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ABSTRACT. Let C be a nonempty closed convex subset of a uniformly convex Banach space E with a
Fréchet differentiable norm, G a right reversible semitopological semigroup, and S = {S(t):t € G} a
continuous representation of G as mappings of asymptotically nonexpansive type of C into itself The
weak convergence of an almost-orbit {u(t):t € G} of S={S(t):t€ G} on C is established.
Furthermore, it is shown that if P is the metric projection of E onto set F'(S) of all common fixed points
of § = {S(t) : t € G}, then the strong limit of the net { Pu(t) : t € G} exists.
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1. INTRODUCTION

Let C be a nonempty closed convex subset of a real Banach space E and let S = {S(t) : t > 0} bea
family of mappings from C into itself such that S(0) = I, S(t +s) = S(t)S(s) for all ¢, s € [0, 00) and
S(t)z is continuous in t € [0, 0o) for each z € C. Sis said to be

(a) nonexpansive semigroup on C if ||S(t)z — S(t)y|| < [lx — y|| forallz,y € C and £ > 0,

(b) asymptotically nonexpansive semigroup on C [1] if there is a function k' [0, 00) — [0, 00) with
lim sup; o k(t) < 1 such that ||S(t)z — S(t)y|| < k(t)||lz — yl| forallz,y € Candt > 0,

(c) semigroup of asymptotically nonexpansive type on C [1] if for each z € C,

t—o00

lim sup {SUCP IStz - Sl — llz - yll]} <0
ye

see [2] for mappings of asymptotically nonexpansive type. It is easily seen that (a) = (b) = (c) and
that both the inclusions are proper (cf. [1, p. 112]).

In [3], Myadera and Kobayashi introduced the notion of almost-orbits of nonexpansive semigroups
on C and provided the weak and strong almost convergences of such an almost-orbit in a uniformly
convex Banach space; see also [4] for almost-orbits of nonexpansive mappings. Recently, Tan and Xu
[5] extended this notion to semigroups of asymptotic nonexpansive type in Hilbert spaces The case of
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general commutative nonexpansive semigroups in uniformly convex Banach spaces was studied by
Takahashi and Park [11]. Oka [6] gave the results for the case of commutative asymptotically
nonexpansive semigroups in uniformly convex Banach spaces. In particular, Takahashi and Zhang [7]
established the convergences of almost-orbits of noncommutative asymptotically nonexpansive
semigroups in the same Banach spaces, see [8] for the case of Hilbert spaces

The purpose of this paper is to generalize their results to the case of noncommutative semigroups of
asymptotically nonexpansive type Section 2 is a preliminary part In Section 3, we prove several
lemmas which are crucial for our discussion. Main results are given in Section 4 First, we establish the
weak convergence (Theorem 1) of an almost-orbit {u(t) : t € G} of a semigroup S = {S(t) : t € G} of
asymptotically nonexpansive type on C in a uniformly convex Banach space with a Fréchet differentiable
norm, where G is a right reversible semitopological semigroup. Next, we show that if P is the metric
projection of E onto set F'(S) of all common fixed points of S = {S(t) : t € G}, then the strong limit
of the net {Pu(t):t € G} exists (Theorem 2). Our proofs employ the methods of Hirano and
Takahashi [9], Ishihara and Takahashi [10], Takahashi and park [11], and Takahashi and Zhang [7,8]
The results are generalizations of the corresponding results in [5], [7], [81, [11], [12] and [13].
2. PRELIMINARIES

Let E be a real Banach space and let E* be its dual. The value of f € E* at z € E will be denoted
by (z, f) With each z € E, we associate the set

J@)={f € E": (z,f) = |l=I” = IfI*}.

Using the Hahn-Banach theorem, it is readily verified that J(z) #® The multivalued mapping
J : E — E* is called the duality mapping of E. Let U = {z € E : ||z|| = 1} be the unit sphere of E
Then a Banach space FE is said to be smooth provided the limit

t —
i Nz + tyll = lz]
t—0 t

@n

exists for each z,y € U. In this case, the norm of E is said to be Gateaux differentiable. It is said to be
Fréchet differentiable if for each z € U, the limit (2.1) is attained uniformly for ye U It is also
known that if E is smooth, then the duality mapping J is single valued. It is easy to see that the norm
of E is Fréchet differentiable if and only if for any bounded set BC E and any z € E,
lim;—0(2t) " (| + ty||* = ||z|*) = (3, J(z)) uniformly in y € E; see [14].

A Banach space F is called uniformly convex if the modulus of convexity

. 1
o) = inf{ 1= Jlle +ol el Il < 1 12 =31 2

is positive in its domain of definition {e : 0 < € < 2}. For the properties of 6(¢), see [15].

For a subset D of E, D denotes the closure of E, coD the convex hull of D, and €D the closed
convex hull of E, respectively.

Let G be a semitopological semigroup, i.e., G is a semigroup with a Hausdorff topology such that
for each a € G the mappings ¢ — a-gand g — g - a from G to G are continuous. G is said to be right
reversible if any two closed left ideals of G have nonempty intersection. If G is right reversible, (G, <)
is a directed system when the binary relation " <" on G is defined by a <b if and only if
{a} UGa 2 {b} UGH.

Let C be a nonempty closed convex subset of a Banach space E and let G be a semitopological
semigroup. A family S = {S(t): t € G} of mappings from C into itself is said to be a (continuous)
representation of G on C if S satisfies the following:

(i) S(ts)z =S(t)S(s)zforallt,se Gandz € C

(ii) for every x € C, the mappings s — S(s)z from G into C is continuous.
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DEFINITION 1. A representation S = {S(t) : t € G} of G on C is said to be a semigroup of
asymptotically nonexpansive type on C if for each z € C,

inf f sup sup (IS@®)z = Styll - llz = yll) < 0. 22)
3 6
Let G be right reversible and let S = {S(t) : t € G} be a representation of G on C A function
u : G — C is called an almost-orbit of S = {S(¢) : t € G} if

i (sup uts) - S@u(e)l ) =0 @3)

w(u) denotes the set of all weak limit points of subnets of the net {u(t):te€ G}, and
F(S) = e F(S(2)) the set of all common fixed points of mappings S(¢), t € G in C
3. LEMMAS

In this section, we prove several lemmas which are crucial in convergence of almost-orbits.

LEMMA 1. Let C be a nonempty closed convex subset of a uniformly convex Banach space E and
let S={S(t):t€ G} be a semigroup of asymptotically nonexpansive type of a right reversible
semitopological semigroup G on C. Then F(S) is a closed and convex subset of C.

PROOF. The closedness of F'(S) is obvious. To show convexity, it is sufficient to show that
2=t e F(S)forallz,y € F(S). Letz,y € F(S),z #y IflimecS(t)z = 2, thenforany s € G,

S(s)z = }lemG S(s)S(t)z = }gg S(st)z = llerg St)z = z,

ie, z € F(S). Hence it suffices to prove that lim;c¢.S(t)2 = z. If not, there exists € > 0 such that for
any t € G, thereist’ € G witht' > ¢ and

4S(t)z - 2| = 12(S(t")z — =) — 2(y = S(t)2)l| 2 €.

(R+d)(1 - 5(%&)) <R,

where R = ||z —y|| >0 and 6 is the modulus of convexity of E Since S = {S(t):t€ G} is
asymptotically nonexpansive type on C, there is ty € G such that

Choose d > 0 so small that

sup sup 8@z = S@wll - Iz —wl) <

to=<t weC

Nlﬁ.

Put u = 2(S(ty)z — z), v = 2(y — S(ty)z). Then [lu — v|| = 4||S(ty)z — 2|| > €. Furthermore, since
ty < tg, we have
llull = 21IS(t)z — ||
=2(|IS(to)z — S(to)zll — llz — =l}) + 2]l - ]|
<2sup sup (IS®z = SEwll - llz—wl) +llz -yl <R +d

to<t weC
and
lloll = 2lly = S(t)=ll
=2([IS(to)z — S(to)yll — llz — ¥ll) +2/lz — yll
<2 sup sup (IS@®)z = S@t)wll — llz — wll) + llz — yll < R +d.
0> w€
So we have

u+v
2

< (R+d)(1-5(R:_d)),

and hence
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u+v

2 “ < (R+d)(1 _6(_}26—_d))'< R=|z -yl

lz -yl =

This is a contraction. Therefore, lim;c¢S(t)z = z,which completes the proof

LEMMA 2. Let C be a nonempty closed convex subset of Banach space E Let G be a right
reversible semitopological semigroup and let S = {S(t):t € G} be a semigroup of asymptotically
nonexpansive type on C. If {u(t) : t € G} and {v(¢) : t € G} are almost-orbits of S = {S(¢) : ¢t € G},
then limsec ||u(t) — v(t)|| exists. In particular, for every 2z € F(S), limycc||u(t) — z|| exists

PROOF. Put

$(s) = sup llu(ts) = S@u(s)ll, W(s) = sup llu(ts) = S@)w(s)ll

for s€ G  Then lim,cgd(s) = limeegy(s) =0. Let €>0. Since S={S(t):t€ G} is of
asymptotically nonexpansive type on C, there exists ty € G such that

sup sup (||S(¢)u(s) = SEwl| — |lu(s) — wll) <€

toXt weC

for all s € G. On the other hand, since, for any s,t € G,

l[u(ts) — v(ts)ll < ¢(s) +%(s) + (IS ()uls) — SE)v(s)ll = [lu(s) = v(s)l) + llu(s) — v(s)ll
< () +4(s) + sup (IS@)u(s) — SEwll - llu(s) — wll) + fluls) = v(s)],

we have
inf sup lu(r) — v(7)ll < ¢(s) +9¥(s) + sup Sl;g (IS @)u(s) — S@E)wll — [lu(s) — wll) + [lu(s) — v(s)||
< #(s) +9(s) + e+ [lu(s) —v(s)ll,

and then inficg supi<- [[u(T) — v(7)|| < supieg infi<, [lu(s) — v(s)|| Thus limeg|lu(t) — v(t)| exists.
Let z € F(S) and put v(t) = 2. Then v(t) is an almost-orbit and hence lim;cc||u(t) — z|| exists

LEMMA 3. Let C be a nonempty closed convex subset of Banach space E. Let G be a right
reversible semitopological semigroup and let S = {S(t):t € G} be a semigroup of asymptotically
nonexpansive type on C. Let {u(t) : t € G} be an almost-orbit of S = {S(t) : t € G} If F(S) #0,
then there exists tg € G such that {u(t) : ¢ > ¢y} is bounded.

PROOF. Let z € F(S). Then, since lim;cq||lu(t) — z|| exists by Lemma 2, there is ¢o € G such
that {|lu(t) — || : t = to} is bounded. Hence {u(t): > tp} is bounded.

LEMMA 4. Let C be a nonempty closed convex subset of a uniformly convex Banach space E
Let G be a right reversible semitopological semigroup and let S = {S(t) : t € G} be a semigroup of
asymptotically nonexpansive type on C. Let {u(t) : t € G} be an almost-orbit of S = {S(t) : t € G}
Suppose that F(S) #0. Lety€ F(S)and0 < a < S < 1. Thenforanye > 0, thereis to € G such
that

IS (Au(s) + (1 = Ay) — (AS(H)uls) + 1 - Ay)ll <€

forallt,s > ty and A € [a, B].
PROOF. By Lemma 2, limscc||u(t) — y|| exists. Let e > 0 and
r = lim [lu(t) - yll

If r =0, since S={S(t): t € G} is of asymptotically nonexpansive type on C, there exists to € G such
that

sup sup (IS Auls) + (1 = A)y) = SEwll = Ixu(s) + (1 - Ay —wll) < %
and 03t we

€
Jutt) - wil < 5
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fort »t,0<A<lands € G. Hencefors,t > t;,0<A<lands€Q@G,
IS@)(Auls) + (1 = A)y) — (AS(@B)u(s) + (1 = Ay)ll
SAIS @) (Auls) + (1 = Ny) = SE)u(s)ll + (1 = A)ISE)(Au(s) + (1 - A)y) —yll
< 2 (sup 50 (IS0w(s) + (1= A1) = Sl - Ixuce) + (1 = Ny =)

toXt weC

+AlA(s) + (1= Ay = ()l + (1= %) (s 50p (ISOO(s) + (1= W) =

Stwll = l|du(s)+ (1 -y - wll)) + (1 =N Au(s) + (1 =Ny —yll
<A -;- +(1-2) % +22(1 = A)luls) — vl

<%+§(A(1-,\))<e.

Now, let 7 > 0. Then we can choose d > 0 so small that

(r+d)(1—c5<r+Ld>) —ry <,

where 6 is the modulus of convexity of F and

c=min{2A(1 - )):a < A < S5}
Let a > 0 with 2a + ¢ < r. Then there is tg € G such that

r—a<|u(s) -yl < r+§ for s> to,
1S(s)u(®) —u(st)| <a for t>t, and s€G,

sup sup (IIS®)z = S@E)w|| — ]z —w|) < = d for zeC,

and

sup sup (IS @)u(s) — S@E)wl|| — llu(s) — wl|) < %d for s€G.

to<t weC
Suppose that [|S(t)(Au(s) + (1 — A)y) — (AS(t)u(s) + (1 = A)y)|| > € for some s,t>=% and
A€ (e, B Put z=2Au(s)+(1— Ay, u=(1-X)(S(t)z—y) and v = A(S(t)u(s) — S(t)z) Then
we have

lull = (1 = DUS®)z = SOl - 1z = yll) + (1 = A)l|z =yl
(1-

A)sup sup (IS(t)z — SE)wll — llz — wll) + (1 = A)[Au(s) + (1 = A)y ~ yll

ows

<(A-X3 Zd+2(1 - A)llu(s) -yl

<

g,\(1-x)<(1—,\)§ Fr+ g) <A1 = A)(r +d)

and
lvll = AIS ()u(s) = S@)z| — llu(s) = zII) + Allu(s) — 2|l
<A sup sup (IS @)u(s) = S@E)wll = llu(s) — wll) + A1 = Nllu(s) - yll
d
< ,\Zd+/\(1—)\)(r+§>
<A1- /\)(Ag +r+ g) <A1 =X)(r+d).
We also have that

llu = ol = IS(t)z = (AS(t)u(s) + (1 = )|l > €
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and

A+ (1= A= A1 =N (SE)z—y) + (1 — MASH)u(s) — S(t)2)
= A1 = A)(S@)u(s) — v).

By the Lemma in [16], we have
AL = NISE)u(s) — ol = [Au + (1 = A

<AQ=X)(r+4d) (1 -2 - ’\)5(:€r—d>)

€

<AQ=N)(r+d) (1 - c6<—-—2)) =A(1 - Mro

r+

and hence ||S(t)u(s) — y|| < ro This implies that
llu(ts) — yll < llults) — S@u(s)ll + 1SEuls) -yl <a+ro <r—a.

This contradicts the fact ||u(s) — y|| > r — a for s = t5. The proof'is complete

LEMMA 5. Let C be a nonempty closed convex subset of a uniformly convex Banach space E
Let G be a right reversible semitopological semigroup and let S = {S(t) : t € G} be a semigroup of
asymptotically nonexpansive type on C. Let {u(t) : £ € G} be an almost-orbit of S = {S(t) : t € G}.
Suppose that F(S) # 0. Then lim;cg||Au(t) + (1 — A)z — y|| exists for every z,y € F(S)

PROOF. Let A € (0,1) and z,y € F(S). By (2.2), (2.3), and Lemma 4, for any € > 0, there exists
to € G such that

1S (hu(s) + (1 = N)z) = (AS(@)u(s) + (1 - Nz)|| < % for t,s > to,
sup ||[u(ts) — St)u(s)|| < S for s > to,
teG 3
tsug sug (IS@)Awu(s) + (1 = A)z) = SE)w|| — [|Au(s) + (1 - )z —w|]) < % for s€qG.

Since

[Au(ts) + (1 = A)z -y
< Mlu(ts) = S@uls)l + [AS@)u(s) + (1 = )z — S(¢)(wu(s) + (1 = A)z)ll
+sup (IS@) uls) + (1 = X)z) = SE)wll - IAu(s) + (1 = A)z — wl])

+ [lAu(s) + (1 = Nz -y
<e+|[Muls)+ (1 =Nz -y
for all t, s € G, we have
inf sup |Au(7) + (1 = A)z — y|| < sup[|A(u(ts) + (1 = Az -yl
teG ¢<r to=t
<e+|u(s) + (1 — Nz —yll

for all s > ty, and then

inf sup || Au(7) + (1 — M)z — y|| < sup inf ||Au(s) + (1 — A)z — yl|.
teG txr teG 39

Thus limyeg || Au(t) + (1 — A)z — y|| exists.

LEMMA 6. Let C be a nonempty closed convex subset of a uniformly convex Banach space E
with a Fréchet differentiable norm. Let G be a right reversible -semitopological semigroup and let
S ={S(t) : t € G} be a semigroup of asymptotically nonexpansive type on C. Let {u(t) : t € G} be an
almost-orbit of S = {S(t) : t € G}. Then

FS)n () @@ {ult): t = s}

. . 3G
is at most a singleton.
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PROOF. Note that [,.; 0 {u(t) : t = s} =cow(u), see [17] Let x,y € F(S) Since E has a
Fréchet differentiable norm, there exists an increasing function v : R~ — R™ such that v(¢)/t — 0 as
t — 0%, and

Slle = ylP + (b, (@~ 9) < 2 llw ~y+ I
< 3l =9l + (k, Iz = ) +A(1])

forallh € E. Take h = A(u(t) — ) Then

~

3 e = 3l + Aw(0) = 2, 7(& ~ ) < 3 I2u(t) + (1~ Nz — i

< Sl =yl + A@t) - 7, J(z — y) + Y(Alu(t) — ).

N =

Using Lemma 5, we have

1
5 e = yl* + Ainf sup (u(r) ~ 2, (z — y))
teG t<r

1. .
< = — —_
<3 !‘E‘B [IAut) + (1 = A)z -yl
1 .
< 3 llz = ol* + Asup inf (u(r) - 2, I (z ~ ) + v(AM),
teG t=7

where sup;ec||u(t) — z|| = M. Dividing by A and letting A — 0%, we havelimcc(u(t),J(z —y)) =7
exists. Of course r = (v,J(z —y)) for all v € w(u) and hence for all v € €6 w(u) Therefore
(v—w,J(z —y)) =0 for all v, w € Tw(u), and it readily follows that F(S) N(,.o{u(t):t > s} =
F(S) Ncow(u) is at most a singleton.

4. MAIN RESULTS

In this section, we study the convergence of an almost-orbit {u(t) : t € G} of S = {S(t) : t € G}

THEOREM 1. Let E be a uniformly convex Banach space with a Fréchet differentiable norm and
let C be a nonempty closed convex subset of £ Let F be a subset of C and let G be a right reversible
semitopological semigroup. Let S = {S(t) : t € G} be a semigroup of asymptotically nonexpansive type
on C and let {u(t) : t € G} be an almost-orbit of S = {S(t) : t € G}. Assume that

(@ F C F(S).

Assume also that

(b) if a subnet {u(t,)} of the net {u(2) : t € G} converges weakly to 2, then z € F.

Then either (i) F = 0 and ||u(t)|| — oo or (ii) F # 0 and the net {u(t) : t € G} converges weakly to
some z € F(S).

PROOF. Suppose that some subnet {u(t,)} of {u(t) : t € G} is bounded. Since E is reflexive, a
subnet of {u(t,)} must converge weakly to an element z € E, which is in F by (b). Thus F = 0 implies
lu(®)l = oo.

If, on the other hand, F # @, then by Lemma 3, {u(t) : t € G} is bounded. So {u(t) : t € G} must
contain a subnet {u(t,)} which converges to some z € F by (b) Since F C F(S) and 2 € ¢
w(u) = N,eq€0 {u(t) : t € G}, we have

zeFn()@@{ut):t=s} C FS) N[ @{ult):txs}
seG seG
Therefore it follows from Lemma 6 that {u(t) : t € G} converges weakly to z € F(S).

As a direct consequence, we have the following corollary, which is a generalization of a result in [5],
[7), (8], [11], [12] and [13]

COROLLARY 1. Let E be a uniformly convex Banach space with a Fréchet differentiable norm
and let C be a nonempty closed convex subset of E Let G be a right reversible semitopological
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semigroup and let S = {S(t):t € G} be a semigroup of asymptotically nonexpansive type on C
Suppose that F(S)# 0 and let {u(t):t€ G} be an almost-orbit of S={S(t):t€G} If
w(u) C F(S), then the net {u(t) : t € G} converges weakly to some z € F(S)

PROOF. The result follows by putting F = w(u) in Theorem 1

The following theorem is also a generalization of [7, Theorem 4]

THEOREM 2. Let C be a nonempty closed convex subset of a uniformly convex Banach space E
Let G be a right reversible semitopological semigroup and let S = {S(t) : t € G} be a semigroup of
asymptotically nonexpansive type on C  Suppose that F(S) # 0 and let {u(¢) : t € G} be an almost-
orbit of S = {S(t) : t € G} Let P denote the metric projection of E onto F(S) Then the strong limit
of the net { Pu(t) : t € G} exists and lim;c ¢ Pu(t) = 2y, where 2 is a unique element of F'(S) such that

lim [(8) ~ 2] = min {giemc () — 2 : 2 € F<S>}.

PROOF. Since F(S) # 0, we know that {u(t) : t € G} is bounded and limycc||u(t) — 2| = g(2)
exists for each z € F(S). Let R =inf{g(z): 2 € F(S)} and M = {u € F(S) : g(u) = R} Then,
since g(z) is convex and continuous on F(S) and g(z) — oo as ||2|| — oo, M is a nonempty closed
convex bounded subset of F(S). Fix zp € M with g(2) = R. Since P is the metric projection of E
ontp F(S), we have |lu(t) — Pu(t)|| < ||u(t) — y|| forall t € G and y € F(S),
and hence

inf sup |ju(s) — Pu(s)|| < R.
teG ¢<s
Suppose that inficc sup;<, ||u(s) — Pu(s)|| < R. Then we may choose ¢ > 0 and t; € G such that
llu(s) = Pu(s)l SR -
sup sup (IS (u(s) = S(E)wll - llu(t) - wll) <

€
to=t weC 4
and

€
sup ||lu(ts) — S(t)u(s)]| < 1
teG
for all s > ¢3. Since

l[u(ts) = Pu(s)ll < llu(ts) — S@u(s)ll + 1St)u(s) — S(t) Pu(s)ll
= llu(s) — Pu(s)]| + |lu(s) — Pu(s)
< (s) + sup (IS@u(s) — SEwll - lluls) — wll) + llu(s) — Pu(s)ll

for all s, ¢t € G and lim,cg ¢(s) = 0, where ¢(s) = sup;cc ||u(ts) — S(t)u(s)||, we have

€ € €
||u(ts)—Pu(s)|| < Z+Z+T_G_R_§

for s > tg and all t € G. Therefore, we obtain
€
i - =i - <R-- .
lim [u(8) = Pu(s)l| = faf sup fu(r) = Pu(s)]| S B~ 5 < R
This is a contradiction. So we conclude that
inf sup ||u(s) — Pu(s)|| = R.
teG <

Now we claim that lim,cq Pu(t) = 2. It not, then there exists € > 0 such that for any t € G,
||Pu(t') — 2g|| > € for some ¢’ = t. Choose a > 0 so small that

(R+a)<1—6(R:a)) =R <R,

where § is the modulus of convexity of the norm of E We have ||u(t') — Pu(t')]| < R+ a and
llu(?') = 20|l < R + a for large enough t'. Therefore
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< (R+a)<1 4(%)) =R,

Since, by Lemma 1, the point wy = PL(‘;)—’E belongs to F'(S), as in the above,

l[u(tt) — well < o(t') + sup (IS @u(t) = S@wll — llu(t) — wil) + lu(t) — we |-

Pu(t’) + 2

o) - 244

Since limsc ¢(s) = 0, there is ¢’ € G such that

s(t) < & ;R’
and
R-R
sup sup ([[S()u(t') — S(t)w| — flult’) — wl)) < 1 L
t'<t weC
and hence
. . R - R, _R+Ry
lim [|u(t) — well = inf sup llu(r) — we|l < +R = —5— <R

This contradicts the fact R = inf{g(z) : z € F(S)} Thus we have lim;cc Pu(t) = 2o Consequently, it
follows that the element 2y € F(S) with g(2) = min{g(z) : z € F(S)} is unique. The proof is
complete

By Corollary 1 and Theorem 2, we have the following, which is an improvement of [8, Theorem 3]
and [S, Theorem 3.3].

COROLLARY 2. Let C be a nonempty closed convex subset of a real Hilbert space H Let G be
a right reversible semitopological semigroup and S = {S(t) : t € G} be a semigroup of asymptotically
nonexpansive type on C. Suppose that F(S)# 0. Let {u(t):t € G} be an almost-orbit of
S={S():t € G}. Then {u(t):t € G} converges weakly to some z € C if and only if u(ht) — u(¢)
converges weakly to 0 for all h € G. In this case, z € F(S) and lim;cc Pu(t) = 2

PROOF. We need only prove the "if* part. By Corollary 1, it suffices to show that w(u) C F(S)
Let {u(tq)} be a subnet of {u(t):t € G} converging weakly to y € C Given € >0 Since S is of
asymptotically nonexpansive type and {u(t,)} is bounded, there exists t; € G such that for any a,

sup sup(IS(£)u(ta) = SENw - l[ulte) — wll) < e.
So we have, for t > ¢y and any o,
I1S®t)u(ta) — SEWIF - llulta) -yl
= (1S@)u(ta) — Sl — ulta) = ¥ UISB)ulta) — SEYI + llulta) — yll)
< sup sup ([S(t)u(te) — St)wl| — |lu(ta) - wu>( sup sup (|S(tuta) - S@ul|

toXt weC
= lulta) = wl) + 2lu(ta) - oll)
< ele+2M),

where M = sup,||u(ts) — yl|. Letu € F(S) and € = €(e + 2M). Then we have, for ¢ > ¢y and all ¢,
— € <Julta) = || = Il = S@)ulta)yll?
= [lu(ta) = ull® +2(u(ta) — u,u — y) + lu - y|*
— IS@)ulta) — ull® — 2(SE)u(ta) — v, u — S(Et)y) — [lu - SE)yII*
= Jlu(ta) = ull® = IS@)ulta) = ull® + llu — yl* — |lu - SE)yl*
+ 2(u(ta) — u, S(t)y — y) + 2(u(ta) — S()u(ta), u — S(t)y)-

Since {u(t) : t € G}is an almost-orbit of S = {S(t) : t € G} and u(hs) — u(s) converges weakly to 0
for all h € G, it follows that

im ||S (t)u(ta) - ull® = lim flu(tta) — ull® = lim |Ju(ta) - ul’
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and
u(te) — St)uts) = ulte) — u(tts) — 0 weakly.

Thus we have
—€¢ <2y-vu, Sy —y) +lly—ul’ - llu—SEWI* = - lly - Styl*

for t > ¢, and hence limsup;cc||S(t)y — y|| < €. Since € is arbitrary, we have lim,cgS(t)y =y Now,
fors € G,
S(s)y = limS(s)S(t)y = lim S(st)y = lim S(t)y =,

ie, y € F(S) and hence w(u) C F(S) By Corollary 1, the net {u(t) : t € G} converges weakly to
some z € F(S) On the other hand, since P is the metric projection of H onto F(S), we know that

(u(t) — Pu(t), Pu(t) —y) 2 0

for all y € F(S). So, if Pu(t) — u by Theorem 2, we have (2 —u,u—y) > Ofor all y € F(S)
Putting z = y, we obtain — ||z — u||®> > 0 and hence z = u.

As a direct consequence, we have the following

COROLLARY 3. Let C be a nonempty closed convex subset of a real Hilbert space H Let G be
a right reversible semitopological semigroup and let S={S(¢):t€ G} be a semigroup of
asymptotically nonexpansive type on C. Suppose that F(S) # 0 Let {u(t) : t € G} be an almost-orbit
of §={S(t):teG}. If limegl|lu(ht)—u(t)]|=0 for all h € G, then the net {u(t):te€ G}
converges weakly to some z € F(S).
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