∈W⊕W such that
(a,b) ∈ (LW)⊥. By the decomposition theorem in Hilbert spaces, we have, (a,b) =
(s,t)+ (u,v), with (s,t) ∈ (LW) and (u,v) ∈ (LW)⊥. But LW ⊂ (LW)⊥ and (u,v) ∈
(LW)⊥∩(LW)⊥. Therefore, (u,v)= 0 and, hence, (a,b)∈ LW .
LetW be an L-admissible subspace of H for some λ and µ. Since the restriction map

pλ,µ : LW �→ W is a homeomorphism, LW is a closed subspace of W ⊕W . Therefore,
Proposition 2.14 implies that LW is a Dirac structure onW . This leads to the following
definition.
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Definition 3.7. Let L be a Dirac structure on H and let W be an L-admissible
subspace of H. Then, LW is called the induced left-type Dirac structure on W .

Remark 3.8. The induced left-type Dirac structure is transitive. Let V be an L-
admissible subspace of H and let W be an LV -admissible subspace of V . Let LVW be
the induced left-type Dirac structure of LV to W . Then the decomposition theorem of
Hilbert spaces asserts that W is an L-admissible subspace of H and LVW = LW . Conse-
quently, the induced left-type Dirac structures (from L and LV ) to W are identical.

Remark 3.9. If L is a left Dirac structure on H and W ⊂ H is a Hilbert subspace,
then W is L-admissible. This is a consequence of Proposition 2.14. Therefore, the
concept of induced left Dirac structure is a particular case of the notion of induced
left-type Dirac structure on L-admissible Hilbert subspaces.
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