
Internat. J. Math. & Math. Sci.
VOL. 20 NO. (1997) 51-60

51

ASYMPTOTIC BEHAVIOR OF ALMOST-ORBITS OF REVERSIBLE
SEMIGROUPS OF NON-LIPSCHITZIAN MAPPINGS IN BANACH SPACES

JONG SOO JUNG
Department ofMathematics

Dong-A University
Pusan 607-714, KOREA

E-mail address jungjs@seunghak donga ac kr

JONG YEOUL PARK

Department ofMathematics
Pusan National University
Pusan 609-735, KOREA

JONG SEO PARK
Department ofMathematics

Graduate School, Dong-A University
Pusan 607-714, KOREA

(Received February 15, 1994 and in revised form October 25, 1995)

ABSTRACT. Let C be a nonempty closed convex subset of a uniformly convex Banach space E with a

Fr6chet differentiable norm, G a right reversible semitopological semigroup, and S {S(t) :t E G} a

continuous representation of G as mappings of asymptotically nonexpansive type of C into itself The

weak convergence of an almost-orbit {u(t) :t E G} of S {S(t) :t 6 G} on C is established.

Furthermore, it is shown that ifP is the metric projection ofE onto set F(S) of all common fixed points
ofS {S(t) t 6 G}, then the strong limit ofthe net {Pu(t) t 6 G} exists.
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1. INTRODUCTION
Let C be a nonempty closed convex subset of a real Banach space E and let ,5 {S(t) > 0} be a

family of mappings from C into itself such that S(0) I, S(t + s) S(t)S(s) for all t, s [0, c) and

S(t)z is continuous in t E [0, x) for each x C. Sis said to be

(a) nonexpansive semigroup on C if IIS(t)z ’(t)ull _< IIz ull for all z, y C and > 0,

(b) asymptotically nonexpansive semigroup on C [1] if there is a function k [0, ) [0, ) with

limsupt-ook(t) < 1 such that IIS(t)x S(t)yll < (t)llx yll for all x,y E C and t > O,

(c) semigroup of asymptotically nonexpansive type on C if for each x C,

limsup{sup[llS(t)z-S(t)yl[-t-vec
Ilx- ylI]} -<;

see [2] for mappings of asymptotically nonexpansive type. It is easily seen that (a) = (b) =, (c) and

that both the inclusions are proper (of. [1, p. 112]).
In [3], Myadera and Kobayashi introduced the notion of almost-orbits of nonexpansive semigroups

on C and provided the weak and strong almost convergences of such an almost-orbit in a uniformly

convex Banach space; see also [4] for almost-orbits of nonexpansive mappings. Recently, Tan and Xu

[5] extended this notion to semigroups of asymptotic nonexpansive type in Hilbert spaces The case of
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general commutative nonexpansive semigroups in uniformly convex Banach spaces was studied by
Takahashi and Park [11]. Oka [6] gave the results for the case of commutative asymptotically
nonexpansive semigroups in uniformly convex Banach spaces. In particular, Takahashi and Zhang [7]
established the convergences of almost-orbits of noncommutative asymptotically nonexpansive
semigroups in the same Banach spaces, see [8] for the case of Hilbert spaces

The purpose of this paper is to generalize their results to the case of noncommutative semigroups of

asymptotically nonexpansive type Section 2 is a preliminary part In Section 3, we prove several

lemmas which are crucial for our discussion. Main results are given in Section 4 First, we establish the

weak convergence (Theorem 1)of an almost-orbit {u() E (7} ofa semigroup ,S {S(t) E G} of

asymptotically nonexpansive type on C’ in a uniformly convex Banach space with a Fr6chet differentiable

norm, where G is a fight reversible semitopological semigroup. Next, we show that if P is the metric

projection of E onto set F(,S) of all common fixed points of ,S {S(t) " (7}, then the strong limit

of the net (Pu()’ (7} exists (Theorem 2). Our proofs employ the methods of Hirano and

Takahashi [9], Ishihara and Takahashi [10], Takahashi and park [11], and Takahashi and Zhang [7,8]
The results are generalizations ofthe corresponding results in [5], [7], [8], [11 ], [12] and [13].
2. PRELEMINARIES

Let E be a real Banach space and let E* be its dual. The value of f E* at x E will be denoted

by (, f) With each E E, we associate the set

J() {f m"- (, f)= IIII
Using the Hahn-Banach theorem, it is readily verified that J(z) The multivalued mapping
J" E E* is called the duality mapping of E. Let U {z e E [[zl[ 1} be the unit sphere of E
Then a Banach space E is said to be smooth provided the limit

lira
]]:r + t/[]- ]]z][

(2 1)
t0

exists for each x, Y U. In this case, the norm ofE is said to be G.teaux differentiable. It is said to be
Frchet differentiable if for each x U, the limit (2.1) is attained uniformly for U It is also
known that if E is smooth, then the duality mapping J is single valued. It is easy to see that the norm

of E is Frchet differentiable if and only if for any bounded set B C E and any z E E,
limt_,0(2t) -1 ([[:r + tF[[ 2 [[z[[ 2) (/, J(z)) uniformly in Y C E; see [14].

A Banach space E is called uniformly convex if the modulus of convexity

is positive in its domain of definition {e 0 < e _< 2}. For the properties off(e), see [15].
For a subset D of E, D denotes the closure of E, cod the convex hull of D, and -d-dD the closed

convex hull ofE, respectively.
Let G be a semitopological semigroup, i.e., (7 is a semigroup with a Hausdorff topology such that

for each a (7 the mappings 9 . 9 and 9 -- 9-a from to (7 are continuous. (7 is said to be right

reversible if any two closed lett ideals ofG have nonempty intersection. If (7 is right reversible, ((7,
is a directed system when the binary relation " on (7 is defined by b if and only if

Let 6’ be a nonempty closed convex subset of a Banach space E and let (7 be a semitopological

semigroup. A family , {S(t) t (7} of mappings from 6’ into itself is said to be a (continuous)
representation ofG on C’ if, satisfies the following:

(i) s(ts), S(t)S()z for all t, s G and z 6’

(ii) for every :c 6’, the mappings s S(s):c from into 6’ is continuous.
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DEFINITION 1. A representation ,S {S(t) :t E G} of G on C is said to be a semigroup of

asymptotically nonexpansive type on (7 if for each z (7,

inf sup sup (llS(t)z- s(t)yll- Ilz- yll) < 0. (2 2)
sG s_t yC

Let G be right reversible and let S {5’(t) "t E G} be a representation of G on C
G C is called an almost-orbit of,5 S(t) "t E G} if

lim (sup[lu(ts)- S(t)u(s)ll) 0.
seG \teG

A function

(2 3)

w(u) denotes the set of all weak limit points of subnets of the net {u(t):t e G}, and

F(S) I’]tecF(S(t)) the set of all common fixed points ofmappings S(t), G in C
3. LEMMAS

In this section, we prove several lemmas which are crucial in convergence of almost-orbits.

LEMMA 1. Let C be a nonempty closed convex subset of a uniformly convex Banach space E and

let S {S(t):t G} be a semigroup of asymptotically nonexpansive type of a right reversible

semitopological semigroup G on C. Then F(S) is a closed and convex subset of C.
PROOF. The closedness of F(S) is obvious. To show convexity, it is sufficient to show that

z 6 F(S) for all x y 6 F(S) Let x,y 6 F(S), x :fi Y IflimecS(t)z z, then for any s 6 G,

S(s)z lim S(s)S(t)z lim S(st)z lim S(t)z z,
tG teG teG

i.e., z e F(S). Hence it suffices to prove that limtecS(t)z z. If not, there exists e > 0 such that for

any t 6 G, there is t’ 6 G with t’ h t and

41lS(t’)z- zll 112(S(t’)z- z) 2(y- S(t’)z)l > e.

Choose d > 0 so small that

((’))(R/d) 1-6 R+d <R,

where R llx- vii > 0 and 6 is the modulus of convexity of E
asymptotically nonexpansive type on C, there is to E G such that

Since S {S(t)’t e G} is

d
sup sup (llS(t)z s(t)wll- IIz wll) ..tot weC

Put u 2(S(fo)Z x), v 2(y- S(fo)Z). Then Ilu vii 411S(t)z- zll > e. Furthermore, since

to

_
fo, we have

Ilull 2]ls(t’o)Z- zll
2(llS(t)z s(t)zll- IIz xll) / 211z xll

<_ 2 sup sup (llS(t)z s(t)zoll- IIz wll) + IIx ull < R + d
to-<t weC

and

Ilvll 211u- s(t)zll
2(llS(t)z s(tS)ull- IIz vii) + 211z vii

< 2 sup sup (llS(t)z s(t)ll I1= 11) + I1= ull < + a.
to_-<t weC

So we have

((’))< (R+d) 1-6
R+d

and hence
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I1 11 -- <_ ( + e/( (
This is a contraction. Therefore, limevS($)z z,which completes the proof

LEMMA 2. Let C be a nonempty closed convex subset of Banach space E Let G be a fight
reversible semitopological semigroup and let ‘9 {S(t)’t E G} be a semigroup of asymptotically
nonexpansive type on C. If {u(t) t e G} and {v(t) 6 G} are almost-orbits of‘9 {S(t) G},
then limteG[[u(t) v(t)[[ exists. In particular, for every z 6 F(‘9), limtec[[u(t) z[[ exists

PROOF. Put

() sup Ilu(=)- s()u()ll, (=) sup IIv()- s()v(=)ll
teG

for s 6 G Then limsec(s) limsee(s) 0. Let e > 0. Since ,9 {S(t) t 6 G} is of

asymptotically nonexpansive type on C, there exists to 6 G such that

o
_

weC

for all s 6 G. On the other hand, since, for any s, $ 6 G,

Ilu(es) -(es)ll <- (s) + (=) + (llS()u(s) s(),(s)ll -II,(s) ,(s)ll) + II(s) ,()ll
< () + (s) + sup (llS()u(s) s(e)wll-

we have

inf" sup Ilu() v()ll _< (s) + g.,(s) + sup sup (llS()u(s) S()wll Ilu(s) wll) + ll,(s)
teG t-< to_t weC

_< () + (s) + + [I()

and then infev sup_-< [IU(T) V(r)[[ < SUpeC inf flu(s) v(s)ll Thus limtec[[u(t) v(t)[l exists.

Let z E F(,9) and put v(t) z. Then v(t) is an almost-orbit and hence limec[[u(t) z][ exists

LEMMA 3. Let C be a nonempty closed convex subset of Banach space E. Let G be a right

reversible semitopological semigroup and let ,9 {S(t)" t E G} be a scrnigroup of asymptotically

nonexpansive type on C. Let {u(t) t G} be an almost-orbit of

then there exists to G such that (u(t) -t to} is bounded.

PROOF. Let z F(‘9). Then, since limtecl[u(t) zll exists by Lemma 2, there is t0 G such

that {[lu(t)- zl[’t - to} is bounded. Hence {u(t)"

_
to} is bounded.

LEMMA 4. Let C be a nonempty closed convex subset of a uniformly convex Banach space E
Let G be a fight reversible semitopological semigroup and let ‘9 {S(t) t E G) bca semigroup of

asymptotically nonexpansive type on C. Let {u(t)’t G) be an almost-orbit of

Suppose that F(,9) - {. Let y F(,9) and 0 < c _</ < 1. Then for any > 0, there is to G such

that

for all t, s

_
to and A [c, ].

PROOF. By Lemma 2, limec[[u(t) Y[I exists. Let > 0 and

r lim flu(t)

If r 0, since ,9= {S(t)" t G} is of asymptotically nonexpansive type on C, there exists to E G such

that

s.p sup (IIs()(A() + ( A)) s()ll- IIA() +
to "<t

and
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fort_t0,0<A<landsEG. Hence fors, t_t0,0<A<landsEG,

IIS(t)(A() + (1 A)y) (AS(t)u(s) + (1 a)u)ll
AIIS (t)(Au(s) + (1 A)) S(t)u(s)[[ + (1 A)l]S(t)(Au(s) + (1 A)) wll
A (sup sup (llS(t)(() + (1 ))- s(t)wll- lieu(s) + (1 A)- w ))ktot

+ AIIA() + (1 A)- ()11 + (x A)(sup sup (II S(t)(A(s)+ (1 A)W)-
ktot wC

<A +(1-A) +2A(1-A)l[u(s)-

55

Now, let r > O. Then we can choose d > 0 so small that

(r+d>(1-c6( e ))r+d
=ro <r,

where 6 is the modulus of convexity ofE and

c min{2A(1- A)’a <_ A <_

Let a > 0 with 2a + ro < r. Then there is to e G such that

d
r a < Ilu() yll < r+ for s to,

IIS()u(t)- u(st)ll < a for >-_ to and s G,

and

sup sup (llS(t)a s(e)ll -IIz 11) < d for
to _t weC

zC,

c.
sup sup (llS(t)u(s) s(t)ll- Ilu(s) wll) < d for a e G.
to _t weC

Suppose that IIS(t)(Au(a) + (1 )y) (AS(t)u(a) + (1 )y)JJ e for some s, t0
A [, ] Put z Au(s) + (1 A)y, u (1 A)(S(t)z- y) d v A(S(t)u(s) S(t)z)
we have

I111 (1 )(llS(t), s(t)ll- II; ull) + (1 )11, ull
(1 )su su (llS(); s()ll- II; 11) + (1 )11() + (1 )u- 11

tot weC

< (1 ) d + (1 )() 1

(5 (1 ) (1 ) + r + < ( )( + d)

and

We also have that

and

Then

I1, .11 IIS(t)z- (s(t)() + ( A)y)ll _> e
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and

Au + (1 A)v A(X A)(S(t)z y) + (1 A)A(S(t)u(s)
A(1 A)(S()u(s)- y).

By the Lemma in 16], we have

A(1 A)llS(t)u() yll IIA + ( A)vll

((’))<_A(1-A)(r+d) 1-2a(1-A)6

r + d
,X(1 ,)ro

and hence [[S(t;)u(s) y[[ _< ro This implies that

This contradicts the fact Ilu() yll > r a for s

___
to. The proof is complete

LEMMA 5. Let C be a nonempty closed convex subset of a uniformly convex Banach space E

Let G be a right reversible semitopological semigroup and let S {S(t) -t e G} be a semigroup of

asymptotically nonexpansive type on C. Let {u(t) "t e G} be an almost-orbit of S {S(t) "t G}.
Suppose that F(S) . Then limtecllAu(t) + (1 A)x ull exists.for every x, y F(S)

PROOF. Let A (0,1) and x, y F(S). By (2.2), (2.3), and Lemma 4, for any e > 0, there exists

to e G such that

IIS<t)<u() / (1 A)x) (AS(t)u(s) + (1 )z)ll <_ for t, s h to,

sup II(ts)- S(t)u()ll < for s

___
to,

teG

sup sup (llS(t)(,x()/ (1 ,X)x) S(t)wll- II,Xu() / (x ,)x wll) < for s G.
to ht weC

Since

II,Xu(ts) + ( ,x)x ull
< ll(ts)- s(t)()ll + IIS(t)() + ( )x s(t)(a(s) + (1 )x)ll

+ sup (llS(t)(,xu(s) + (1 A)x) s(t)wll II,u(s) + (1 ,x)x wll)
wfC

for all t, s 6 G, we have

for all s to, and then

inf sup II,X() + (1 ,X)x yll _< sup i II,Xu() + ( ,x)x !1.
teG t_z teG

Thus limllAu(t) / ( A)x Yll exists.

LEMMA 6. Let C be a nonempty closed convex subset of a uniformly convex Banach space E

with a Frfchet differentiable norm. Let G be a fight reversible .semitopological semigroup and let

,5 {S(t) t G} be a semigroup of asymptotically nonexpansive type on C. Let {u(t) G} be an

almost-orbit ofS {S(t) "t G}. Then

F(S)

is at most a singleton.
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PROOF. Note that nsc--6{u(t):

___
s} -6-6w(u), see [17] Let z,V 6 F(S) Since E has a

Fr6chet differentiable norm, there exists an increasing function 7: R/ R such that 7(t)/t 0 as
0+, and

1 1IIx yll 2 + (h, J(x y)) <_ - Ilx y + hll
1

for all h 6 E. Take h A(u(t) x) Then

1 1IIx vii + m(u(t) x, y(x y)) < Ilmu(t) + (1 A)z vii
1

Using Lemma 5, we have

1
IIx yll / , inf sup (U(r)- x, J(x y))

tEC

1< lim
2

< IIx yll + , sup inf (U(r) X, J(x y)) + "/(AM),2 t6G

where supeGllu<)
exists. Of course r (, J(z /)) for all 6 w(u) and hence for all 6 -6 w(u) Therefore

F(S) w(u) is at mos a singleton.

4. SULTS
In ts section, we study the convergence of most-orbit {u(t) t 6 G} ofS {S(t) t e G}
EOM 1. Let E be a uifoy convex Bach space with a Frchet differemiable nod

let C be a nonemp closed convex subset of E Let F be a subset of C d let G be a ght reversible

setopoloc segroup. Let S {S(t) 6 G} be a segroup ofasptoticly nonexpsive te
on Cd let {u(t) t 6 G} be most-orbit ofS {S(t) t 6 G}. Assume that

(a) F c F(8).
Assume so that

) ifa subnet {u(to)} ofthe net {u(t) t 6 G} converges wyto z, then z 6 F.
Then either (i) F and Ilu(t)l[ or (ii) F d the net {u(t) e G} converges wetly to

some z 6 F(S).
PROOF. Suppose that some subnet {u(to)} of {u(t) t 6 G} is bounded. Since E is refleve, a

subnet of {u(to)} must converge wey to elemem z 6 E, wch is in F by if). Thus F 0 implies

If, on the other hd, F , then by Lena 3, {u(t) 6 G} is bounded. So {u(t) 6 G} must

comn a subnet {u(to)} wch converges to some z

w(u) ev{u(t): t 6 G}, we have

Therefore follows om Lena 6 hat

As a dre consequence, we have he follonE oroll, wch s a enerzaton of a [esul n [5],

COROLLARY . Le E be a uifoy convex Bach space h a Prithee deremmble no

d le C be a nonempy closed convex subse of E Le G be a dEh [versbJe seopoloc



58 JS JUNG, JY PARKANDJS PARK

semigroup and let ,.q {S(t)’t E G} be a semigroup of asymptotically nonexpansive type on C
Suppose that F(S)0 and let {u(t)"t E G} be an almost-orbit of S= {S(t)t E G} If

co(u) C F(.5), then the net {u(t) t E G} converges weakly to some z F(S)
PROOF. The result follows by putting F co(u) in Theorem

The following theorem is also a generalization of [7, Theorem 4]
TI:IEOIM 2. Let C be a nonempty closed convex subset of a uniformly convex Banach space E

Let G be a right reversible semitopological semigroup and let S {S(t) t G} be a semigroup of

asymptotically nonexpansive type on C Suppose that F(S) and let {u(t)’t G} be an almost-

orbit ofS {S(t) G} Let P denote the metric projection of E onto F(,.q) Then the strong limit

ofthe net {Pu(t) t El} exists and limtcPu(t) z0, where zo is a unique element of F(,.q) such that

lim ,,u()-z.oll =min{lim,lu(t)-z[l’zc= F(S)}.tG tG

PROOF. Since F(,S) :/: , we know that (u(t) G) is bounded and limtoJlu(t) zJl (z)
exists for each z F(S). Let R inf((z) z F(,S)) and M ( E F(,S) (u) R) Then,
since (z) is convex and continuous on F(,S) and (z) oo as I1,11 oo, M is a nonempty closed
convex bounded subset of F(S). Fix z0 M with t/(z0) R. Since P is the metric projection of E

onto F(,S), we have Ilu(t) Pu(t)ll <_ Ilu(t) vii for all t G and V F(S),
and hence

inf sup Ii,()- P()II <_ .
tG t_s

Suppose that inftec supt I{u(a) Pu(a){I < R. Then we may choose > 0 and to 6 G such that

sup sup (llS(t)u(a) S(t)wll- Ilu(t) wll) < ,
to_t wC

and

sup Ilu(ta) S(t)u()ll <

for all s >- to. Since

-I1() P()II / i1() P()II
< () + sup (llS(t)u() S(t)wll -Ilu() 11) / II(s) P()II

w_C

for all s, t E G and lim b(a) 0, where (s) suptaa Ilu(ts) S(t)u()ll, we have

for to and all t G. Therefore, we obtain

lim II(e) P()II inf sup ll() Pu(a)ll < R < R.

This is a contradiction. So we conclude that

inf sup ]lu(a)- Pu(a)ll R.
teG

Now we claim that limto Pu(t)= zo. If not, then there exists > 0 such that for any G,

[[Pu(t’) zol[ > for some t’ t. Choose a > 0 so small that

(R+) 1-
R+e

where is the modulus of convexity ofthe norm of E We have llu(t’) P(t’)ll <_ R + a and

II(t’) z011 < R + for large enough t’. Therefore
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(t’) <_ (R+a) 1-6

Since, by Lemma 1, the point wt, Pu(t;)+zo belongs to F(S), as in the above,

Ilu(tt’) w,ll _< (t’) + sup (llS(t)u(t’) S(t)wll- Ilu(t’) wll) + Ilu(t’) w,,ll.
wC

Since limsec () 0, there is t’ E G such that

and

and hence

(t’) <

sup sup (I s(t)u(t’) s(t)wll- Ilu(t’) wll) <
R R

t’t wC 4

R- R R + Rlim Ilu(t) w, sup Ilu() w, < + R < R.
tG t-r 2 2

This contradicts the fact R inf{g(z) z E F(,S)} Thus we have limtecPu(t) zo Consequently, it

follows that the element zo F(S) with g(zo)= rriln{g(z)’z F(,S)} is unique. The proof is

complete
By Corollary and Theorem 2, we have the following, which is an improvement of [8, Theorem 3]

and [5, Theorem 3.3].
COROLLARY 2. Let C be a nonempty closed convex subset of a real Hilbert space H Let G be

a fight reversible semitopological semigroup and S {S(t)’t G} be a semigroup of asymptotically
nonexpansive type on C. Suppose that F(S):/: . Let {u(t)’t E G} be an almost-orbit of
S {S(t) t G}. Then {u(t) E G} converges weakly to some z C if and only if u(ht) u(t)
converges weakly to 0 for all h G. In this case, z F(S) and limtec Pu(t) z

PROOF. We need only prove the "if’ part. By Corollary 1, it suffices to show that w(u) C F(S)
Let {u(to)} be a subnet of {u(t)’t e G} converging weakly to y C Given e > 0 Since S is of

asymptotically nonexpansive type and {u(to)} is bounded, there exists to G such that for any a,

sup sup(ilS(t)u(t,,)- S(t)wll- Ilu(to) wll) < e.
to _t wC

So we have, for >-_ to and any a,

IIS(t)u(to)- S(t)ull -Ilu(to)- yll
(llS(t)u(to) S(t)yll- II(to)- yll)(llS(t)(to)- s(t)yll + Ilu(to)- yll)

_< sup sup (llS(t)u(to) s(t)wll- Ilu(to)- wll)( sup sup (llS(t)u(to)- s(t)wll
tot weC to _t voeC

-Ilu(to) wll) + 211u(to) yll)
< (e + 2M),

where M sup Ilu(to) YlI- Let u F(,S) and e’ e(e + 2M). Then we have, for t

___
to and all a,

e’ < [[,(to) y2[[ II- s(t)u(to)yll
II=(to) =11 + 2(u(to) u, u y) + I1 Yll

IIS(t)u(to) ull= 2(s(t)u(t) u, u S(t)y) Ilu s(t)yll
lu(to) ull 2 -IIS(t)u(t) ull 2 + IJu Yll -llu S(t)yll
+ 2(u(to) u, S(t)y- ) + 2(u(to) S(t)u(to), u S(t)y).

Since {u(t) q G}is an almost-orbit of,9 {S(t) "t G} and u(hs) u(s) converges weakly to 0

for all h G, it follows that

lim IIS(t)u(to) ull lim Ilu(tto) ull lim [[u(to) ull
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and

Thus we have
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u(t,) S(t)u(t,) u(to) u(tt,) 0 weakly.

for

__
to, and hence lim suptecllS(t)t t[[ _< d. Since e’ is arbitrary, we have limtcS(t)y / Now,

for s E G,
S(s)t limS(s)S(t)j lim S(s)y lira S()t t,

tG teG teG

e, y E F(,S) and hence w(u) C F(,S) By Corollary 1, the net {u(t) G} converges weakly to

some z F(,S) On the other hand, since P is the metric projection ofH onto F(,S), we know that

(u(t) Pu(t), Pu(t) !1) > 0

for all //e F(S). So, if Pu(t)-, u by Theorem 2, we have (z- u,u- y) >_ 0for all fl e F(S)
Putting z =//, we obtain [[z u[[2 > 0 and hence z u.

As a direct consequence, we have the following
COROLLARY 3. Let C be a nonempty closed convex subset of a real Hilbert space H Let G be

a fight reversible semitopological semigroup and let S= {S(t)-t E G} be a semigroup of

asymptotically nonexpansive type on C. Suppose that F(,S) = Let {u(t) e G) be an almost-orbit

of 5 {S(t) t G}. If limteallu(ht) u(t)l[ 0 for all h e G, then the net {u(t) e G)
converges weakly to some z F(S).
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