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Abstract. In this paper, we establish several interesting relationships involving the
Fourier-Feynman transform, the convolution product, and the first variation for function-
als F on Wiener space of the form

F(x)= f(〈α1,x〉, . . . ,〈αn,x〉), (∗)
where 〈αj,x〉 denotes the Paley-Wiener-Zygmund stochastic integral

∫ T
0 αj(t)dx(t).
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1. Introduction. Let C0[0,T ] denote one-parameter Wiener space; that is the space
of R-valued continuous functions x on [0,T ] with x(0) = 0. The concept of an L1
analytic Fourier-Feynman transform was introduced by Brue in [1]. In [3], Cameron
and Storvick introduced an L2 analytic Fourier-Feynman transform. In [11], Johnson
and Skoug developed an Lp analytic Fourier-Feynman transform theory for 1≤ p ≤ 2
which extended the results in [1, 3] and gave various relationships between the L1 and
the L2 theories. In [7], Huffman, Park, and Skoug defined a convolution product for
functionals on Wiener space and in [9, 7, 8], they established various results involving
transforms and convolutions. In [5], Cameron and Storvick evaluated the Feynman
integral of the first variation of certain functionals on Wiener space and in [13], Park,
Skoug, and Storvick examined various relationships existing among the first varia-
tion, the Fourier-Feynman transform, and the convolution product for functionals on
Wiener space which belong to Banach algebra � in [4].
Section 3 of this paper includes all the relationships involving exactly two of the

three concepts of “transform,” “convolution product,” and “first variation” of func-
tionals of the type mentioned in the abstract. In Section 4, we examine all the rela-
tionships involving all three of these concepts, but where each concept is used exactly
once.

2. Definitions and preliminaries. Let � denote the class of all Wiener measur-
able subsets of C0[0,T ] and letm denote Wiener measure. (C0[0,T ],�,m) is a com-
plete measure space and we denote the Wiener integral of a functional F by

∫
C0[0,T ]

F(x)m(dx).
A subset E of C0[0,T ] is said to be scale-invariant measurable [6, 12] provided ρE ∈

� for all ρ > 0, and a scale-invariant measurable setN is said to be scale-invariant null
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providedm(ρN)= 0 for each ρ > 0. A property that holds except on a scale-invariant
null set is said to hold scale-invariant almost everywhere (s-a.e.). If two functionals F
and G are equal s-a.e., we write F ≈G.
Let C+ = {λ∈ C : Re λ > 0} and C∼+ = {λ∈ C : λ �= 0 and Re λ≥ 0}. Let F be a C-valued

scale-invariant measurable functional on C0[0,T ] such that

J(λ)=
∫
C0[0,T ]

F
(
λ−1/2x

)
m(dx) (2.1)

exists for all λ > 0. If there exists a function J∗(λ) analytic inC+ such that J∗(λ)= J(λ)
for all λ > 0, then J∗(λ) is defined to be the analytic Wiener integral of F over C0[0,T ]
with parameter λ and, for λ∈ C+, we write∫ anwλ

C0[0,T ]
F(x)m(dx)= J∗(λ). (2.2)

Let q �= 0 be a real number and let F be a functional such that
∫ anwλ
C0[0,T ] F(x)m(dx)

exists for all λ ∈ C+. If the following limit exists, we call it the analytic Feynman
integral of F with parameter q and we write

∫ anfq
C0[0,T ]

F(x)m(dx)= lim
λ �→−iq

∫ anwλ
C0[0,T ]

F(x)m(dx), (2.3)

where λ �→−iq through C+.

Notation.

(i) For λ∈ C+ and y ∈ C0[0,T ], let

Tλ(F)(y)=
∫ anwλ
C0[0,T ]

F(x+y)m(dx). (2.4)

(ii) Given a number p with 1 ≤ p ≤ +∞, p and p′ are always related by 1/p +
1/p′ = 1.
(iii) Let 1<p ≤ 2 and let {Hn} and H be scale-invariant measurable functions such

that for each ρ > 0,

lim
n �→∞

∫
C0[0,T ]

∣∣Hn(ρy)−H(ρy)∣∣p′m(dy)= 0. (2.5)

Then, we write

l. i.m.
n �→∞

(
wp′
s
)
(Hn)≈H (2.6)

and we call H the scale invariant limit in the mean of order p′. A similar definition is
understood when n is replaced by the continuously varying parameter λ.
We are finally ready to state the definition of the Lp analytic Fourier-Feynman trans-

form [11], the definition of the convolution product [7], and the definition of the first
variation of a function [2, 5].

Definition. Let q �= 0 be a real number. For 1 < p ≤ 2, we define the Lp analytic
Fourier-Feynman transform Tq(p;F) of F by the formula (λ∈ C+)
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Tq(p;F)= l. i.m.
λ �→−iq

(
wp′
s
)(
Tλ(F)

)
(2.7)

whenever this limit exists. Also, the L1 analytic Fourier-Feynman transform Tq(1;F)
of F is defined by (λ∈ C+)

Tq(1;F)= lim
λ �→−iq

Tλ(F) s-a.e. (2.8)

We note that for 1≤ p ≤ 2, Tq(p;F) is defined only s-a.e. We also note that if Tq(p;F)
exists and if F ≈G, then Tq(p;G) exists and Tq(p;F)≈ Tq(p;G).

Definition. Let F and G be functionals on C0[0,T ]. For λ ∈ C∼+, we define their
convolution product (if it exists) by

(F∗G)λ(y)=



∫ anwλ
C0[0,T ] F

(y+x√
2

)
G
(y−x√

2

)
m(dx), λ∈ C+

∫ anfq
C0[0,T ] F

(y+x√
2

)
G
(y−x√

2

)
m(dx), λ=−iq, q ∈R, q �= 0.

(2.9)

Remarks.

(i) When λ=−iq, we denote (F∗G)λ by (F∗G)q.
(ii) Our definition of the convolution product is different from the definition given

by Yeh in [14] and used by Yoo in [15]. In [14, 15], Yeh and Yoo studied the relationship
between their convolution product and Fourier-Wiener transforms.

Next, we give the definition of the first variation δF of a functional F .

Definition. Let F be a Wiener measurable functional on C0[0,T ] and let w ∈
C0[0,T ]. Then

δF(x |w)= ∂
∂h
F(x+hw)∣∣h=0 (2.10)

(if it exists) is called the first variation of F(x).

We finish this section by describing the class of functionals that we work with in
this paper. Let n be a positive integer (fixed throughout this paper). Let {α1, . . . ,αn}
be an orthonormal set of functions in L2[0,T ] and, for α, β ∈ L2[0,T ], let (α,β) =∫ T
0 α(t)β(t)dt. Also, for x ∈ C0[0,T ] and α ∈ L2[0,T ], let 〈α,x〉 denote the Paley-

Wiener-Zygmund stochastic integral
∫ T
0 α(t)dx(t). Let m be a nonnegative integer.

Then, for 1≤ p <∞, let B(p;m) be the space of all functionals of the form

F(x)= f (〈α1,x〉, . . . ,〈αn,x〉
)

(2.11)

for s-a.e.x ∈ C0[0,T ], where all the kth order partial derivatives of f :Rn �→R are con-
tinuous and in Lp(Rn) for k= 0, . . . ,m. Also, let B(∞;m) be the space of all functionals
of the form (2.11), where all the kth order partial derivatives of f are in C0(Rn), the
space of bounded continuous functions onRn that vanish at infinity, for k= 0,1, . . . ,m.
Note that B(p;m+1)⊆ B(p;m) form= 0,1, . . . . Finally, let

A= {
y ∈ C0[0,T ] :y is absolutely continuous on [0,T ] with y ′ ∈ L2[0,T ]

}
. (2.12)

3. Relationships involving two concepts. In [7], several relationships involving
the Fourier-Feynman transform and the convolution product were established for
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functionals in B(p;0). In this section, we also study relationships involving the first
variation. In our first lemma, which follows easily from the definitions of δF(x |w)
and B(p;m), we obtain a formula for the first variation of functionals in B(p;m).

Lemma 3.1. Let p ∈ [1,+∞], w ∈ A andm ∈N be given. Let F ∈ B(p;m) be given
by (2.11). Then

δF(x |w)=
n∑
j=1
〈αj,w〉fj(〈α1,x〉, . . . ,〈αn,x〉) (3.1)

for s-a.e. x ∈ C0[0,T ]. Furthermore, as a function of x,δF(x |w) is an element of
B(p;m− 1).

Corollary 3.1. Let p,m and F be as in Lemma 3.1. Letw(t)= ∫ t
0 αj(s)ds on [0,T ]

for some j ∈ {1, . . . ,n}. Then

δF(x |w)= fj
(〈α1,x〉, . . . ,〈αn,x〉

)
(3.2)

for s-a.e. x ∈ C0[0,T ].

Corollary 3.2. Letp,m and F be as in Lemma3.1 and assume that {α1, . . . ,αn,w′}
are orthogonal with w ∈A. Then δF(x |w)= 0 for s-a.e. x ∈ C0[0,T ].

Our next corollary to Lemma 3.1 gives us a formula for δlF .

Corollary 3.3. Let m ∈ {2,3, . . .} and let l ∈ {2, . . . ,m}. Let p and F be as in
Lemma 3.1 and let w1, . . . ,wl be elements of A. Then

δlF(· |w1)(· |w2)···(· |wl−1)(x |wl)

=
n∑

j1=1
···

n∑
jl=1

[ l∏
i=1
〈αji ,wi〉

]
fj1,...,jl

(〈α1,x〉, . . . ,〈αn,x〉
) (3.3)

for s-a.e. x ∈ C0[0,T ]. Furthermore, δlF(· |w1)···(· |wl−1)(x |wl), as a function of
x, is an element of B(p;m−l).

Notation. For ,u= (u1, . . . ,un)∈Rn, we write:

f(,u)= f(u1, . . . ,un), (3.4)

f
(
,u+〈,α,y〉)= f (u1+〈,α1,y〉, . . . ,un+〈αn,y〉

)
, (3.5)

and

‖,u‖2 = ‖,u‖22 =u1
2+···+un2. (3.6)

In [7, Sec. 2], it was shown that Tq(p;F) exists for each p ∈ [1,2], each F ∈ B(p;0),
and each nonzero q ∈R. In addition,

Tq(p;F)(y)≈
(
− iq
2π

)n/2∫
Rn
f (,u)exp

{
iq
2

∥∥,u−〈,α,y〉∥∥2}d,u
=
(
− iq
2π

)n/2∫
Rn
f
(
,u+〈,α,y〉)exp{ iq

2
‖,u‖2

}
d,u.

(3.7)
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Furthermore, Tq(p;F) is an element of B(p′;0), where (1/p)+ (1/p′) = 1. Next, let
m ∈ N and F ∈ B(p;m) be given. Since B(p;m) ⊆ B(p;0), we know that Tq(p;F)
exists and is given by (3.7). The proof that Tq(p;F) belongs to B(p′;m) for m> 0 is
similar to the proof given in [7] for the casem= 0.

In our first theorem, we show that the transform with respect to the first argument
of the variation equals the variation of the transform.

Theorem 3.1. Let p ∈ [1,2], let m ∈ {1,2, . . .}, let F ∈ B(p;m) be given by (2.11),
and let w ∈A. Then, for all real q �= 0 and s-a.e. y ∈ C0[0,T ],

Tq
(
p;δF(· |w))(y)= δTq(p;F)(y |w). (3.8)

Also, both of the expressions in (3.8) are given by the expression
(
− iq
2π

)n/2∫
Rn

[ n∑
j=1
〈αj,w〉fj

(
,u+〈,α,y〉)]exp{ iq

2
‖,u‖2

}
d,u, (3.9)

which, as a function of y , is a element of B(p′;m−1).
Proof. First, using the definition of the first variation and equation (3.7), we see

that

δTq(p;F)(y |w)= ∂
∂h

[
Tq(p;F)(y+hw)

]|h=0
=
(
− iq
2π

)n/2∫
Rn

[ n∑
j=1
〈αj,w〉fj

(
,u+〈,α,y〉)]exp{ iq

2
‖,u‖2

}
d,u.

(3.10)

Next, using equation (3.1), we see that

Tq
(
p;δF(· |w))(y)=

∫ anfq
C0[0,T ]

δF(x+y |w)m(dx)

=
∫ anfq
C0[0,T ]

n∑
j=1
〈αj,w〉fj

(〈,α,x+y〉)m(dx).
(3.11)

Then, evaluating the above analytic Feynman integral, we obtain (3.9) as desired.
Finally, δTq(p;F)(y | w) is an element of B(p′;m−1) since Tq(p;F) is an element
of B(p′;m).

Next, taking further variations of the expression given in (3.9), we obtain the follow-
ing corollary.

Corollary 3.4. Let p ∈ [1,2],m ∈ {2,3, . . .} and l ∈ {2, . . . ,m} be given. Let F ∈
B(p;m) be given by (2.11), and let w1, . . . ,wl be in A. Then

δlTq(p;F)(· |w1)···(· |wl−1)(y |wl)

=
(
− iq
2π

)n/2∫
Rn

n∑
j1=1

···
n∑

jl=1

[ l∏
i=1

〈
αji ,wi

〉]
fj1,...,jl

(
,u+〈,α,y〉)exp{ iq

2
‖,u‖2

}
d,u,

(3.12)

which, as a function of y , is an element of B(p′;m−l).
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In our next theorem, we show that the transform with respect to the second argu-
ment of the variation equals the variation of the functional.

Theorem 3.2. Let p,q,w, and F be as in Theorem 3.1. Then, for s-a.e. y ∈ C0[0,T ],

Tq
(
p;δF(y | ·))(w)= δF(y |w), (3.13)

which, as a function of y , is an element of B(p;m−1).
Proof. Using equation (3.1), we see that

Tq
(
p;δF(y | ·))(w)=

∫ anfq
C0[0,T ]

δF(y |w+x)m(dx)

=
∫ anfq
C0[0,T ]

n∑
j=1
〈αj,w+x〉fj

(〈,α,y〉)m(dx)

=
n∑
j=1
fj(〈,α,y〉)

∫ anfq
C0[0,T ]

〈αj,w+x〉m(dx)

=
n∑
j=1
fj
(〈,α,y〉)[〈αj,w〉+0]

= δF(y |w)

(3.14)

for s-a.e. y ∈ C0[0,T ].

Our next lemma involves the convolution product of functionals from various
B(p;m) classes.

Lemma 3.2. Let p,m, F , and q be as in Theorem 3.1. Let G ∈ B(p′;m) be given by
G(x)= g(〈α1,x〉, . . . ,〈αn,x〉

)= g(〈,α,x〉) (3.15)

for s-a.e. x ∈ C0[0,T ]. Then (F∗G)q is an element of B(∞;m).

Proof. First note that, for s-a.e. y ∈ C0[0,T ],

(F∗G)q(y)= l
(〈,α,y〉), (3.16)

where

l(,v)=
(
− iq
2π

)n/2∫
Rn
f
( ,v+ ,u√

2

)
g
( ,v− ,u√

2

)
exp

{
iq
2
‖,u‖2

}
d,u. (3.17)

Hence, for each ,v ∈Rn,
∣∣l(,v)∣∣≤

∣∣∣∣ q
2π

∣∣∣∣
n/2∫

Rn

∣∣∣∣f
( ,v+ ,u√

2

)
g
( ,v− ,u√

2

)∣∣∣∣d,u
≤
∣∣∣∣ q
2π

∣∣∣∣
n/2{∫

Rn

∣∣∣∣f
( ,v+ ,u√

2

)∣∣∣∣
p
d,u

}1/p{∫
Rn

∣∣∣∣g
( ,v− ,u√

2

)∣∣∣∣
p′

d,u
}1/p′

=
∣∣∣∣ q
2π

∣∣∣∣
n/2
‖f‖p‖g‖p′ .

(3.18)

Now, a standard argument shows that l belongs to C0(Rn). Hence, (F ∗G)q is an
element of B(∞;m).
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In our next theorem, we obtain a formula for the first variation of the convolution
product.

Theorem 3.3. Let p,m,q,F , and G be as in Lemma 3.2, and let w ∈ A. Then for
s-a.e. y ∈ C0[0,T ], δ(F∗G)q(y |w) exists and is given by the last expression in equa-
tion (3.19) below. Furthermore, as a function of y,δ(F ∗G)q(y | w) is an element of
B(∞;m−1).

Proof. By Lemma 3.2, (F ∗G)q is an element of B(∞;m) and so, by Lemma 3.1,
δ(F∗G)q(y |w) is an element of B(∞;m−1). Furthermore,

δ(F∗G)q(y |w)

= ∂
∂h

[
(F∗G)q(y+hw)

]∣∣∣∣
h=0

= ∂
∂h

[∫ anfq
C0[0,T ]

F
(
y+hw+x√

2

)
G
(
y+hw−x√

2

)
m(dx)

]∣∣∣∣
h=0

= ∂
∂h

[(
− iq
2π

)n/2∫
Rn
f
(〈,α,y+hw〉+ ,u√

2

)
g
(〈,α,y+hw〉− ,u√

2

)

·exp
{
iq
2
‖,u‖2

}
d,u

]∣∣∣∣
h=0

=
(
− iq
2π

)n/2∫
Rn

[
f
(〈,α,y〉+ ,u√

2

) n∑
j=1
〈αj,w/

√
2〉gj

(〈,α,y〉− ,u√
2

)

+g
(〈,α,y〉− ,u√

2

) n∑
j=1
〈αj,w/

√
2〉fj

(〈,α,y〉+ ,u√
2

)]
exp

{
iq
2
‖,u‖2

}
d,u.

(3.19)

Next, we obtain formulas for the convolution product of the first variation of func-
tionals. In Theorem 3.4, we take the convolution with respect to the first argument
of the variations while in Theorem 3.5, we take the convolution with respect to the
second argument of the variations.

Theorem 3.4. Let p,m,q,w,F , and G be as in Theorem 3.3. Then, for s-a.e. y ∈
C0[0,T ],(δF(· |w)∗δG(· |w)q)(y) exists and is given by the last expression in equa-
tion (3.20) below. Furthermore, as a function of y , (δF(· |w)∗δG(· |w))q(y) is an
element of B(∞;m−1).

Proof. Since F ∈ B(p;m) and G ∈ B(p′;m), it follows, from Lemma 3.1, that
δF(y |w)∈ B(p;m−1) and δG(y |w)∈ B(p′;m−1). Hence, by Lemma 3.2, (δF(· |
w)∗δG(· |w))q(y) is an element of B(∞;m−1). Also, by equations (2.9) and (3.1),

(
δF(· |w)∗δG(· |w))q(y)
=
∫ anfq
C0[0,T ]

δF
(
y+x√

2

∣∣w)
δG

(
y−x√

2

∣∣w)
m(dx)

=
∫ anfq
C0[0,T ]

[ n∑
j=1
〈αj,w〉fj

(〈
,α,
y+x√

2

〉)][ n∑
k=1
〈αk,w〉gk

(〈
,α,
y−x√

2

〉)]
m(dx)



198 JEONG GYOO KIM ET AL.

=
(
− iq
2π

)n/2∫
Rn

exp
{
iq
2
‖,u‖2

}[ n∑
j=1
〈αj,w〉fj

(〈,α,y〉+ ,u√
2

)]
(3.20)

·
[ n∑
k=1
〈αk,w〉gk

(〈,α,y〉− ,u√
2

)]
d,u.

Theorem 3.5. Let p,m,w,F,G, and q be as in Theorem 3.3. Then, for s-a.e. y ∈
C0[0,T ],(δF(y | ·)∗δG(y | ·))q(w) exists and is given by the formula

(
δF(y | ·)∗δG(y | ·))q(w)

= δF(y |w/√2)δG(y |w/√2)− i
2q

n∑
j=1
fj
(〈,α,y〉)gj(〈,α,y〉). (3.21)

Furthermore, as a function of y ,
(
δF(y | ·)∗δG(y | ·))q(w) is an element of B(1;

m−1).
Proof. The conclusions of this theorem follow from the calculations below:(
δF(y | ·)∗δG(y | ·))q(w)

=
∫ anfq
C0[0,T ]

δF
(
y
∣∣ w+x√

2

)
δG

(
y
∣∣ w−x√

2

)
m(dx)

=
∫ anfq
C0[0,T ]

[ n∑
j=1

〈αj,w+x〉√
2

fj
(〈,α,y〉)][ n∑

k=1

〈αk,w−x〉√
2

gk
(〈,α,y〉)]m(dx)

=
n∑
j=1

n∑
k=1

fj
(〈,α,y〉)gk(〈,α,y〉)· 12

∫ anfq
C0[0,T ]

〈αj,w+x〉〈αk,w−x〉m(dx)

=
n∑
j=1

n∑
k=1

fj
(〈,α,y〉)gk(〈,α,y〉)· 12

[〈αj,w〉〈αk,w〉−(i/q)(αj,αk)]

= δF(y |w/√2)δG(y |w/√2)− i
2q

n∑
j=1
fj
(〈,α,y〉)gj(〈,α,y〉)

(3.22)

since∫ anfq
C0[0,T ]

〈αj,x〉〈αk,x〉m(dx)= i
q
(αj,αk) and

∫ anfq
C0[0,T ]

〈αj,x〉m(dx)= 0. (3.23)

We conclude this section with two theorems relating transforms and convolutions.
Recall that the analytic Fourier-Feynman integral Tq(p;F) is defined only for p ∈ [1,2].

Theorem 3.6. Letm∈ {0,1,2, . . .}, F ∈ B(2;m) be given by (2.11) and G ∈ B(2;m)
be given by (3.15). Then, for all real q �= 0, (Tq(2;F)∗Tq(2;G))q exists as an element
of B(∞;m) and for s-a.e. y ∈ C0[0,T ],

(
Tq(2;F)∗Tq(2;G)

)
q(y)=

(
− iq
2π

)3n/2∫
R3n

f
(
,u+ 〈,α,y〉+ ,r√

2

)
g
(
,v+ 〈,α,y〉− ,r√

2

)

·exp
{
iq
2

(‖,u‖2+‖,v‖2+‖,r‖2)}d,ud,vd,r .
(3.24)
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Proof. First, we note, by the discussion following Corollary 3.3, that Tq(2;F) and
Tq(2;G) both exist and are elements of B(2;m). Hence, (Tq(2;F)∗ Tq(2;G))q is an
element of B(∞;m). Equation (3.24) then follows upon the evaluation of the analytic
Feynman integral ∫ anfq

C0[0,T ]
Tq(2;F)

(
y+x√

2

)
Tq(2;G)

(
y−x√

2

)
m(dx). (3.25)

Theorem 3.7. Let m ∈ {0,1,2, . . .}, F ∈ B(p1;m), and G ∈ B(p2;m) with 1 ≤ p1 ≤
2, 1≤ p2 ≤ 2 and (1/p1)+(1/p2)≥ (3/2). Let r be given by (1/r)= (1/p1)+(1/p2)−1.
Then (F∗G)q ∈ B(r ;m) and, for s-a.e. y ∈ C0[0,T ],

Tq
(
r ;(F∗G)q

)
(y)= Tq(p1;F)

(
y/

√
2
)
Tq(p2;G)

(
y/

√
2
)
. (3.26)

Proof. First, we note that r ∈ [1,2]. For the case m = 0, it was shown, in [10, p.
29], that (F ∗G)q ∈ B(r ;0) and that equation (3.26) is valid. But, since B(p;m+1) ⊆
B(p;m) for all m ∈ {0,1,2, . . .} and all p ∈ [1,+∞], we see that (F ∗G)q ∈ B(r ;m)
and that equation (3.26) is valid for allm∈ {0,1,2, . . .}.
By choosing specific values for p1 and p2 in Theorem 3.7, we obtain the following

corollary.

Corollary 3.5. Letm∈ {0,1,2, . . .}.
(i) If F,G ∈ B(1;m), then (F∗G)q ∈ B(1;m) and, for s-a.e. y ∈ C0[0,T ],

Tq
(
1;(F∗G)q

)
(y)= Tq(1;F)

(
y/

√
2
)
Tq(1;G)

(
y/

√
2
)
. (3.27)

(ii) If F ∈ B(1;m) and G ∈ B(2;m), then (F ∗G)q ∈ B(2;m) and, for s-a.e. y ∈
C0[0,T ],

Tq
(
2;(F∗G)q

)
(y)= Tq(1;F)

(
y/

√
2
)
Tq(2;G)

(
y/

√
2
)
. (3.28)

(iii) If F,G ∈ B(4/3;m), then (F∗G)q ∈ B(2;m) and, for s-a.e. y ∈ C0[0,T ],

Tq
(
2;(F∗G)q

)
(y)= Tq(4/3;F)

(
y/

√
2
)
Tq(4/3;G)

(
y/

√
2
)
. (3.29)

4. Relationships involving three concepts. In this section, we look at all the re-
lationships involving the “transform,” the “convolution,” and “variation” where each
operation is used exactly once. There are more than six possibilities since one can
take both the transform and the convolution with respect to the first or the second
argument of the variation. However, there are some repetitions, for example, we ob-
served, in Theorem 3.2, that the transform with respect to the second argument of the
variation equals the variation of the functional. It turns out that there are nine distinct
possibilities. We state formally five of these results as theorems (namely, Theorem 4.1
through Theorem 4.5 ) and the other four results as formulas (namely, equation (4.11)
through equation (4.14) ). However, all nine of these results hold for s-a.e. y ∈ C0[0,T ]
and all real q �= 0.
In our first theorem, we obtain a formula for the transform with respect to the first

argument of the variation of the convolution product.
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Theorem 4.1. Let m be a positive integer, let w ∈ A, and let p1,p2,r ,F , and G be
as in Theorem 3.7. Then

Tq
(
r ;δ(F∗G)q(· |w)

)
(y)= δTq

(
r ;(F∗G)q

)
(y |w)

= Tq(p1;F)
(
y/

√
2
)
δTq(p2;G)

(
y/

√
2
∣∣w/√2)

+δTq(p1;F)
(
y/

√
2
∣∣w/√2)Tq(p2;G)

(
y/

√
2
)
,

(4.1)

which, as a function of y , is an element of B(r ′;m−1).
Proof. The first equality in (4.1) follows from (3.8). But, by Theorem 3.7, (F∗G)q ∈

B(r ;m) and so, using (3.26), we see that

δTq
(
r ;(F∗G)q

)
(y |w)= ∂

∂h
[
Tq

(
r ;(F∗G)q

)
(y+hw)]∣∣∣

h=0

= ∂
∂h

[
Tq(p1;F)

(
y+hw√

2

)
Tq(p2;G)

(
y+hw√

2

)]∣∣∣∣
h=0

(4.2)

which equals the last expression on the right-hand side of equation (4.1).

Remark. By choosing specific values for p1 and p2 in Theorem 4.1 (as we did in
Corollary 3.5 ), one gets various versions of equation (4.1). For example, if p1 = p2 =
4/3, then r = r ′ = 2 and so, using (3.8) and (3.29), we see that

Tq
(
2;δ(F∗G)q(· |w)

)
(y)= δTq

(
2;(F∗G)q

)
(y |w)

= Tq(4/3;F)
(
y/

√
2
)
δTq(4/3;G)

(
y/

√
2
∣∣w/√2)

+δTq(4/3;F)
(
y/

√
2
∣∣w/√2)Tq(4/3;G)(y/√2),

(4.3)

which, as a function of y , is an element of B(2;m−1).
Using Theorem 3.2 and Theorem 3.7, it follows that the transform with respect to

the second argument of the variation of the convolution product equals the variation
of the convolution product.

Theorem 4.2. Let m,w,p1,p2,r ,F , and G be as in Theorem 4.1. Then (F ∗G)q ∈
B(r ;m) and

Tq
(
r ;δ(F∗G)q(y | ·)

)
(w)= δ(F∗G)q(y |w), (4.4)

which, as a function of y , is an element of B(r ;m−1).
Next, we seek formulas for the transforms of the convolution product with respect

to the first argument of the variations. Here, there are two cases, namely, we can take
the transform of the expression

(
δF(· |w)∗δG(· |w))q(y) (4.5)

either with respect to y (Theorem 4.3 below), or else with respect to w (Theorem 4.4
below).
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Theorem 4.3. Letm,w,p1,p2,r ,F , and G be as in Theorem 4.1. Then

Tq
(
r ;(δF(· |w)∗δ(· |w))q

)
(y)= δTq(p1;F)

(
y/

√
2
∣∣w)

δTq(p2;G)
(
y/

√
2
∣∣w)

,
(4.6)

which, as a function of y , is an element of B(r ′;m−1).
Proof. Equation (4.6) follows immediately from equations (3.26) and (3.8).

Remark. Again, choosing specific values for p1 and p2 in Theorem 4.3 (as we did
in Corollary 3.5), one gets various versions of equation (4.6).

Theorem 4.4. Letp,m,w,F , andG be as in Theorem3.3. Then, the analytic Fourier-
Feynman transform of the expressions in equation (3.20) with respect to w is given by
the expression

(
δF(· |w)∗δG(· |w))q(y)

+
(
i
q

)(
− iq
2π

)n/2∫
Rn

[ n∑
j=1
fj
(〈,α,y〉+ ,u√

2

)
gj
(〈,α,y〉− ,u√

2

)]
exp

{
iq
2
‖,u‖2

}
d,u, (4.7)

which, as a function of y , is an element of B(∞;m−1).
Proof. To obtain (4.7), we simply substitute the last expression in equation (3.20),

with w replaced with w+x, into the analytic Feynman integral∫ anfq
C0[0,T ]

(
δF(· |w+x)∗δG(· |w+x))q(y)m(dx), (4.8)

and then evaluate this integral using (3.23).

Our next goal is to obtain formulas for the transforms of the convolution product
with respect to the second argument of the variations. Again, there are two cases since
we can take the transform of the expressions in equation (3.21) either with respect to
w (Theorem 4.5 below) or else with respect to y (equation (4.11) below).

Theorem 4.5. Let p ∈ [1,2], let m be a positive integer, let F ∈ B(p;m), and let
G ∈ B(p′;m). Then

Tq
(
p;
(
δF(y | ·)∗δG(y | ·))q)(w)= δF(y |w/√2)δG(y |w/√2), (4.9)

which, as a function of y , is an element of B(1;m−1).
Proof. Using equation (3.21) and then equation (3.1), we obtain that the left-hand

side of (4.9) equals the analytic Feynman integral∫ anfq
C0[0,T ]

[
δF

(
y
∣∣∣ w+x√

2

)
δG

(
y
∣∣∣ w+x√

2

)
− i
2q

n∑
j=1
fj
(〈,α,y〉)gj(〈,α,y〉)

]
m(dx)

=
∫ anfq
C0[0,T ]

{[ n∑
j=1

〈
αj,

w+x√
2

〉
fj
(〈,α,y〉)][ n∑

k=1

〈
αk,

w+x√
2

〉
gk

(〈,α,y〉)]

− i
2q

n∑
j=1
fj(〈,α,y〉)gj(〈,α,y〉)

}
m(dx).

(4.10)
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Using (3.23) to evaluate the above Feynman integral, yields the right-hand side of (4.9).

Under the hypotheses of Theorem 4.5, the transform of the expressions in equation
(3.21) with respect to y yields

∫ anfq
C0[0,T ]

(
δF(y+x | ·)∗δG(y+x | ·))q(w)m(dx)
=
∫ anfq
C0[0,T ]

[
δF

(
y+x |w/

√
2
)
δG

(
y+x |w/

√
2
)

− i
2q

n∑
j=1
fj
(〈,α,y+x〉)gj(〈,α,y+x〉)

]
m(dx)

=
∫ anfq
C0[0,T ]

{[ n∑
j=1

〈
αj,w/

√
2
〉
fj
(〈,α,y+x〉)][ n∑

k=1

〈
αk,w/

√
2
〉
gk

(〈,α,y+x〉)]

− i
2q

n∑
j=1
fj
(〈,α,y+x〉)gj(〈,α,y+x〉)

}
m(dx)

=
(
− iq
2π

)n/2 n∑
j=1

n∑
k=1

〈
αj,w/

√
2
〉〈
αk,w/

√
2
〉

×
∫
Rn

exp
{
iq
2
‖,u‖2

}
·fj

(〈,α,y〉+ ,u)gk(〈,α,y〉+ ,u)d,u
− i
2q

(
− iq
2π

)n/2 n∑
j=1

∫
Rn
fj
(〈,α,y〉+ ,u)gj(〈,α,y〉+ ,u)exp

{
iq
2
‖,u‖2

}
d,u.

(4.11)

Next, we want to take the variation of the expressions in equation (3.24). So, letm be
a positive integer, let F and G be elements of B(2;m), and let w ∈A. Then

δ
(
Tq(2;F)∗Tq(2;G)

)
q(y |w)

= ∂
∂h

[(
Tq(2;F)∗Tq(2;G)

)
q(y+hw)

]∣∣∣
h=0

= ∂
∂h

[(
− iq
2π

)3n/2∫
R3n

f
(
,u+ 〈,α,y+hw〉+ ,r√

2

)
g
(
,v+ 〈,α,y+hw〉+ ,r√

2

)

·exp
{
iq
2

(‖,u‖2+‖,v‖2+‖,r‖2)}d,ud,vd,r]
∣∣∣∣
h=0

=
(
− iq
2π

)3n/2∫
R3n

[
f
(
,u+ 〈,α,y〉+ ,r√

2

) n∑
j=1

〈
αj,w/

√
2
〉
gj
(
,v+ 〈,α,y〉+ ,r√

2

)

+g
(
,v+ 〈,α,y〉+ ,r√

2

) n∑
j=1

〈
αj,w/

√
2
〉
fj
(
,u+ 〈,α,y〉+ ,r√

2

)]

· exp
{
iq
2

(‖,u‖2+‖,v‖2+‖,r‖2)}d,ud,vd,r ,
(4.12)

which, as a function of y , is an element of B(∞;m−1).
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We finish up this section by finding formulas for the convolution product of the
transform of the variation. Again, there are two cases, namely, we can take the convo-
lution with respect to the first argument (equation (4.13) below) or the second argu-
ment (equation (4.14) below) of the variation. However, in both cases, the transform
is taken with respect to the first argument of the variation. So, let m be a positive
integer, let F and G be elements of B(2;m), and let w ∈A. Then(
δTq(2;F)(· |w)∗δTq(2;G)(· |w)

)
q(y)

=
∫ anfq
C0[0,T ]

δTq(2;F)
(
y+x√

2

∣∣∣∣w
)
δTq(2;G)

(
y−x√

2

∣∣∣∣w
)
m(dx)

=
∫ anfq
C0[0,T ]

(
− iq
2π

)n/2∫
Rn

[ n∑
j=1
〈αj,w〉fj

(
,u+〈

,α,(y+x)/
√
2
〉)]

exp
{
iq
2
‖,u‖2

}
d,u

·
(
− iq
2π

)n/2∫
Rn

[ n∑
k=1
〈αk,w〉gk

(
,v+〈

,α,(y−x)/
√
2
〉)]

exp
{
iq
2
‖,v‖2

}
d,vm(dx)

=
(
− iq
2π

)3n/2∫
R3n

[ n∑
j=1
〈αj,w〉fj

(
,u+ 〈,α,y〉+ ,r√

2

)]

·
[ n∑
k=1
〈αk,w〉gk

(
,v+ 〈,α,y〉− ,r√

2

)]
exp

{
iq
2

(‖,u‖2+‖,v‖2+‖,r‖2)}d,ud,vd,r ,
(4.13)

which, as a function of y , is an element of B(∞;m−1).
Again, letm be a positive integer, let F , and G be elements of B(2;m), and letw ∈A.

Then, using (3.9), (3.23), and then (3.9) again, we obtain(
δTq(2;F)(y | ·)∗δTq(2;G)(y | ·)

)
q(w)

=
∫ anfq
C0[0,T ]

δTq(2;F)
(
y
∣∣∣∣ w+x√

2

)
δTq(2;G)

(
y
∣∣∣∣ w−x√

2

)
m(dx)

=
∫ anfq
C0[0,T ]

(
− iq
2π

)n/2∫
Rn

[ n∑
j=1

〈
αj,(w+x)/

√
2
〉
fj
(
,u+〈,α,y〉)]exp{ iq

2
‖,u‖2

}
d,u

·
(
− iq
2π

)n/2∫
Rn

[ n∑
k=1

〈
αk,(w−x)/

√
2
〉
gk

(
,v+〈,α,y〉)]exp{ iq

2
‖,v‖2

}
d,vm(dx)

= δTq(2;F)
(
y |w/

√
2
)
δTq(2;G)

(
y |w/

√
2
)

− i
2q

(
− iq
2π

)n∫
R2n

n∑
j=1
fj
(
,u+〈,α,y〉)gj(,v+〈,α,y〉)exp

{
iq
2

(
‖,u‖2+‖,v‖2

)}
d,ud,v,

(4.14)

which, as a function of y , is an element of B(∞;m−1).
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