
Hindawi Publishing Corporation
International Journal of Mathematics and Mathematical Sciences
Volume 2013, Article ID 769537, 5 pages
http://dx.doi.org/10.1155/2013/769537

Research Article
Univalence of a New General Integral Operator Associated with
the 𝑞-Hypergeometric Function

Huda Aldweby and Maslina Darus

School ofMathematical Sciences, Faculty of Science and Technology, Universiti KebangsaanMalaysia, 43600 Bangi, Selangor,Malaysia

Correspondence should be addressed to Maslina Darus; maslina@ukm.my

Received 11 December 2012; Revised 3 February 2013; Accepted 17 February 2013

Academic Editor: Shyam Kalla

Copyright © 2013 H. Aldweby and M. Darus. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Motivated by the familiar 𝑞-hypergeometric functions, we introduce a new family of integral operators and obtain new sufficient
conditions of univalence criteria. Several corollaries and consequences of the main results are also pointed out.

1. Introduction

LetA denote the class of functions of the form

𝑓 (𝑧) = 𝑧 +

∞

∑

𝑛=2

𝑐
𝑛
𝑧
𝑛

, 𝑐
𝑛
≥ 0, (1)

which are analytic in the open unit diskU = {𝑧 ∈ C : |𝑧| < 1},
andS the class of functions 𝑓 ∈ A which are univalent inU.

Let 𝑓, 𝑔 ∈ A, where 𝑓 is defined by (1) and 𝑔 is given by

𝑔 (𝑧) = 𝑧 +

∞

∑

𝑛=2

𝑏
𝑛
𝑧
𝑛

, 𝑏
𝑛
≥ 0. (2)

Then the Hadamard product (or convolution) 𝑓 ∗ 𝑔 of the
functions 𝑓 and 𝑔 is defined by

(𝑓 ∗ 𝑔) (𝑧) = 𝑧 +

∞

∑

𝑛=2

𝑐
𝑛
𝑏
𝑛
𝑧
𝑛

. (3)

For complex parameters 𝑎
𝑖
, 𝑏
𝑗
, and 𝑞 (𝑖 = 1, . . . , 𝑟, 𝑗 =

1, . . . , 𝑠, 𝑏
𝑗
∈ C \ {0, −1, −2, . . .}, |𝑞| < 1), we define the 𝑞-

hypergeometric function
𝑟
Φ
𝑠
(𝑎
1
, . . . , 𝑎

𝑟
; 𝑏
1
, . . . , 𝑏

𝑠
; 𝑞, 𝑧) by

𝑟
Φ
𝑠
(𝑎
𝑖
; 𝑏
𝑗
; 𝑞, 𝑧) =

∞

∑

𝑛=0

(𝑎
1
, 𝑞)
𝑛
⋅ ⋅ ⋅ (𝑎
𝑟
, 𝑞)
𝑛

(𝑞, 𝑞)
𝑛
(𝑏
1
, 𝑞)
𝑛
⋅ ⋅ ⋅ (𝑏
𝑠
, 𝑞)
𝑛

𝑧
𝑛 (4)

(𝑟 = 𝑠 + 1; 𝑟, 𝑠 ∈ N
0
= N ∪ {0}; 𝑧 ∈ U), where N denotes

the set of positive integers and (𝑎, 𝑞)
𝑛
is the 𝑞-shifted factorial

defined by

(𝑎, 𝑞)
𝑛
={

1, 𝑛 = 0;

(1 − 𝑎) (1 − 𝑎𝑞) (1 − 𝑎𝑞
2

) ⋅ ⋅ ⋅ (1 − 𝑎𝑞
𝑛−1

) , 𝑛 ∈ N.

(5)

By using the ratio test, we should note that, if |𝑞| < 1, the
series (4) converges absolutely for |𝑧| < 1 if 𝑟 = 𝑠 + 1. For
more mathematical background of these functions, one may
refer to [1].

Corresponding to the function defined by (4), consider

𝑟
G
𝑠
(𝑎
𝑖
; 𝑏
𝑗
; 𝑞, 𝑧) = 𝑧

𝑟
Φ
𝑠
(𝑎
𝑖
; 𝑏
𝑗
; 𝑞, 𝑧) . (6)

Recently, the authors [2] defined the linear operator
M(𝑎
𝑖
, 𝑏
𝑗
; 𝑞)𝑓 : A → A by

M (𝑎
𝑖
, 𝑏
𝑗
; 𝑞) 𝑓 (𝑧) =

𝑟
G
𝑠
(𝑎
𝑖
; 𝑏
𝑗
; 𝑞, 𝑧) ∗ 𝑓 (𝑧)

= 𝑧 +

∞

∑

𝑛=2

Υ
𝑛
𝑐
𝑛
𝑧
𝑛

,

(7)

where

Υ
𝑛
=

(𝑎
1
, 𝑞)
𝑛−1

⋅ ⋅ ⋅ (𝑎
𝑟
, 𝑞)
𝑛−1

(𝑞, 𝑞)
𝑛−1

(𝑏
1
, 𝑞)
𝑛−1

⋅ ⋅ ⋅ (𝑏
𝑠
, 𝑞)
𝑛−1

, (
󵄨󵄨󵄨󵄨𝑞
󵄨󵄨󵄨󵄨 < 1) . (8)
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It should be remarked that the linear operator (7) is a
generalization of many operators considered earlier. For 𝑎

𝑖
=

𝑞
𝛼𝑖 , 𝑏
𝑗
= 𝑞
𝛽𝑗 , 𝛼
𝑖
, 𝛽
𝑗
∈ C, 𝛽

𝑗
̸= 0, −1, −2, . . . , (𝑖 = 1, . . . , 𝑟, 𝑗 =

1, . . . , 𝑠), and 𝑞 → 1, we obtain the Dziok-Srivastava linear
operator [3] (for 𝑟 = 𝑠 + 1), so that it includes (as its special
cases) various other linear operators introduced and studied
by Ruscheweyh [4], Carlson and Shaffer [5] and the Bernardi-
Libera-Livingston operators [6–8].

The 𝑞-difference operator is defined by

𝑑
𝑞
ℎ (𝑧) =

ℎ (𝑞𝑧) − ℎ (𝑧)

(𝑞 − 1) 𝑧
, 𝑞 ̸= 1, 𝑧 ̸= 0,

lim
𝑞→1

𝑑
𝑞
ℎ (𝑧) = ℎ

󸀠

(𝑧) ,

(9)

where ℎ󸀠(𝑧) is the ordinary derivative. For more properties of
𝑑
𝑞
see [9, 10].

Lemma 1 (see [2]). Let 𝑓 ∈ A; then

(i) for 𝑟 = 1, 𝑠 = 0, and 𝑎
1
= 𝑞, one hasM(𝑞, −; 𝑞)𝑓(𝑧) =

𝑓(𝑧).
(ii) For 𝑟 = 1, 𝑠 = 0, and 𝑎

1
= 𝑞

2, one
has M(𝑞

2

, −; 𝑞)𝑓(𝑧) = 𝑧𝑑
𝑞
𝑓(𝑧) and lim

𝑞→1

M(𝑞
2

, −; 𝑞)𝑓(𝑧) = 𝑧𝑓
󸀠

(𝑧), where 𝑑
𝑞
is the 𝑞-derivative

defined by (9).

Definition 2. A function 𝑓 ∈ A is said to be in the class
B𝑟
𝑠
(𝑎
𝑖
, 𝑏
𝑗
; 𝑞; 𝜇) if it is satisfying the condition

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑧
2

(M (𝑎
𝑖
, 𝑏
𝑗
; 𝑞) 𝑓 (𝑧))

󸀠

[M (𝑎
𝑖
, 𝑏
𝑗
; 𝑞) 𝑓 (𝑧)]

2
− 1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

< 1 − 𝜇 (𝑧 ∈ U; 0 ≤ 𝜇 < 1) ,

(10)

whereM(𝑎
𝑖
, 𝑏
𝑗
; 𝑞)𝑓 is the operator defined by (7).

Note that B1
0
(𝑞, −; 𝑞; 𝜇) = B(𝜇), where the class B(𝜇) of

analytic and univalent functions was introduced and studied
by Frasin and Darus [11].

Using the operator M(𝑎
𝑖
, 𝑏
𝑗
; 𝑞)𝑓(𝑧)𝑓, we now introduce

the following new general integral operator.
For 𝑚 ∈ N ∪ {0}, 𝛾

1
, 𝛾
2
, . . . , 𝛾

𝑚
, 𝛿 ∈ C \ {0, −1, −2, . . .},

and |𝑞| < 1, we define the integral operator 𝐼
𝛾𝑘,𝛿

(𝑎
𝑖
, 𝑏
𝑗
; 𝑞; 𝑧) :

A𝑛 → A𝑛 by

𝐼
𝛾𝑘,𝛿

(𝑎
𝑖
, 𝑏
𝑗
; 𝑞; 𝑧)

= (𝛿∫

𝑧

0

𝑡
𝛿−1

𝑚

∏

𝑘=1

(
M (𝑎
𝑖
, 𝑏
𝑗
; 𝑞) 𝑓 (𝑧) 𝑓

𝑘
(𝑡)

𝑡
)

1/𝛾𝑘

𝑑𝑡)

1/𝛿

,

(11)

where 𝑓
𝑘
∈ A.

Remark 3. It is interesting to note that the integral operator
𝐼
𝛾𝑘,𝛿

(𝑎
𝑖
, 𝑏
𝑗
; 𝑞; 𝑧) generalizes many operators introduced and

studied by several authors, for example,

(1) for 𝑟 = 𝑠 + 1, 𝑎
𝑖
= 𝑞
𝛼𝑖 , 𝑏
𝑗
= 𝑞
𝛽𝑗 , 𝑖 = 1, . . . , 𝑟, 𝑗 =

1, . . . , 𝑠, 𝑞 → 1, 𝛾
𝑘
= 1/(𝛼 − 1), and 𝛿 = 1 + 𝑚(𝛼 − 1),

where 𝛼 ∈ C andR(𝛼) > 0, we obtain the following integral
operator introduced and studied by Selvaraj and Karthikeyan
[12]:
𝐹
𝛼
(𝛼
1
, 𝛽
1
; 𝑧)

= (1 + 𝑚 (𝛼 − 1) ∫

𝑧

0

(𝐻
𝑟

𝑠
(𝛼
1
, 𝛽
1
) 𝑓
1
(𝑡))
𝛼−1

⋅ ⋅ ⋅ (𝐻
𝑟

𝑠
(𝛼
1
, 𝛽
1
) 𝑓
𝑚
(𝑡))
𝛼−1

𝑑𝑡)

1/(1+𝑚(𝛼−1))

,

(12)

where for convenience 𝐻
𝑟

𝑠
(𝛼
1
, 𝛽
1
)𝑓 := 𝐻(𝛼

1
, . . . , 𝛼

𝑟
; 𝛽
1
,

. . . , 𝛽
𝑠
; 𝑧)𝑓(𝑧), and 𝐻

𝑟

𝑠
(𝛼
1
, 𝛽
1
)𝑓(𝑧) = 𝑧 + ∑

∞

𝑛=2
((𝛼
1
)
𝑛−1

⋅ ⋅ ⋅ (𝛼
𝑟
)
𝑛−1

/(𝛽
1
)
𝑛−1

⋅ ⋅ ⋅ (𝛽
𝑠
)
𝑛−1

(𝑛 − 1)!)𝑎
𝑛
𝑧
𝑛 is the Dziok-Sriv-

astava operator [3].
(2) For 𝑟 = 1, 𝑠 = 0, 𝑎

1
= 𝑞, 𝛾

𝑘
= 1/(𝛼 − 1), and 𝛿 =

1 + 𝑚(𝛼 − 1), we obtain the integral operator

𝐹
𝑚,𝛼

(𝑧) = (1 + 𝑚 (𝛼 − 1)

× ∫

𝑧

0

(𝑓
1
(𝑡))
𝛼−1

⋅ ⋅ ⋅ (𝑓
𝑚
(𝑡))
𝛼−1

𝑑𝑡)

1/(1+𝑚(𝛼−1))

(13)

studied recently by Breaz et al. [13].
(3) For 𝑟 = 1, 𝑠 = 0, 𝑎

1
= 𝑞, 𝛾

𝑘
= 1/𝛼

𝑘
, and 𝛿 = 1, we

obtain the integral operator

𝐹
𝛼
(𝑧) = ∫

𝑧

0

(
𝑓
1
(𝑡)

𝑡
)

𝛼1

⋅ ⋅ ⋅ (
𝑓
𝑚
(𝑡)

𝑡
)

𝛼𝑚

𝑑𝑡 (14)

introduced and studied by D. Breaz and N. Breaz [14].
(4) For 𝑟 = 1, 𝑠 = 0, 𝑎

1
= 𝑞
2

, 𝛾
𝑘
= 1/(𝛼 − 1), and 𝛿 =

1 + 𝑚(𝛼 − 1), we obtain the integral operator

𝐺
𝛼
(𝑧) = (1 + 𝑚 (𝛼 − 1)

× ∫

𝑧

0

𝑡
𝑚(𝛼−1)

(𝑓
󸀠

1
(𝑡))
𝛼−1

⋅ ⋅ ⋅ (𝑓
󸀠

𝑚
(𝑡))
𝛼−1

𝑑𝑡)

1/(1+𝑚(𝛼−1))

(15)

introduced by Selvaraj and Karthikeyan [12].
(5) For 𝑟 = 1, 𝑠 = 0, 𝑎

1
= 𝑞
2

, 𝛾
𝑘
= 1/𝛼, and 𝛿 = 1, we

obtain the integral operator

𝐺
𝛼
(𝑧) = ∫

𝑧

0

(𝑓
󸀠

1
(𝑡))
𝛼

⋅ ⋅ ⋅ (𝑓
󸀠

𝑚
(𝑡))
𝛼

𝑑𝑡, (16)

recently introduced and studied by Breaz and Güney [15].
(6) For 𝑟 = 1, 𝑠 = 0, 𝑎

1
= 𝑞, 𝑓

1
= ⋅ ⋅ ⋅ = 𝑓

𝑚
= 𝑓 ∈ A, 𝛾

𝑘
=

1/(𝛼 − 1), and 𝛿 = 𝛼, where 𝛼 ∈ C andR(𝛼) > 0, we obtain
the integral operator

𝐺
𝛼
(𝑧) = (𝛼∫

𝑧

0

(𝑓 (𝑡))
𝛼−1

)

1/𝛼

𝑑𝑡, (17)

introduced and studied by Pescar [16].
In order to derive our main results, we have to recall the

following univalence criteria.
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Lemma 4 (see [17, 18]). Let 𝛿 ∈ C with Re(𝛿) > 0. If 𝑓 ∈ A
satisfies

1 − |𝑧|
2Re(𝛿)

Re (𝛿)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑧𝑓
󸀠󸀠

(𝑧)

𝑓󸀠 (𝑧)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 1, (18)

for all 𝑧 ∈ U, then the integral operator

𝐹
𝛿
(𝑧) = {𝛿∫

𝑧

0

𝑡
𝛿−1

𝑓
󸀠

(𝑡) 𝑑𝑡}

1/𝛿

(19)

is in the class S.

Lemma 5 (see [16]). Let 𝛿 ∈ C with Re(𝛿) > 0, 𝑐 ∈ C, with
|𝑐| ≤ 1, 𝑐 ̸= − 1. If 𝑓 ∈ A satisfies

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑐|𝑧|
2𝛿

+ (1 − |𝑧|
2𝛿

)
𝑧𝑓
󸀠󸀠

(𝑧)

𝛿𝑓󸀠 (𝑧)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 1, (20)

for all 𝑧 ∈ U then the integral operator

𝐹
𝛿
(𝑧) = {𝛿∫

𝑧

0

𝑡
𝛿−1

𝑓
󸀠

(𝑡) 𝑑𝑡}

1/𝛿

(21)

is in the class S.

Lemma 6 (Generalized Schwarz Lemma, see [19]). (General-
ized Schwarz Lemma) Let the function𝑓 be analytic in the disk
U
𝑅
= {𝑧 : |𝑧| < 𝑅}, with |𝑓(𝑧)| < 𝑀 for fixed𝑀. If 𝑓(𝑧) has

one zero with multiplicity order bigger that𝑚 for 𝑧 = 0, then

󵄨󵄨󵄨󵄨𝑓 (𝑧)
󵄨󵄨󵄨󵄨 ≤

𝑀

𝑅𝑚
|𝑧|
𝑚

, (𝑧 ∈ U
𝑅
) . (22)

Equality can hold only if

𝑓 (𝑧) = 𝑒
𝑖𝜃

(
𝑀

𝑅𝑚
) 𝑧
𝑚

, (23)

where 𝜃 is constant.

2. Univalence Conditions for 𝐼
𝛾
𝑘
,𝛿
(𝑎
𝑖
,𝑏
𝑗
;𝑞;𝑧)

Theorem 7. Let 𝑓
𝑘
∈ A for all 𝑘 = 1, . . . , 𝑚, 𝛾

𝑘
∈ C, and

𝑀 ≥ 1 with

1

Re (𝛿)

𝑚

∑

𝑘=1

[(2 − 𝜇
𝑘
)𝑀 + 1]

󵄨󵄨󵄨󵄨𝛾𝑘
󵄨󵄨󵄨󵄨

≤ 1. (24)

If for all 𝑘 = 1, . . . , 𝑚, 𝑓
𝑘
∈ B𝑟
𝑠
(𝑎
𝑖
, 𝑏
𝑗
, 𝑞, 𝜇
𝑘
), 0 ≤ 𝜇

𝑘
< 1, and

󵄨󵄨󵄨󵄨󵄨
M (𝑎
𝑖
, 𝑏
𝑗
; 𝑞) 𝑓 (𝑧) 𝑓

𝑘
(𝑧)

󵄨󵄨󵄨󵄨󵄨
≤ 𝑀, (𝑧 ∈ U) (25)

then the integral operator 𝐼
𝛾𝑘,𝛿

(𝑎
𝑖
, 𝑏
𝑗
; 𝑞; 𝑧) defined by (11) is

analytic and univalent inU.

Proof. From the definition of the operator M(𝑎
𝑖
, 𝑏
𝑗
; 𝑞)𝑓(𝑧)𝑓

it can be observed that

M (𝑎
𝑖
, 𝑏
𝑗
; 𝑞) 𝑓 (𝑧)

𝑧
̸= 0, (𝑧 ∈ U) , (26)

and for 𝑧 = 0, we have

(
M (𝑎
𝑖
, 𝑏
𝑗
; 𝑞) 𝑓 (𝑧) 𝑓

1
(𝑧)

𝑧
)

1/𝛾1

⋅ ⋅ ⋅ (
M (𝑎
𝑖
, 𝑏
𝑗
; 𝑞) 𝑓 (𝑧) 𝑓

𝑚
(𝑧)

𝑧
)

1/𝛾𝑚

= 1.

(27)

We define the function ℎ(𝑧) by the form

ℎ (𝑧) = ∫

𝑧

0

𝑚

∏

𝑘=1

(
M (𝑎
𝑖
, 𝑏
𝑗
; 𝑞) 𝑓 (𝑧) 𝑓

𝑘
(𝑡)

𝑡
)

1/𝛾𝑘

𝑑𝑡. (28)

Therefore

ℎ
󸀠

(𝑧) =

𝑚

∏

𝑘=1

(
M (𝑎
𝑖
, 𝑏
𝑗
; 𝑞) 𝑓 (𝑧) 𝑓

𝑘
(𝑧)

𝑧
)

1/𝛾𝑘

. (29)

Differentiating logarithmically and multiplying by 𝑧 on both
sides of (29)

𝑧ℎ
󸀠󸀠

(𝑧)

ℎ󸀠 (𝑧)
=

𝑚

∑

𝑘=1

1

𝛾
𝑘

(
𝑧(M (𝑎

𝑖
, 𝑏
𝑗
; 𝑞) 𝑓 (𝑧) 𝑓

𝑘
(𝑧))
󸀠

M (𝑎
𝑖
, 𝑏
𝑗
; 𝑞) 𝑓 (𝑧) 𝑓

𝑘
(𝑧)

− 1) .

(30)

Thus we have

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑧ℎ
󸀠󸀠

(𝑧)

ℎ󸀠 (𝑧)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤

𝑚

∑

𝑘=1

1
󵄨󵄨󵄨󵄨𝛾𝑘
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑧(M (𝑎
𝑖
, 𝑏
𝑗
; 𝑞) 𝑓 (𝑧) 𝑓

𝑘
(𝑧))
󸀠

M (𝑎
𝑖
, 𝑏
𝑗
; 𝑞) 𝑓 (𝑧) 𝑓

𝑘
(𝑧)

− 1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

.

(31)

So

1 − |𝑧|
2Re(𝛿)

Re (𝛿)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑧ℎ
󸀠󸀠

(𝑧)

ℎ󸀠 (𝑧)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
1 − |𝑧|

2Re(𝛿)

Re (𝛿)

× [

[

𝑚

∑

𝑘=1

1
󵄨󵄨󵄨󵄨𝛾𝑘
󵄨󵄨󵄨󵄨

(

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑧(M (𝑎
𝑖
, 𝑏
𝑗
; 𝑞) 𝑓 (𝑧) 𝑓

𝑘
(𝑧))
󸀠

M (𝑎
𝑖
, 𝑏
𝑗
; 𝑞) 𝑓 (𝑧) 𝑓

𝑘
(𝑧)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+ 1)]

]

≤
1 − |𝑧|

2Re(𝛿)

Re (𝛿)

× [

[

𝑚

∑

𝑘=1

1
󵄨󵄨󵄨󵄨𝛾𝑘
󵄨󵄨󵄨󵄨

(

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑧
2

(M (𝑎
𝑖
, 𝑏
𝑗
; 𝑞) 𝑓 (𝑧) 𝑓

𝑘
(𝑧))
󸀠

[M (𝑎
𝑖
, 𝑏
𝑗
; 𝑞) 𝑓 (𝑧) 𝑓

𝑘
(𝑧)]
2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

×

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

M (𝑎
𝑖
, 𝑏
𝑗
; 𝑞) 𝑓 (𝑧) 𝑓

𝑘
(𝑧)

𝑧

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+ 1)]

]

.

(32)
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Since |M(𝑎
𝑖
, 𝑏
𝑗
; 𝑞)𝑓(𝑧)𝑓

𝑘
(𝑧)| ≤ 𝑀, (𝑧 ∈ U, 𝑘 = 1, . . . , 𝑚),

and 𝑓
𝑘
∈ B𝑟
𝑠
(𝑎
𝑖
, 𝑏
𝑗
, 𝑞, 𝜇
𝑘
) for all 𝑘 = 1, . . . , 𝑚, then from the

Schwarz Lemma and (10), we obtain

1 − |𝑧|
2Re(𝛿)

Re (𝛿)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑧ℎ
󸀠󸀠

(𝑧)

ℎ󸀠 (𝑧)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
1 − |𝑧|

2Re(𝛿)

Re (𝛿)

× [(

𝑚

∑

𝑘=1

1
󵄨󵄨󵄨󵄨𝛾𝑘
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑧
2

(M (𝑎
𝑖
, 𝑏
𝑗
; 𝑞) 𝑓 (𝑧) 𝑓

𝑘
(𝑧))
󸀠

[M (𝑎
𝑖
, 𝑏
𝑗
; 𝑞) 𝑓 (𝑧) 𝑓

𝑘
(𝑧)]
2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑀

+𝑀 + 1)]

]

≤
1

Re (𝛿)

𝑚

∑

𝑘=1

1
󵄨󵄨󵄨󵄨𝛾𝑘
󵄨󵄨󵄨󵄨

[(2 − 𝜇
𝑘
)𝑀 + 1] , (𝑧 ∈ U)

(33)

which, in the light of the hypothesis (24), yields

1 − |𝑧|
2Re(𝛿)

Re (𝛿)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑧ℎ
󸀠󸀠

(𝑧)

ℎ󸀠 (𝑧)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 1, (𝑧 ∈ U) . (34)

Applying Lemma (1) for the function ℎ(𝑧) we obtain that
𝐼
𝛾𝑘,𝛿

(𝑎
𝑖
, 𝑏
𝑗
; 𝑞; 𝑧) is univalent.

Taking 𝜇
𝑘

= 0 (for all 𝑘 = 1, . . . , 𝑚), 𝑀 = 1, 𝑎
𝑖
=

𝑞
𝛼𝑖 , 𝑏
𝑗
= 𝑞
𝛽𝑗 , 𝑞 → 1, and 𝛾

𝑘
= 1/(𝛼 − 1), 𝛿 = 1 + 𝑚(𝛼 − 1) in

Theorem 7, we have the following.

Corollary 8 (see [12]). Let 𝑓
𝑘
∈ A for all 𝑘 = 1, . . . , 𝑚 and

𝛼 ∈ C with

|𝛼 − 1| ≤
Re (𝛼)
3𝑚

. (35)

If
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑧
2

(𝐻
𝑟

𝑠
(𝛼
1
, 𝛽
1
) 𝑓
𝑘
(𝑧))
󸀠

(𝐻𝑟
𝑠
(𝛼
1
, 𝛽
1
) 𝑓
𝑘
(𝑧))
2

− 1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

< 1, (𝑧 ∈ U) (36)

and for all 𝑘 = 1, . . . , 𝑚, then the integral operator𝐹
𝛼
(𝛼
1
, 𝛽
1
; 𝑧)

defined by (12) is analytic and univalent inU.

Taking 𝜇
𝑘
= 0 (for all 𝑘 = 1, . . . , 𝑚), 𝑀 = 1, 𝑟 = 1, 𝑠 =

0, 𝑎
1
= 𝑞, and 𝛾

𝑘
= 1/(𝛼 − 1), 𝛿 = 1 +𝑚(𝛼 − 1) inTheorem 7,

we have the following.

Corollary 9. Let 𝑓
𝑘
∈ A for all 𝑘 = 1, . . . , 𝑚 and 𝛼 ∈ C with

|𝛼 − 1| ≤
Re (𝛼)
3𝑚

. (37)

If
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑧
2

𝑓
󸀠

𝑘
(𝑧)

(𝑓
𝑘
(𝑧))
2
− 1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

< 1, (𝑧 ∈ U) (38)

and for all 𝑘 = 1, . . . , 𝑚, then the integral operator 𝐹
𝑚,𝛼

(𝑧)

defined by (13) is analytic and univalent inU.

Theorem 10. Let 𝑓
𝑘
∈ A for all 𝑘 = 1, . . . , 𝑚, 𝛿, 𝛾

𝑘
∈ C, and

𝑀 ≥ 1 with

|𝑐| ≤ 1 −
1

𝛿

𝑚

∑

𝑘=1

[(2 − 𝜇
𝑘
)𝑀 + 1]

󵄨󵄨󵄨󵄨𝛾𝑘
󵄨󵄨󵄨󵄨

, 𝑐 ∈ C. (39)

If for all 𝑘 = 1, . . . , 𝑚, 𝑓
𝑘
∈ B𝑟
𝑠
(𝑎
𝑖
, 𝑏
𝑗
, 𝑞, 𝜇
𝑘
), 0 ≤ 𝜇

𝑘
< 1, and

󵄨󵄨󵄨󵄨󵄨
M (𝑎
𝑖
, 𝑏
𝑗
; 𝑞) 𝑓 (𝑧) 𝑓

𝑘
(𝑧)

󵄨󵄨󵄨󵄨󵄨
≤ 𝑀, (𝑧 ∈ U) , (40)

then the integral operator 𝐼
𝛾𝑘,𝛿

(𝑎
𝑖
, 𝑏
𝑗
; 𝑞) defined by (11) is

analytic and univalent inU.

Proof. From the proof of Theorem 7, we have

𝑧ℎ
󸀠󸀠

(𝑧)

ℎ󸀠 (𝑧)
=

𝑚

∑

𝑘=1

1

𝛾
𝑘

(
𝑧(M (𝑎

𝑖
, 𝑏
𝑗
; 𝑞) 𝑓 (𝑧) 𝑓

𝑘
(𝑧))
󸀠

M (𝑎
𝑖
, 𝑏
𝑗
; 𝑞) 𝑓 (𝑧) 𝑓

𝑘
(𝑧)

− 1) .

(41)

Thus we have
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑐|𝑧|
2𝛿

+ (1 − |𝑧|
2𝛿

)
𝑧ℎ
󸀠󸀠

(𝑧)

𝛿ℎ󸀠 (𝑧)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ |𝑐| +

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(1 − |𝑧|
2𝛿

)
𝑧ℎ
󸀠󸀠

(𝑧)

𝛿ℎ󸀠 (𝑧)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

.

(42)

From this result and using the proof of Theorem 7 we obtain
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑐|𝑧|
2𝛿

+ (1 − |𝑧|
2𝛿

)
𝑧ℎ
󸀠󸀠

(𝑧)

𝛿ℎ󸀠 (𝑧)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ |𝑐| +
1

𝛿

𝑚

∑

𝑘=1

1
󵄨󵄨󵄨󵄨𝛾𝑘
󵄨󵄨󵄨󵄨

[(2 − 𝜇
𝑘
)𝑀 + 1] .

(43)

Since |𝑐| ≤ 1 − (1/𝛿)∑
𝑚

𝑘=1
(1/𝛾
𝑘
)[(2 − 𝜇

𝑘
)𝑀+1], then we have

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑐|𝑧|
2𝛿

+ (1 − |𝑧|
2𝛿

)
𝑧ℎ
󸀠󸀠

(𝑧)

𝛿ℎ󸀠 (𝑧)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 1, (𝑧 ∈ U) . (44)

Applying Lemma (4) for the function ℎ(𝑧) we obtain that
𝐼
𝛾𝑘,𝛿

(𝑎
𝑖
, 𝑏
𝑗
; 𝑞; 𝑧) is univalent.

Taking 𝜇
𝑘
= 0 (for all 𝑘 = 1, . . . , 𝑚), 𝑟 = 1, 𝑠 = 0, 𝑎

1
= 𝑞,

and 𝛾
𝑘
= 1/(𝛼 − 1), 𝛿 = 1 + 𝑚(𝛼 − 1)(𝛼 ∈ R) in Theorem 10,

we have the following.

Corollary 11. Let 𝑓
𝑘
∈ A for all 𝑘 = 1, . . . , 𝑚; 𝑐 ∈ C, 𝛼 ∈ R,

and𝑀 ≥ 1 with

|𝑐| ≤ 1 + (
1 − 𝛼

1 + 𝑚 (𝛼 − 1)
) (2𝑀 + 1)𝑚,

𝛼 ∈ [1,
2𝑀𝑚 + 1

2𝑀𝑚
] .

(45)

If for all 𝑘 = 1, . . . , 𝑚

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑧
2

𝑓
󸀠

𝑘
(𝑧)

𝑓2
𝑘
(𝑧)

− 1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

< 1, (𝑧 ∈ U) ,

󵄨󵄨󵄨󵄨𝑓𝑘 (𝑧)
󵄨󵄨󵄨󵄨 ≤ 𝑀, (𝑧 ∈ U; 𝑘 = 1, . . . , 𝑚) ,

(46)

then the integral operator 𝐹
𝑚,𝛼

(𝑧) defined by (13) is analytic
and univalent inU.
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Letting 𝑚 = 1, 𝑀 = 1, and 𝑓
1
= 𝑓 in Corollary 11, we

have the following.

Corollary 12. Let 𝑓 ∈ A, 𝑐 ∈ C and 𝛼 ∈ R with

|𝑐| ≤
3 − 2𝛼

𝛼
, (𝑐 ̸= − 1) ,

𝛼 ∈ [1,
3

2
] .

(47)

If
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑧
2

𝑓
󸀠

(𝑧)

𝑓2 (𝑧)
− 1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

< 1, (𝑧 ∈ U) ,

󵄨󵄨󵄨󵄨𝑓 (𝑧)
󵄨󵄨󵄨󵄨 ≤ 1, (𝑧 ∈ U) ,

(48)

then the integral operator 𝐺
𝛼
(𝑧) defined by (17) is analytic and

univalent inU.

Remark 13. Many other interesting corollaries and results can
be obtained by specializing the parameters inTheorem 10; for
example, see [13, 20, 21].
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