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Following our paper [Linear Algebra Appl. 433(2010), 699-717], we present a framework and computational tools for the Coxeter
spectral classification of finite posets J = (J, <). One of the main motivations for the study is an application of matrix representations
of posets in representation theory explained by Drozd [Funct. Anal. Appl. 8(1974), 219-225]. We are mainly interested in a Coxeter
spectral classification of posets J such that the symmetric Gram matrix G; := (1/2)[C; + C}r] € M;(Q) is positive semidefinite,
where C; € M;(2Z) is the incidence matrix of J. Following the idea of Drozd mentioned earlier, we associate to J its Coxeter matrix
Cox; = -C; - C;", its Coxeter spectrum specc;, a Coxeter polynomial cox,(t) € Z[t], and a Coxeter number ¢;. In case G; is
positive semi-definite, we also associate to J a reduced Coxeter number < and the defect homomorphism B, : 7] > Z.1In this
case, the Coxeter spectrum specc; is a subset of the unit circle and consists of roots of unity. In case G; is positive semi-definite of
corank one, we relate the Coxeter spectral properties of the posets J with the Coxeter spectral properties of a simply laced Euclidean
diagram DJ € {D,, E, E,, E4} associated with J. Our aim of the Coxeter spectral analysis of such posets J is to answer the question
when the Coxeter type Ctype,; := (specc, ¢;, ¢;) of ] determines its incidence matrix C; (and, hence, the poset J) uniquely, up to
a Z-congruency. In connection with this question, we also discuss the problem studied by Horn and Sergeichuk [Linear Algebra
Appl. 389(2004), 347-353], if for any Z-invertible matrix A € M, (Z), there is B € M, (Z) such that A" = B" - A- Band B> = E is
the identity matrix.

matrix. In particular, M,,,(Z), with m > 1, is the Z-algebra of
all square m by m matrices. The group

In the present paper, we continue our Coxeter spectral study
of finite posets, started in [1], in a close connection with the
Coxeter spectral technique introduced in [2-4] for acyclic
edge-bipartite graphs or signed graphs in the sense of [5]. We
also follow some of the techniques of representation theory,
graph combinatorics, and the spectral graph theory; see [6-
31].

Here, we use the terminology and notation introduced in
(1, 4, 26-28]. We denote by N € Z < Q the set of nonnegative
integers, the ring of integers, and the rational number field.
Given m > 1, we view Z™ as a free abelian group and denote
bye,...,e,, the standard Z-basis of Z™. Given an index set
J, we denote by Z’ the abelian group of all vectors v = (v ) e
with integer coordinates v; € Z,by M;(Z) the Z-algebra of all
square J by J integral matrices, and by E € M;(Z) the identity

Gl(m, 7) ={A eM,,(Z),detA € {-1,1}} cM,, (Z) (1)

is called the (integral) general linear group. We say that two
square rational matrices A, A" € M,,(Q) are Z-equivalent, or
Z-congruent, (and denote A~ A') if there is a matrix B €
Gl(m, Z) such that A’ = B"- A - B. By a poset ] = (J, <) we
mean a finite partially ordered set J with respect to a partial
order relation <. Following [26], a poset ] is called a one-peak
poset if ] has a unique maximal element *. A finite poset ]
is uniquely determined by its incidence matrix C; € M;(Z),
that is, the square J x ] matrix, as follows:

1, forixj,
C, =lc. 2
= s 0, fori#j. @

1]]1',]'6] € Ml (Z), with Gj = {
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Following an idea of Drozd [32] (developed in [27]), we have

introduced in [1, 28] the Tits matrix 6, € M;(Z) of J to be
the integral matrix

G = [Eij]i,je] €M; (2),
1, i=jor j=<iij¢max],
with §; 10,
-1, ifi < jand j € max]J,

i, j incomparable, or i < j and i, j ¢ max ],

(3)

where max J is the set of all maximal elements of J. Usually,
we equip the elements of ] with a numbering; that is, J is
viewed as | = {a;,...,a,,}, m = |J| > 1. Throughout, we
fix such a numbering and make the identifications M,,(Z) =
M, (Z) and Z™ = Z’. The incidence matrix C; € M,,(Z) =
M;(Z) and the Tits matrix 6] € M,,(Z) = M;(Z) depend on
the numbering of a;, ..., a,,. Namely, if ' = {a],...,a’ } is
obtained from J = {a,,...,4q,,} by a permutation ¢ € S, and
G € Gl(m, Z) is the permutation matrix of g, then
Cp=6'C-6, Cp=6"'C; 6. (4)

Note that any poset J admits an upper-triangular number-
ing ] = {ay,...,ay,}; thatis, a; < a; implies i < j. In this
case, C; € M,,(Z) is an upper-triangular matrix with 1 on
the main diagonal, and, hence, detC; = 1, and detC = 1,
for any numbering J' = {a;,...,a’ }.

Fix a numbering a,, . .., a,, of elements of J. Following [1,
28], by the Euler matrix of the poset ] we mean the inverse

C,=C;' €M, (2) =M, (2) (5)
of C 7. Following [3, 4], we call

Ad;:=C;+Cy -2-E,
(6)
P (t) = det(t- E— Ad)) € Z [t]

the symmetric adjacency matrix and the characteristic polyno-
mial of the poset J. The set spec; of all i = |]| real roots of
P;(t) is defined to be the (real) spectrum of the poset J.

We denote by g;,q;,q; 7 = 7" - Z the
incidence quadratic form, the Tits quadratic form, and the
Euler quadratic form of J defined by the formulae

q](x)=x-C]-xtr=Zx§+inxj,

jel i<j

-~ _ -~ tr 2 _

g (x)=x-Cj-x —ij+ inxj Z inxp,
j€J i<jef pemax ] i<p

q; (x) =x-C;-x" =x'C;1 x"
(7)

respectively, where J = J\ maxJ, maxJ is the set of all
maximal elements in J, and C 7 € M;(Z) is the Tits matrix
of J; see (27) and [1, 28] for a definition. The matrices

1 : ~ 1 :
G =[G+, G =[G+ T,

G, = % [6, +E;r] eM; (@),

with rational coefficients, are called the symmetric incidence
Gram matrix, the symmetric Tits-Gram matrix, and the
symmetric Euler-Gram matrix of ]. The matrices

Zd]:=6]+6]r—2-E,
- o ©)
- —tr
Ad;=C;+Cy -2-E=C'+C;" -2 E,

with integer coefficients, are called the Tits adjacency matrix,
and the Euler adjacency matrix of J. The polynomials

P, (t) := det(t - E - Ad;) = det (¢t - E - Ad}),
(10)
Py (t) := det(t- E—Ad,)

are called the characteristic polynomial of ] and the Euler-
characteristic polynomial of ], respectively.

Example 1. (a) If I is the poset
03
I:
0j—> 0, ——>% (11)

then P;(t) = P,(t) = t* — 5t* — 4t; that is, the characteristic
polynomial P;(t) of I coincides with the Euler-characteristic
polynomial ﬁl(t) of I.

(b) If ] is the poset

4
[ ]
J: T (12)
[ ]
3

e ——e——e——e;

of the Dynkin type Eg, then the characteristic polynomial
Py(t) of J does not coincide with the Euler-characteristic

polynomial 1_3[(t) of ], because

Py (t) = t° - 13" — 26> — 15> + 2t + 3,
B (13)
Pty =t"—5t" + 57— 1.

Following [17, 33], we introduce the following definition.

Definition 2. (a) We define a poset ] to be positive (resp.,
nonnegative) if the incidence form gq; : 7 > Zof]
is positive (resp., nonnegative); that is, g;(v) > 0, for any
nonzerov € 7’ (resp., q;(v) 2 0, forany v € 7).
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(b) We define a poset ] to be principal if its incidence form
q: 7’ — Zis principal in the sense of [34, Definition 2.1];
that is, g; is nonnegative, not positive, and the kernel

Ker g; := {v e, q; () = 0} (14)

is an infinite cyclic subgroup of Z’.

Following the main idea of the Coxeter spectral analysis
of acyclic edge-bipartite graphs (signed graphs) presented in
[3, 4], we study finite posets J (with a fixed numbering J =
{a;,...,a,}) by means of the Coxeter spectrum

specc; € C 15)

of ], that is, the set specc; of all m = |]| eigenvalues of the
Coxeter matrix

Cox; := -C;-C; " € M,, (Z) = M; (2) (16)

of ], or equivalently, the set specc; of all m = |J| roots of the
Coxeter polynomial

cox; (t) := det (¢ - E — Cox;) = det (t -E- EOX])
_ 17)
= det(t‘E—CoxI) e Z|[t];

see (31) and [1]. It follows from (4) that the Coxeter spectrum
specc; of ] and the spectrum spec; of ] do not depend on the
numbering of the elements of the poset J.

A motivation. We recall from [26, 27] that the problems
we study in the paper have a bimodule matrix problem
interpretation and have essential applications in reducing
some classes of partitioned matrices with coefficients in a field
K to their canonical forms. For simplicity of its presentation,
we illustrate it in case when g;(x) is the Tits quadratic
form (7) of the poset | = {a,,...,4a,, *, +}, with an upper-
triangular partial order < such that ] has precisely two
maximal elements * := *,,, and + := +,,,. In this case, we
have

G =Yx+ Y xx— Y xx, - Y X, 18)
a;<+

a;€] ai<uj,i,jsn a;<#*

Fixavector v = (v},...,0,,v,,0,) € N*** = N/, and consider
the K-vector space Mat/ of all partitioned matrices of the
form (compare with [27])

Al* AZ* T An* } Uy
A=
Ay Ay e Aps } Vs
19)
Uy Uy Un

with coefficients in K, where A;, = 0ifa; £ *and A;, =0if

a; % +. Consider the group G/ generated by the elementary
transformations of the following three types:

(a) all simultaneous transformations on rows inside each
horizontal block;

(b) all simultaneous transformations on columns inside
each vertical block;

(c) all simultaneous transformations on columns from
the ith column block to jth column block, if the
relation a; < a; holds in the poset J \ {*,+} (with
natural zero-adjustments).

It follows from [27, Section 2] (see also [16, 26, 32])
that the problem of finding canonical forms of matrices in
Mat/, with respect to the elementary transformations from
the set G/, is controlled by the Tits quadratic form gy in
the following sense. For any v € N/, there is only a finite
number G/ -canonical forms of matrices in Mat!, if and only
if the form q; is weakly positive; that is, g;(v) is positive, for
all nonzero vectors v € N/. Moreover, there is one-to-one
correspondence between the irreducible G{}—canonical forms
in Mat/ and the vectors v € N/ satisfying the equation q;(v) =
1. A solution of the problem is given in [27] and [1, Theorem
1.6]. A useful homological interpretation (in terms of the
Euler characteristic) of the Z-bilinear Tits form l;](x, y) =
x-C’] -y (26) and Z-bilinear Euler form E](x,y) = x-é, Y
is given in [1, (1.3)]. The reader is referred to [6-8, 25] for
a detailed study and a solution of other important matrix
problems of high computational complexity that have many
useful applications in representation theory; see [16, 26].

We show in Section 3 that the Coxeter spectral analysis of
principal posets J essentially uses the Coxeter spectra of the
simply laced Euclidean diagrams presented in Figure 1.

The nonsymmetric Gram matrix G, of any graph A =
(Ag,A,) € {D,,n > 4, E,, Eg} of Figure 1, with the set
of vertices Ay = {1,...,n,n + 1} and the set of edges A, is
defined to be the matrix

(1 dyy .o dyy ]
0 1 ...d5 do.,
G, = eM,,, (2), (20)
0 0 L
[0 0 0 1 |

where dé = —|A,(, j)|, if there is an edge “—*; andi < j. We
set dl% =0,if A, (i, j) isempty or j < i.

The Coxeter polynomial cox,(t) := det (t - E + G, - G, ™)
of any diagram A = (A,,A,) € {D,n > 4,EE, Egl
does not depend on the numbering of the vertices in A
and is presented in (48). If n > 1 and A = A, the
Coxeter polynomial cox,(t) := det(t - E + GA . Gv;tr) of A
depends on the numbering of the vertices in A ; and is one of
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x{

(n + 1 vertices,n > 1);

a i1
D,: I | .
n a; 3 4 a, (n + 1 vertices, n > 4);
ay
2
IEg: a a az ag az;
als
E;: a a, as ay ag a ag;
0i4
IEg: a, a 3 as ag a ag ag,

Note that A is the Kronecker graph @———0 and A, is the loop @1,

FIGURE 1: Simply laced Euclidean (extended Dynkin) diagrams.

the polynomials Fél)(t), ng)(t), . ,Fim")(t) presented in [4],
where

FP 6y =™ =7 ¢ 41
=(t-170;(t) v, ;1 (B),

(21)
, if n is even,

, ifn+11is even,

for j=1,...,my,and v, (t) = " + "2+ 2+t + 1
In particular, if n + 1 is even and j = m,, = (n + 1)/2, then
"% = ¢ and
FO™) (1) = FDD () = 1 D2 0 (22)
Following [4, 21], we associate (in Section2) to any
principal poset J a simply laced Euclidean diagram D] €
{A,,n > 1,D,n > 4,EE,,Eg} such that the incidence
symmetric Gram matrix G; := (1/2)[C; + C}r] € M;(Q) is
Z-congruent to the symmetric Gram matrix

Lis e
Gpy =5 [Gpy + Gy € Mpy (@ =M, (@) (23)

of DJ; that is, there is a Z-invertible matrix B such that Gpy =
B"-G;-B.

One of the aims of the Coxeter spectral analysis of
nonnegative finite posets is to study the question when the
Coxeter type

Ctype; := (specc,,c,,é,) (24)
of a poset ] determines the matrix C; (and, hence, the poset
J) uniquely, up to a Z-congruency. Here, we set ¢; = ¢, if |
is positive. In other words, we claim that, for any pair J, I of
nonnegative one-peak posets, Ctype; = Ctype; if and only if
the incidence matrices C; and C; are Z-congruent. We also
study the problem related with the results proved by Horn and
Sergeichuk [35], if for any Z-invertible matrix A € M,(Z),

there exists B € M, (Z) such that A" = B"- A-Band B> = E
is the identity matrix; see [17, 18].

The main results of the present paper on nonnegative
posets ] can be summarised as follows:

(1) canonical equivalences between the incidences, Tits,
and Euler quadratic form (and corresponding Coxeter trans-
formations and Coxeter spectra) of any poset ], established
in Proposition 5;

(2) a characterization of principal posets given in
Section 3. We show that a connected poset ] is principal if
and only if there exists a simply laced Euclidean diagram

DJ € {D,.n > 4,E,E,. Eq} (25)

such that the symmetric Gram matrix G; := (1/2)[C; +C}r] €
M;(Q) of J is Z-congruent to the symmetric Gram matrix
Gpy = (1/2)[GD] + GtDr]] € Mp;(Q) of DJ. Moreover, we
show in Section 3 that, given a connected principal poset J,
the Coxeter spectrum specc; is a subset of a unit circle & L=
{z € G;|z| = 1}, 1 € speccy, and any z € specc; is a root of
unity;

(3) a Coxeter spectral classification result (Corollary 11)
asserting that, given a pair I, ] of one-peak principal posets
with at most 13 elements, the following conditions are
equivalent:

(3a) DI = DJ,

(3b) specc; = specc;,

(3c) ¢; = E] and |I| =[],

(3d) the incidence matrix C; € M;(Z) is Z-congruent to

the incidence matrix C; € M;(Z); that is, there is a
Z-invertible matrix B such that C; = B" - C 7+ B.

In Section 3, we study principal posets by means of the
defect and the reduced Coxeter number, and in Section 4,
we present a framework for the study of nonnegative posets
of corank r > 2 by means of their defect and the reduced
Coxeter number. Examples are given in Sections 3-5.

The reader is referred to [1, 16, 17, 26] for a background of
poset representation theory and elementary introduction to
the poset matrix problems.
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2. A Framework for the Coxeter Spectral
Analysis of Finite Posets

The quadratic wanderings on finite posets ] studied in
[1] are playing a key role in the representation theory of
posets, algebras, and coalgebras, as well as in the algebraic
combinatorics of posets; see [6, 9-14, 16, 24-26, 28, 31, 32,
36-39]. Except for the incidence wandering and the Euler
wanderings defined by the incidence matrix C; € M,,(Z)
M;(Z) (2), with detC; = 1 and a fixed numbering ]
{a>...,a,},as well as the Euler matrix C; := C;l, we study in

[1, 26-28] the Tits wandering defined by the Tits matrix C. 7€
M,,(Z) = M;(Z) of ] (see [28, (3.6)]), that is, the Gram matrix

of the Tits Z-bilinear form I;] :7) x7) — Z given by

E/ (x,y) = inyi+ Z Xi)j

a;€] aj<ai€f

- Z foyfxfry",

a,€max ]a,-<ap

(26)

where max ] is the set of all maximal elements in the poset ]
and J := J \ max J. We call q;(x) = E](x, xX)=x- 6] - x" the
Tits quadratic form of J.

A homological interpretation of the Z-bilinear forms
E](x, y) =x- 6, - y" and l;](x, y) = x- 6] -y is given in
[1, (1.3)]. For a geometric interpretation of the Tits form g; of
a one-peak poset I, the reader is referred to Drozd [32] and
Simson [26].

Note that, given a one-peak poset I of the form I =
{1,2,...,n,* = n+ 1}, with a unique maximal element * =
n+ 1, we have

N Ctr —u
CI = T
011

where C; € M(Z) = M, (Z) is the incidence matrix of the
poset T = I\ {*} = {1,2,...,n}; see [26]. Note that g;(x) =
x-Cp-x".

Now, we show that, in the Coxeter spectral study of
finite posets J, we can use the Coxeter spectral technique
introduced in [2, 4], for the edge-bipartite graphs (signed
graphs [5]), and developed in [2, 34, 40] for the matrix
morsifications of unit quadratic forms.

Following [3, 4, 24], by an edge-bipartite graph (bigraph,
in short), we mean a pair A = (Ay,A,), where A, is a
finite nonempty set of vertices and A is a finite set of edges
equipped with a bipartition A| = A} U A7 such that the set
AL (i, j) = AL(, j) U AT, j) of edges connecting the vertices
i and j does not contain edges lying in A7 (i, j) N A} (i, j), for
each pair of vertices i, j € A, and either A (i, j) = A7(, j)
or A(i,j) = A(i, j). Note that the edge-bipartite graphs
can be viewed as signed multigraphs satisfying a separation
property; see [4, 5].

We visualize A as a graph in a Euclidean space R™,m > 2,
with the vertices numbered by the integers 1,...,#; usually,

1
]EM,,H(Z), withu=|:1, (27)
1

we simply write A, = {1,...,n}. An edge in A7, j) is
visualised as a continuous one »;,—e, and an edge in A’ (i, /)
is visualised as a dotted one «;---s;. A bigraph A is said to be
loop-free if it has no loops.

We view any finite graph A = (A, A;) as an edge-
bipartite one by setting A (i, j) = A,(i, j) and A (G, j) = 0,
for each pair of vertices i, j € A.

To any loop-free edge-bipartite graph A = (A, A,), with
a fixed numbering A = {a,,...,a,,} of its vertices, we asso-
ciate the upper-triangular nonsymmetric Gram matrix GA =
E + [dj] € M,,(Z) of the form (20), with m := n + 1,
where ds = —|A7(, j), if there is an edge si—e+;andi < j,
dé = |AY(i, j)I, if there is an edge ;- - -e;and i < j. We set
dé = 0,if A,(, j) is empty or j < i. Since A is loop-free,
we have df, = --- = d> = 0 and the main diagonal of G,
consists of unities.

Following [4], we call A = (A, A,) positive (resp.,
nonnegative), if the symmetric Gram matrix

Gy = (1/2) (G, + G}) (28)

of A is positive definite (resp., positive semidefinite).
Following [4], we associate to any loop-free edge-bipartite

graph A, with |A j| = n > 2, the Coxeter spectrum specc, € C

defined to be the spectrum of the Coxeter (-Gram) matrix

Cox, = -G, -G," e M, (2), (29)
the Coxeter polynomial
cox, (t) :=det(t-E—Cox,) € Z[t], (30)

the Coxeter transformation ®, : Z" — Z", given by x —
D, (x) := x - Cox,, the Coxeter number c, (the order of @,
in the automorphism group of Z”, i.e., the minimal integer
r > 1 such that ® = E), the Z-bilinear Gram form b, :
7" x 7" — Z of A given by by(x, y) := x - G, - ¥, and the
integral unit quadratic form

qA(x) = bA(x,x) :x? +...+xfl
+ Z dl%xixj =x- GA . x"r' (31)
i<j
Conversely, following Ovsienko [24], to any integral unit
form

q (X) — X? 4+ e+ xi + Zqijxixj’ Wlth qij € Z, (32)

i<j

we associate the loop-free bigraph bigr (g) of g as follows (see
also [34, 41]):
(a) the vertices of bigr (q) are the integers 1,...,n,

(b) two vertices i # j are joined by —g;; continuous edges
of the form «;—s; if g;; is negative, and by g;; dotted
edges of the form «;- - -+, if g;; is positive,

(c) there is no edge between i and j, if g;; = 0, ori = j.



6 International Journal of Mathematics and Mathematical Sciences

To any poset J] = (], <), with a fixed numbering | =
{a,,...,a,} of its points, we associate the following three
edge-bipartite graphs:

ZI := bigr (q,) ,
(33)

A = bigr(q;), A, = bigr (g;),

where bigr (q;), bigr (7)), and bigr (g;) are the bigraphs of
the quadratic forms q;, g, and g, respectively; see (7). More
precisely, the bigraphs (33) are defined as follows.

(i) The set of vertices of each of the bigraphs A ;, A 7> and
o Gy}

(ii) There is an edge a;---a; in A, if a; < a;o0ra; < g
holdsin J.

(iii) There is an edge g;---a; in A}, if ; and a; are not

maximalin J and g; < a; or a; < a; holds in J. There is

an edge a,—a; in A j»ifa; < a;holds and a; is maximal
in J.

(iv) Let 6] = C;l = [¢;] € M,,(2) be the Euler matrix
of J. There is an edge a;- - -a; (resp., ;—a;) in A, if
Cij >0orcj >0 (resp.,c;; <Oorcy <0).

A is the enumerated set J = {ay,..

Wecall A, A j-and Z, the incidence bigraph of A, the Tits
bigraph of A, and the Euler bigraph of A, respectively, (with
respect to the numbering J = {a,,...,a,,}).

The following simple lemma is of importance.

Lemma 3. Assume that ] is a finite poset with a fixed
numbering | = {ay,...,a,}, and let A}, ZP A be the loop-
free edge-bipartite graphs associated with | in (33).

(a) The symmetric Gram matrices G, @,, G, are Z-
congruent to the symmetric Gram matrices Ga,» GZ,>

Gz, respectively. The rank of each of the symmetric
Gram matrices G, , G , Gg, does not depend of the

numbering ] = {ay,...,a,,} and coincides with the
common rank rkGA/ = rk GZ, = rk CrAI.

(b) P;(t) = Py () = P; ().

(c) The poset ] is positive (resp., nonnegative) if and
only if the bigraph A ; (and Z], Z]) is positive (resp.,
nonnegative).

(d) The poset ] is principal if and only if the bigraph
Aj (and E], A)) is principal.

Proof. For the proof of (a), we recall that the Gram matrices
Gy, G], Gp Gy Gﬁ/’ C‘rA] are invariant, up to Z-congruency,
under permutations of the elements {a,,...,a,}. Since |
admits an upper-triangular numbering J' = {aj,...,a,}
and GA], = Gy, then (a) follows. The proof of remaining

statements is left to the reader. O

Following the terminology used in [2-4, 34], we intro-
duce the following definition.

Definition 4. Let ] be a finite poset, with a fixed numbering
J={ay,....a,}

(a) We associate with J the following three Coxeter
matrices:

(al) the (incidence) Coxeter matrix Cox; := —C; -
C; " eM,,(2);

(a2) the Coxeter-Tits matrix Cox] = -C & (’j; o
M, (Z);

(a3) the Coxeter-Euler matrix EOX] = —C;l . C;r €
M, (2).

Moreover, we define the following three Coxeter
transformations:

(a4) the (incidence) Coxeter transformation @, :
7" — 7" of J;

(a5) the Coxeter-Tits transformation ® ;2" -
7" of J;

(a6) the Coxeter-Euler transformation 5, /A
Z"™ of ], by the following formulae:

®; (x) = x - Coxy, (IA)I (x)=x- on,,

. _ (34)
and @y (x) = x - Cox;.
(b) The integral polynomial
cox; (t) = det (¢ - E — Cox;) = det (t -E- on])
(35)

= det (t'E—onl) € Z[t]

is called the Coxeter polynomial of the poset ].

(c) The Coxeter spectrum of ] is the set specc; ¢ C
of all m = |]J| eigenvalues of the matrix Cox;, or,
equivalently, the set specc; of all m = |]| roots of the
Coxeter polynomial cox;(¢).

(d) The order ¢; := ord (®;) of the Coxeter transforma-
tion @ : 7! — 7/ is called the Coxeter number of
the poset J. In other words, ¢; is the minimal integer
r > 1 such that CD; = id. We set ¢; = 00, if(D; +id, for
any r > 1.

(e) Assume that J is nonnegative. The Coxeter type of |
is defined to be the pair Ctype; := (specc;, ;) if J is
positive, and the triple Ctype; := (speccy, ¢;, ¢1) if Jis
not positive, where ¢; is the reduced Coxeter number
of J in the sense of Theorems 10 and 18.

The following proposition shows that equality (35) holds.

Proposition 5. Let ] be a finite poset, with a fixed numbering
J={ay,....a,} letq;, Gy, q; : Z" — Z betheincidence, Tits,
and Euler quadratic form of ], and let ®;,®,,®, : 2" — 7™
be the corresponding Coxeter transformations.
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(a) The following equalities hold (A]] =B-C,-B"and
Cy = B' - C; - B", and the following diagrams are

commutative
" i
hg |~ Z
B | = q qj
Zm = Zm
hy
o (36)
m hB zm B m
~ | _ — | _ o7l =
D)l = Dl = 7

! tr Ci 0 T
where B =C/,B = o 1E , ] = J\ max J, and

hg,hy : Z" — 7™ are the group isomorphisms
defined by the formulae hg(x) = x - B and hp(x) =
x-B, forxez™

(b) a‘oxj = B-on, B, Cox;1 =
B, and ®p, = ;.

(c) The Coxeter number ¢; = ord(®;) of the poset |
coincides with the Coxeter number of J°F. Moreover,
¢ = ord(@,) = ord(@I) and cox;yo (t) = cox;(t).

Cox]op =B Cox] .

(d) Assume that ] is connected and nonnegative.

(d1) If the numbering ] = H{ay,...,a,} is upper-
triangular and A ; is the bigraph (33) associated
to J, then CoxAI = Cox; and coxA](t) = cox;(t).

(d2) The Coxeter type Ctype; := (speccy,cy,<;)
of ] does not depend on the numbering J =
{a,,....a,}

(d3) The Coxeter spectrum specc; is a subset of a unit
circle $* = {z € C;|z| = 1}, and any z € specc;
is a root of unity.

(d4) The poset ] is positive if and only if 1 ¢ specc;.

Proof. The first equality C ; =B-C,-B" is obvious, and the
second one Cf' = B' - C, - B"" follows by a direct calculation.
Hence, (b) follows and, consequently, the diagrams (36) are
commutative; see [1, Proposition 3.13]. Hence, the statement
(¢c) follows from the commutativity of the diagrams (36).

(d1) We recall from Section 1 that, given two numberings
J =1{a,,...,a,} and J = {a{,...,a,'n} of elements in
J,wehave Cy = ! -C;-0, whered € Gl (m, Z) is the
permutation matrix of a permutation o € S,,,. Hence,
(d1) easily follows.

(d2) It is sufficient to note that the incidence matrix C;
is upper triangular. Hence, C; = GA/ and Cox,, =
Cox;.

To prove (d3) and (d4), we recall from [2] and [3,
Proposition 2.6] that the Coxeter spectrum specc, of any
matrix morsification A € Mor, of a nonnegative bigraph
A is a subset of the unit circle &' and any z € specc, is a
root of unity (see also [41, 42]). Moreover, A is positive iff
1 ¢ specc,. Assume that ] is connected and nonnegative.
Then, the bigraph A ; (33) associated to J is nonnegative, A :=
GA] = V(Cy) is a morsification of A ;, and specc; = speccy,
because the incidence matrix C; is quasitriangular and [4,
Proposition 2.2] applies. This completes the proof. O

Corollary 6. For any poset ], equality (35) holds.

Proof. Apply Proposition 5(b). O

The following example shows that the correspondence
J = A defined in (33) does not preserve the Coxeter types
of J and A ;. In particular, it shows that the equality cox;(t) =
cox, () does not hold in general and the Coxeter polynomial
cox, (t) depends on the numbering of J, whereas the Coxeter
polynomial cox;(¢) does not depend on the numbering of J.

Example 7. Consider the poset J such that its Hasse quiver
has the form

3
A 1*)% cox](t):t4+t3 +t+1
4
.3 (37)
A 1oy coxg (=t 4 +t+1
i

By a permutation of the elements in ], we get

2

b
%’,r: 3—1 cox];(t):t4+t3+t+1

N

4

2 (38)
A 3. : coxy () =t*+26% +1
) 1 AI'

"4

Note that the first numbering is upper-triangular, whereas the
second one is not upper-triangular.

3. Principal Posets

We recall that a poset J is principal if its incidence unit form
q; is principal in the sense of [34, Definition 2.1]; that is,

q;: 7’ — Z is nonnegative and not positive, and the kernel
Kerg; := {v € Z];q](v) = 0} is an infinite cyclic subgroup of
7.

We start with the following useful observation.



Lemma 8. Assume that ] is a connected principal poset.

(a) The Coxeter number c; of ] is infinite.

(b) The Coxeter spectrum specc; is a subset of a unit circle
S'={zeCilzl =1} 1 ¢ specc;, and any z € specc;
is a root of unity.

(c) IfKerg; = Z - h, then Kergq; = Z - h and Kerg, =
Z - h, where

()h=h-B,h=h-B h=h-B -B7,

(.. ! tr _ Ci 0 T _
ii) B —C],B— o1 ,and J = ]\ max ]

are as in Proposition 5.

Proof. (a) By Proposition 5 (d2), ¢; is independent of the
numbering of J. Then, without loss of generality, we may
suppose that the numbering of ] is upper-triangular. Then,
by Lemma 3(d) and Proposition 5(dl), the Coxeter number
¢; coincides with the Coxeter number of the principal edge-
bipartite graph A; associated with J in (33). Then, (a) is a
consequence of [3, Proposition 3.12].

The statements (b) and (c) follow by applying
Proposition 5 and the commutative diagram (36). O

Proposition 9. Let | be a connected poset, m = |J| > 2,
and let Gy, G,,E,, € M;(Q) be the symmetric incidence Gram
matrix of J, the symmetric Tits-Gram matrix of ], and the
symmetric Euler-Gram matrix of ], respectively. The following
five conditions are equivalent.

(a) The poset ] is principall.

(b) The Gram matrix G| is positive indefinite of rank m—1.

(c) The Tits quadratic form g; of ] is nonnegative and
Kerg; =7 - ﬁ,for some nonzero vectorh € 77,

(d) The Euler quadratic form q; of ] is nonnegative and
Kerg, =7 - h, for some nonzero vectorh € 7.

() If G is any of the symmetric Gram matrices
G}, G, Gy, e My(Q) of ], then thﬁre exists LLsimply
laced Euclidean diagram D] € {A,s > 3,D,,n >

4,4, E,, Eg} (uniquely determined by ]) such that
the matrix G is Z-congruent to the symmetric Gram
matrix Gp; € Mp;(Q) of the Euclidean diagram DJ;
that is, there is a Z-invertible matrix B € Gl(m, Z)
such that Gpy = B” -G - B.

Proof. (a)e(b) If m = |]| and
Dg;: 7" — 7",

9q; (U)), (39)

(9
v+ Dgj (v) = g(v),...,ax
1

m

is the gradient group homomorphism of g;, then Kerg; =
Ker [Dgq; : Z" — Z™] and the subgroup Ker g; of 2™
is of rank m — rk G; and consists of all integral solutions of
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the system 2 - G; - x' = 0 of linear equations with integral
coeflicients; see [34, Proposition 2.8]. Then, (a)&(b) follows.

The equivalences (a) & (c) < (d) follow from Proposition 5
(a) and the commutativity of the diagram (36).

(e)=(a) Assume that there exist a simply laced Euclidean
diagram DJ € {A.,s > 3,D,,n > 4,E,E, E;} and a Z-
invertible matrix B € Gl(m, Z) such that Gp; = B".G-B.
It follows that the quadratic form g, (x) = x - Gp; - x™ is Z-
congruent to q; and q; = gp; © hp. Then, (a) is a consequence
of [36, Lemma VII.4.2].

(a)=(e) Let ZI be the Euler edge-bipartite graph defined
in (33) of J. By (a) and Lemma 3 (d), Z, is principal and
the inflation algorithm defined in [4, 21] applies to A;.
Consequently, there exists a simply laced Euclidean diagram
D] € {A,s > 3,D,,n > 4,EE,, Eg} and a Z-invertible
matrix B € Gl(n, Z) defining the congruence Z, =, DJ; that
is, the equality Gp,; = B". GZ, -B=B". G- Bholds. Then, in
view of Proposition 5, the implication (a)=(e) follows from
Lemma 3 (d); see also Section 6. O

Theorem 10. Let ] be a finite principal poset, with a number-

ingla,,...,a,} ofelements of J. Fix a nonzero vectorh; € 7 =
Z" such that Kerg; = Z - h;.

(a) There exista minimal integer ¢; > 2 (called the reduced
Coxeter number of ) and a group homomorphism 0y

7] — 7 (called the incidence defect of J) such that

@) (v) = v+9; (v)-hy,
0, (0, (v) =9, (v), YveZ, (40)

0, (h;) =0.

(b) Assume that G >1 and 0; : 7' — Zareasin (a),
and one sets HI =h;- B, ﬁ] =h;- B' - B!, where
B,Be¢ M;(Z) are as in Proposition 5.

(bl) There exists a group homomorphism 5, 7 -
Z (called the Euler defect of ]) such that

5?’ (v) = v+5](v) -H,, YoeZ,
0;0®; =0, (41)

9, ohy =0, 9;(h;)=0.

(b2) There exists a group homomorphism 5, /A
Z (called the Tits defect of J) such that

5?’ (v) = v+5j(v)-lA1], YoeZ,
5} = 5] o hB = a] o h;;ll o hB’ (42)

5=3,-0, 3(R)=0
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(c) The Coxeter number c; of ] is infinite, and the incidence
defect 0y : 7] — Z is nonzero.

(d) Given v € Z/, the order s, = |O(v)| of the ®;-orbit
O(v) is finite if and only if 9;(v) = 0. If s, = |O(v)| is
finite, then s, divides ¢; and there is a unique integer
m,, such that

My h=v+®; (V) + (V) +--- + O (v)
(43)
=v+ @, () + D, (u)+--~+CD;strl (v).

Proof. We recall from the proof of Proposition 9 that
Z-h; =Kerq; =Ker [Dg; : Z" — Z"],  (44)

where m = [J| 2 2and Dg; : Z" — Z", v -
Dgq;(v) = ((0q;/0x,)(v), ..., (9q;/0 x,,)(v)), is the gradient
group homomorphism. It follows that 2" /Z -h; = Im Dq; =
7™ Denote by ¢ : Z™ — Z™ ' the composite quotient
epimorphism. Then, the form g; induces the form g;
Z™' - Z such that q;(¢(x)) = g;(x), forall x € 2™
Moreover, the Coxeter transformation ®; : 7" — 2zZ"
induces a group automorphism ®; : Z"™' — Z"! such
that

q (6} ()’)) =q,(y), vyez"
(45)

6]o¢:¢oq>],

It follows that g; is positive definite and there exists a minimal

integer ¢; > 1 such that @/ is the identity map on Z™ .
Hence, (a) follows, because the equalities 0;(h;) = 0 and
07(®;(v)) = 9;(v), forall v € Z’, are almost obvious; see [34,
Theorem 4.7].

In view of Proposition 5, the statements (b)-(d) are a
consequence of (a) and Lemma 8(a). The reader is referred
to [34, Theorem 4.7, Corollary 4.15] for more details. O

Corollary 11. (a) If ] is a principal connected poset with at
most 13 elements, then its Coxeter spectrum specc; is a subset
of a unit circle S'={zeGClzl =1}, 1 ¢ specc;, and any
z € specc; is an mth root of unity, where m < ¢; and ¢; is the
reduced Coxeter number of J.

(b) If I and ] are one-peak principal posets with at most 13
elements and DI, D] are the associated Euclidean diagrams,
then the following conditions are equivalent:

(bl) DI = DJ,
(b2) specc; = specc),
(b3) & = & and |1 = |J],

(b4) the incidence matrix C; € Mj(Z) is Z-congruent to
the incidence matrix C; € M;(Z); that is, there is a
Z-invertible matrix B such that C; = B - C;-B.

Proof. (a) By Lemma 8, specc; < S'and 1 € specc;.
Assume that D] is the associated Euclidean diagram of , as in

Proposition 9. By a computer search (using the results of [43]
and the inflation algorithm given in [4, 21]), we show that
cox; (t) = coxp; (1), € = <Cpys (46)

for any poset J, with at most 13 elements. Hence, in view of
[4, Proposition 2.17], we have

cox; (t) = coxpy (t) = Fp; (1), (47)
where

Fpy (t) =

R e A S

= (t- 1)’ (), ,(t), for D] =D,
-2 — 2P 441
= (t- 1), ()03 (1), for DJ =E, (48)

Bt - -2 P+ 1

=(t- 1), ()0, ()b, (), for DJ =E,,
T A L |
=(t-1)"0, (), (t) 5 (t), for DJ = Eg,

where v, (t) = " +t" 2 +t" 7 + ...+ P +t+ 1. For DJ €
{D,, D}, we have

Foo(f) = £+t'-20 -2 +t+1,  for DJ =D,
DIt + 2 —t* -2 =+t +1, for DJ = Ds.
(49)

Then, (a) follows by applying [38, Lemma XIII.1.3].
Hence, we also easily conclude that the statements (b1)-(b3)
are equivalent.

To finish the proof of (b), we note that the equality C; =
B¥.C 7+ B in (b4) implies that the matrices Cox; and Cox;
are conjugate, and, hence, we get specc; = specc;; that
is, the implication (b4)=(b2) holds. To prove the inverse
implication (b2)=(b4), we apply the technique used in [18,
Section 6]. On this way, given a principal poset J, with at
most 13 elements and the associated Euclidean diagram D],
we construct (by a computer search) a Z-invertible matrix B;
such that GD] = B}r - C; - By (compare with [17, 18, 33, 43]).
Hence, (b4) follows, and the proof is complete. O

If ] is a principal poset, then the sets
Qq/ = {U € Zm; qI(U) = 1},
Rg, ={veZ™; g;(v) =1}, (50)

R, = {v eZ" q,(v) = 1}
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of roots of the unit forms q;, §;, and g; have the disjoint union
decompositions

- + 0
‘%q] = a, ‘%q] U a, %q, U a,@
3 a4+ 20
Ry, = 0; Rq, U0y Ry U0, R (51)

- =+ =0
%q] = a,%% U a] %q] U a,%/,

where

O R, ={ve R, 9 ) <0},

R, ={veR, s 0, (v) >0},

O Ry = v e Ry 5 0 (v) = 0}

51%,71 ={ve R, ; 0, (v) < 0},

0] g, = {v € Rqs 0 W) > 0}, (52)
5}’3% ={ve Ry o) (v) =0};

3, Ry = {v e Fy5 0, (v) <0},

3%y ={veRy; 3, (v) >0},

3, % ={ve Ty; 3 (v) =0}

Note that the group isomorphism 72/ — 7/, v — o =
-0, restricts to the bijections

- - - = A+
a]@q] ﬁa]@q/, a]%% :)ajg%ql,
L (53)
a] %q} :) a] %é/ .

Example 12. We compute the reduced Coxeter number, the
Coxeter polynomial, and the Euler defect of the following

principal two-peak poset

le——eo—Se7. (54)

Note that J is principal, because
q; (x) =xf+x§+x§+xi+x§+xé
= (2 + x5) x4

+ x? = (% + ;) X3

— x5 + (%) = x5 — X5 — Xg) X5

( 1 1 1 1 >2
=X —ox4— X5 — —Xg+ Xy

2 2 2 2
+<X 1.X 1)6)2
2 23 27
+5( 2 + )2
—| X3 — —X5— —Xg+ —x
12\"? 57° 5767 577

+3<—1x +x—2x—1x +1x>2
4\ 373 74 375 3767 377

3 1 I\ 1 2
+§<x5—§x6—§x7) +Z(x6—x7) .

(55)

It follows that g; is nonnegative and Kerq; = Z - h, where
h = (1,1,1,1,1,1,1); g; is critical in the sense of Ovsienko

[24]; see also [38, 44]. Note that the Euler matrix 6} = C;l of
J and the inverse of the Coxeter-Euler matrix on] = —C]_1 .
C}r have the forms

10-1-10 -1 1

01-10 0 0 -1

001 0 0 0 0
C;=C/'=|000 1 -1 0 0|,

000 0 1 0 -1

000 0 0 1 -1

000 0 0 0 1

) _ (56

-1 0 -1 -1-1-1-1

0 -1-10 0 0 -1

11 1 1 1 1 2
Cox;'=[1 0 1 0 0 1 0

00 0 1 0 0 0

1 01 1 1 0 0

-1 1 0 -10 0 1|

Moreover, we have GE =BY. G] - B, and the matrix A :=

B"-C; - Bis a morsification of the Euclidean diagram Eq (see
[34, 40]), where

2010000
0000001
1000010
B=|-1000100]|,
0001000
1100000
1 000000
o T (57)
1 1 211 10
21 0 0 0 00
2 -1 1 0 -1-10
A=|-1 0 0 1 0 0 0
-1 0 0 -1 1 0
-1 0 0 0 0 1 0
(00 0 0 0 -1 1]
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Hence, in view of [2, Proposition 2.8], we get the following:

(i) the Euclidean type DJ of ] is the diagram E@ and the
Coxeter polynomial of the poset J has the form

cox; (t) = t/—t —t*+1=coxy (£); (58)

that is, cox;(t) is the Coxeter polynomial Ff)(t) (21),
of the Euclidean diagram A = A (with a particular
numbering of vertices), and is the Coxeter polynomial
coxy(t) of the morsification A € M,(Z) of the
diagram E@

(ii) the Coxeter number ¢; is infinite and the reduced
Coxeter number ¢; equals 10,

(iii) the Euler defect has the form 5] (%) =3(x; +x, — x5 —
x7))

(iv) the 5]-orbit of any vector of defect zero in 5(;92 g is of
length 2 or of length 5. It is shown in [1, Remark 4.5]
and [34, Example 5.14] that they lie on one sand-glass
tube 7| , of rank 2 and on six sand-glass tubes of rank
five.

4. Nonnegative Posets of Positive Corank

In the study of nonnegative posets, the following extensions
of [34, Definition 2.2] are of importance.

Definition 13. Assume thatm > 2,7 >0,andq: Z" — Zis
a unit quadratic form.

(a) The form g is defined to be nonnegative of corank r >
0, if q is nonnegative and the @-rank rkoG, of the
rational Gram matrix G, € M,,(Q) equals rkoG, =
m-—r.

(b) The form q is defined to be nonnegative critical
of corank r > 1, if q is nonnegative of corank
r > 1 and each of the nonnegative quadratic forms

qV,...,q"™ : Zz™' — Zis of corank at most
r—1 >0, where
()
q’ (xl,...,xj_l,xj+1,...,xm)
(59)
:q(xl,...,xj_l,O,xj+1,...,xm).

Lemma 14. Assume thatm > 2, v > 0, andq : Z" — Zis
an integral quadratic form.

(a) q is nonnegative of corank r > 0 if and only if q
is nonnegative and the subgroup Ker q of the abelian
group 7™ is free of rank r.

1

(b) q is nonnegative of corank r = 0 if and only if q is
positive, and q is nonnegative of corank one if and only
if q is principal.

(c) q is nonnegative critical of corank r > 1 if and only if
is nonnegative and, for any j € {1,...,m}, the abelian
subgroup Z™ N Kerq of Z™ is free of rank at most
r — 1, where

7™ = 7" jor x 777!
(60)
= {v =(vy,...,0,) €Z™ v; = 0} c7z”

is viewed as a subgroup of 7"

(d) g is nonnegative critical of corank r = 1 if and only if
q is P-critical in the sense of [34, Definition 2.2] and

[44].

Proof. The proof of (a) follows by applying the arguments
used in the proof of the equivalence (a)&(b) in Proposition 9.
The statements (b) and (c) follow from (a).

() First, we note that the quadratic forms ', ...
7™ — Z are nonnegative, if q is nonnegative. Then, (c) is
a consequence of the group isomorphism

, q(rn) .

Ker q(j) — 7™ nKer 9
(61)
()

wr— w’ = (wl,..., j,l,O,ij,...,wm).

Since (d) is a consequence of (c), the proof is complete.  [J

Definition 15. Assume that J is a connected poset and gy, g; :

7’ — Z areits incidence and Tits quadratic forms (6), res-
pectively.

(a) J is defined to be nonnegative of corank r > 0 if its
incidence quadratic form g; : 7] — Z (resp., one
of the forms g; and g;) is nonnegative and the free
abelian subgroup Kerg; of 7’ is of Z-rank r (resp.,
Ker g; = Kerg; = Kerq; is of Z-rank r); see (36).

(b) ] is defined to be nonprincipal critical if the incidence
quadratic form g; : 7] — Z is nonnegative and
not positive, ] is not principal, and the quadratic form
qy : 7" — Z is principal or positive, for every

!
proper subposet ] of J.

(c) A one-peak poset I, with maxI = {x}, is defined to
be nonprincipal Tits-critical if the Tits quadratic form
G :7" = Zis nonnegative and not positive, I is not
principal, and the Tits quadratic form gp : Z' — Z
is principal or positive, for every proper subposet I' of
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I containing the peak *. We call a nonprincipal Tits-
critical poset I exceptional, if the subposet T = I'\ {x}
is nonprincipal Tits-critical; see [33, 34].

(d) A poset J is defined to be P-hypercritical if ] is
not nonnegative and each of its proper subposet is
nonnegative; see [34, Definition 2.2].

Remark 16. Assume that T is a poset and T* = T U {x} is its
one-peak enlargement.

(a) If T* is P-hypercritical, then T is NP-critical in the
sense of [14], but not conversely.

(b) By [43], many of the NP-critical posets T listed in [14,
Table 2] are of corank at most two.

(c) A Coxeter spectral classification of one-peak positive
(resp., almost Tits P-critical) posets is given in [17, 18]
(resp., in [33]).

We frequently use the following important characterisa-
tion.

Theorem 17. Assume that ] is a connected poset and q;,q; :

7] — Z are the incidence and the Tits quadratic forms of
(7), respectively.

(a) If] is nonnegative of corank two, then ] contains at least
6 elements, and |J| = 6 if and only if ] is the garland

(62)

with coxg, (t) = t°+26° —t' 4> —£* + 2t + 1

and Kerqy, = Z -h" & Z - h®, where hV =
(1,1,-1,-1,0,0) and h® = (1,1,0,0,-1,-1). The
garland & is nonprincipal critical.

(b) The following four conditions are equivalent.

(bl) The poset ] is nonprincipal critical.

(b2) |J| = 6 and the form q; : 7] — Zis nonnegative
critical of corank two.

(b3) |J| = 6 and q; : 7 > Zis nonnegative, the
group Ker qy is of Z-rank two, and for any j € ],
the subposet J' := J\ {j} of ] is principal or
positive.

(b4) || 2 6 and q; : 7 > Zis nonnegative, and the
group Ker q; has a Z-basis h,h' such that there is
nojej, withhj :h; =0.
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(c) Let I be a one-peak poset I, with maxI = {x}. The
following three conditions are equivalent.

(c1) I is nonprincipal Tits-critical.

(c2) |I| = 7, the Tits form q; 7' S Zis
nonnegative, the group Ker g is of Z-rank two,
and for any j € I\ {x}, the one-peak subposet
19 .= 1\ {j} of I is principal or positive.

(c3) Il 27 and @, : Z' — Z is nonnegative, and the
group Ker g, has a Z-basis h,h' such that there is
nojelI\{x}, withhj :h; =0.

(d) A nonprincipal Tits-critical one-peak poset I, with

maxI = {«} and |I| = 7, is exceptional if and only
if I is the one-peak garland

o So—So—Sx
s X )/
oS> — o

with coxgs =t +° - -t P41

(63)

and Kerqy. = Z - WY © 7 - h?, where W'V =
(1,1,-1,-1,0,0,0), A = (1,1,0,0,-1,-1,0).

Proof. (a) It is easy to check that any poset J with at most
5 elements is either positive or principal. Moreover, if J is
nonnegative of corank two and |J| = 6, then J is the garland
;. Since

9y, (x) :x%+x§+x§+xi+x§+xé
+ () +x,) (563 + 24 + x5 + Xg) (64)
+ (%3 + x4) (%5 + x4) 5

the Lagrange’s algorithm yields

1 1 1 2
Gy, (x) = | x; + 3% + 7% + 3% + 7%

It follows that gg, : 7° — Zisnonnegative and its kernel is a
rank-two free abelian group of the form shown in (a). Hence,
(a) follows.

(b) We show by a computer search that there is no
nonprincipal critical poset J such that |J| < 5. Then, in view
of Lemma 14, the equivalences (bl)&(b2)&(b3)&(b4) easily
follow.

(c) We show by a computer search that there is no one-
peak nonprincipal Tits-critical poset I such that |I| < 6. Then,
in view of Lemma 14, the equivalences (c1) &(c2)&(c3) easily
follow.
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(d) Note that
qg; (x) =xf+x§+x§+xi+x§+xé+x§
+ (%, +x5) (%5 + x4 + X5 + Xg)
+ (25 + %) (x5 + x5)
— (%) + X3 + X3 + X4 + X5 + Xg) X7,

and the Lagrange’s algorithm yields

_ 1 1 1 1 ?
gy (x) = (x1 Xy DXy DXy DX~ §x7)

It follows that gy, : 7’ — Z is nonnegative and its kernel

is a rank-two free abelian group of the form shown in (d).
Hence, the one-peak garland €7 is nonprincipal Tits-critical
and exceptional. On the other hand, one shows by a computer
search that &5 is the only one-peak poset that is nonprincipal
Tits-critical and exceptional. This finishes the proof. O

Following [34, Section 4], we will study nonnegative
posets ] of corank r > 2 by means of the spectrum specc;,
the reduced Coxeter number ¢;, and the rank r > 2 defects

_ (3 @ 3 =(3Y 3"
o= (@), 5=(5"..9), .

3 _ (3M PO 7/ r
9, =(9y",....,9"): 2/ — z
defined in the following extension of Theorem 10.

Theorem 18. Let | be a finite nonnegative poset of corank r >

2, andletm = |J| > 2. One fixes nonzero vectors h;l), ... ,h;r) €

7’ such that Kerg; = Z-h?l) ®- ‘-Q)Z‘hy) = 7', and one sets
_(h (r)

h; = (h;”,....,h").

(a) There exist a minimal integer &; > 1 (called the reduced
Coxeter number of J) and a group homomorphism

9 = @",....,0") : 7/ — 7' = Kerq (called the
incidence defect of ]) such that
@] (v) = v+0; (v) + by
=v+3" (v)-hY +---+ 9 (v)-h’,  (69)
0 (@; (v)) =9, (v), YveZ,
and 0;(h) = 0, for all h € Ker q;, where one sets
9, (v) = (3" (v),...,0" 1)),

9 (v) «h; =0 (v)-h{” +--- + 9" (v) - b

(70)

13

(b) Assume that ¢; > 1 and a, 27V = 7" areasin (a),
and one sets

—1 —
' =h"-B,. . b =h?.B,
(71)

(1) _ 1.1 / —1 1) _ () / —1
h’=n".B.B",.. A" =n”.B' . B,

where B', B € M, (Z) are as in Proposition 5.

(bl) There exists a group homomorphism 0, =
(S;D,...,é;r)) : 7] — 7' = Kerg, (called the

Euler defect of J) such that
@/ (v) =v+0; (v) + by
=(1) —(1) =(r) —(r)
=v+0, (v-h; +--+0, (v)-h , (72

VveZ],

0;0®; =0;, 0; = 0; ohy, and d;(h) = 0, for all
h € Ker g, where one sets

=t
b = (b)), o
7

_ — —(1) —(1) =(r) —(r)
Oy()eh;:=0; (v)-h; +---+9; (v)-h; .

(b2) There exists a group homomorphism 5, =
(5}1),...,5}”) 7 - 7 = Kerg; (called the
Tits defect of ]) such that

&) (v) = v+0; (v) + Iy

—(1) —~ —~ —~
v+0, ()-h" +--+3" (v)-h, (74

VUEZI,

0y o®; =0;,0; = 0; o hg = 9y o h o hp, and
éj(h) =0, for all h € Ker gj, where one sets

h N KL

h, = (h{",...,h)"),
L R R R (75)
9 (W) by :=3" () b + -+ 3 (v) - b

(c) The Coxeter number c; of ] is finite if and only if the
incidence defect 0y : Z) — Z' is zero. In this case,
E} = CI.

(d) Givenv € Z™ = 7/, the order s, = |O(v)| of the
@;-orbit O(v) is finite if and only if 0;(v) = 0. If s, =
|O(v)| is finite, then s, divides ¢; and there is a unique
integer m,, such that

my-h = v+ ® )+ P )+ + O (v)
(76)
=0+ @ )+ 0+ + 07 (v).
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() The statement (d) holds with ®; and 5] (resp., 5,)
interchanged.

Proof. For simplicity of presentation, we assume that » = 2.
We recall from the proof of Proposition 9 that Z - h;l) e Z-
h;z()i = Kerq; = Ker[Dgq; : Z" — Z"], wherem = |]| > 2
an

Dg;: 7" — 7",

9d; o4y @7
(N e d DQI(U) = (a—xl(v),...,@(v))
is the gradient group homomorphism. It follows that
" z" .
=ImDq, =Z">.  (78)

z-hVez nP Kerg

Denote by ¢ : Z™ — Z™* the composite quotient
epimorphism. Then, the form g; induces the form g;

Z™?* — Z such that q;(p(x)) = g;(x), for all x € Z™.
Moreover, the Coxeter transformation ®; : zZ" — 2zZ"

induces a group automorphism ®; : 2" — Z" such
that

5]°¢:¢°(D/’ q; (6] ()’)) =q;(»)» (79)

for all y € Z™ . It follows that g is positive definite, and
there exists a minimal integer ¢; > 1 such that 5?’ is the
identity map on Z™ 2. Hence, given v € Z™, the element
d)i’ (v) — v lies in the kernel of gj; that is, it has the form

o7 (1) -v=0" (v)-h" +3 (v)-h?,  (80)

where a}” (v), a}” (v) are integers uniquely determined by v.
Since @} is a group homomorphism, then

a}” (v + v') = a}” (v) + a}” (v') ,
(81)
8;2) (v + v') = a}” (v) + 852) (v') ;

that is, we have defined a pair of group homomorphisms
oV, : 7 — Zi hence,9, = 0\",0%) : 7/ — 7*
is a group homomorphism. It is easy to see that d; has the
properties required in (a), and (a) follows.

In view of Proposition 5, the statements (b)-(e) are a
consequence of (a). The reader is referred to [34, Theorem
4.17] for more details and a generalization. O

Corollary 19. Assume that J is a finite nonnegative poset of
corank r > 2.

(a) The Coxeter number c; of ] is infinite if and only if the
defect homomorphism 0; : 7/ — 7" is nonzero, or,
equivalently, if and only if the ®;-orbit O(e;) of some
basis vector e; € 7’ is infinite.

(b) The Coxeter transformation ®; is weakly periodic in

the sense of Sato [42]; that is, ) — id is nilpotent, for
somes > 1.

Proof. The statement (a) follows immediately from
Theorem 18. To prove (b), we check that ((D;] —id)?=0. O

Remark 20. (a) It was shown in [34, Example 5.18] that, for
the one-peak garland I = €} of Theorem 17(d), we have

(i)aj=51=51=0andc1=61=4,

(ii) the set R, of Tits roots of I lies on 22 sand-glass
tubes; six of them are of rank two, and each of the
remaining fourteen tubes is of rank four; see [34, pp.
459-461] for details.

(b) By Lemma 8(a), the Coxeter number ¢, is infinite, for
every principal poset J.

(c) By Theorem 17, there is no nonnegative connected
poset J of corank 2, with |J| < 5. Moreover, a minimal such a

poset is the garland
(82)

(d) We show in [43] that most of the nonnegative
connected posets ] of corank 2, with at most 15 elements, are
of zero defect. We also show there that a smallest nonnegative
connected poset J with nonzero defect has 8 elements and is
one of the following two posets:

7@ ®38

(83)
1
T
? .\T /
It is easy to check that
(i) ¢p = ¢ =2,
(ii) coxi(t) = coxyn(t) = t* — 4t° + 6t — 4t* + 1,
(iii) the coordinates of the Tits defect 5]/ = (5},1) ,5},2)) :
78 — 7% of J', with respect to the Z-basis
ﬁ;}) = (23 0) _13 _1; 1: 1) 23 0) >
(84)

Hﬁ) =(0,2,1,1,-1,-1,0,2)
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of Ker gy, are given by the formulae

~a 1 1 1 1
a}ﬂ (x) =x, - 5x3 - 5x4 + Exs + Exé - X7,

) (85)
—X¢ — Xg,

= 1 1
0P (x) = x; + =3 + —Xx4 — —Xg —
() = X+ S 4 575

2 2
(iv) the coordinates of the Tits defect 5]// = (5(,1,),5;?,)) :
78 — 72 of J", with respect to the Z-basis

H;}I) = (Oa _1) _1) 0) 1: 1)0) 0))
~ (86)
h% =(1,0,0,1,0,0,1,1)
of Ker gjn, are given by
5;’1)()() =X H Xt X3+ Xyt X5+ X = X7 = Xgs

5@

i (%) = 2x; + x, + X3 + 2x4 + X5 + X — 2X; — 2Xg.

(87)

5. An Example

In this section, we illustrate the results of Section 3 by an
example of a principal one-peak poset I of the Euclidean type
DI = D,. We give a description of the set R, of roots of g
and the mesh translation quiver I'(% , ®,) together with the
decomposition (see (51))

r(‘%éfal) = r(éf‘%él’61)ur(5;@q,’6z) 55)
88
UT (0%, D).
Let I be the one-peak garland

I1=9;: \ (89)

2——>4 —>5.

The incidence matrix C;, the Tits matrix C;, and the Coxeter-
Tits matrix Cox; = —C; - C; " of I are the following:

10111
01111
c,=|00101],
00011
00001
C, = , (90)
0 100 1
1 000 1
Cox;=|0 0 01 1
0 0101
-1 -111 -1

The Coxeter polynomial cox;(t), the Tits quadratic form g :

Z°> — Z, and the Coxeter-Tits transformation ®; : Z° —
Z° of I are

cox; (£) ="+t =26 =262+t + 1= F5 (1),
g (x) :x‘él-xtr:xf+x§+x§+xi+x§
+ (% + %) (35 + x4)— (%] + x5 + X3 + x4) X5,
D, (x) = x - Cox; = (%, — X5, X; — X5, X, + Xs,

X3+ X5, X + Xy + X3+ X4 — X5),
(91)

for x = (x1,X,, X3, %,,%5) € Z' = Z°. Note that the ®,-
orbit O(es) of e; consists of two vectors e; and ®(e;) =
(-1,-1, 1, 1,-1) = ®; " (es). Since

- 1 1 1 2
‘II(X)=<X1+5 x3+5x4—§x5>

1 1 1 2 (92)
+<x2+5x3+5x4—5x5

1 2 1
S RET

then the form g, : Z° — Z is positive semidefinite, is not
positive definite,

Kerg, =27 BI, where HI =(1,1,-1,-1,0), (93)
and @, (h;) = h;. This means that g, is principal, but not P-
critical; see [44]. One easily shows that the reduced Coxeter
number of I equals ¢; = 2 and the Tits defect 5, 17> = Zof
I is given by 5,(x) = —(x, + X, + X3 + x,), because @, # id and
6%(0) =v+ 51(1)) . HI, foranyv € Z°. The set & of roots of
qr has the disjoint union decomposition (see (51))

- 3 30
e%ql = aI :%Zil U a;:%ql U ale%ql, (94)

and 5{%5 , 5;(9% , 5?5% are ®@,-invariant subsets of % .
i R qar . qr
Obviously, the (DI;orbit O() of any v € a?%ql is oAf length
two, whereas the @;-orbit O(w) of any vector w € 6;92@ u
5;'92@ is infinite. By (92), a vector v = (v;, vy, U3, U, U5) € Z°
isarootof g, : Z° — Z ifand onlyif (2v; + vy + v, — v5)* +
(2, + vy + v, — v5)> +2(v; — )" + 2v§ = 4. Hence, looking
at all possible decompositions 4 = a> + a; + 2a; + 2a;, with
a,,ay, a3, , a4, € Z, we show that v = (v}, 0y, U3, 0,,05) € Z° is
arootof; : Z° — Zifand onlyifv or ¥ := —v is one of the
vectors listed in Table 1 or in Table 2. R
(1) The ®-orbits in P := 0 Ry, Since 0;(u) < 0, if u €
{e1,e,, €5, €4} or u is the vector p;, = (1,1,0,0, 1), then the
QDI-orbitiof the \iectors e, €y, €3, €4, Py, liein &P = 0y K5,
because & is a @;-invariant subset of # . It is easy to see
that the ®@,-orbits consist of the vectors listed in Table 1.
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TaBLE 1
j Dj(ey) j(e,) ;1 (p1y) j(e;) ;(ey)
j=7 (-3,-2,3,3,1) (-2,-3,3,3,1) (-6,-6,7,7,1) (-3,-3,3,4,1) (-3,-3,4,3,1)
j=6 (-2,-3,3,3,0) (-3,-2,3,3,0) (-5,-5,6,6,1) (-3,-3,4,3,0) (-3,-3,3,4,0)
j=5 (-2,-1,2,2,1) (-1,-2,2,2,1) (-4,-4,5,5,1) (-2,-2,2,3,1) (-2,-2,3,2,1)
j=4 (-1,-2,2,2,0) (-2,-1,2,2,0) (-3,-3,4,4,1) (-2,-2,3,2,0) (-2,-2,2,3,0)
j=3 (-1,0,1,1,1) 0,-1,1,1,1) (-2,-2,3,3,1) (-1,-1,1,2,1) (-1,-1,2,1,1)
j=2 0,-1,1,1,0) (-1,0,1,1,0) (-1,-1,2,2,1) (-1,-1,2,1,0) (-1,-1,1,2,0)
j=1 (0,1,0,1,0) (1,0,0,0,1) 0,0,1,1,1) (0,0,0,1,1) (0,0,1,0,1)
j=0 (1,0,0,0,0) (0,1,0,0,0) (1,1,0,0,1) (0,0,1,0,0) (0,0,0,1,0)
j=-1 (1,2,-1,-1,1) 2,1,-1,-1,1) 2,2,-1,-1,1) (1,1,-1,0,1) (1,1,0,-1,1)
j=-2 2,1,-1,-1,0) 1,2,-1,-1,0) (3,3,-2,-2,1) (1,1,0,-1,0) (1,1,-1,0,0)
j=-3 2,3,-2,-2,1) (3,2,-2,-2,1) (4,4,-3,-3,1) 2,2,-2,-1,1) 2,2,-1,-2,1)
j=-4 3,2,-2,-2,0) (2,3,-2,-2,0) (5,5,-4,-4,1) (2,2,-1,-2,0) 2,2,-2,-1,0)
j=-5 (3,4,-3,-3,1) (4,3,-3,-3,1) (6,6,-5,-5,1) (3,3,-3,-2,1) (3,3,-2,-3,1)
j=-6 (4,3,-3,-3,0) (3,4,-3,-3,0) (7,7,-6,-6,1) (3,3,-2,-3,0) (3,3,-3,-2,0)
j=-7 (4,5,-4,-4,1) (5,4,-4,-4,1) (8,8,-7,-7,1) (4,4,-4,-3,1) (4,4,-3,-4,1)
TABLE 2
j ut? ufrj) wb w(f) o vij)
j=0 -e; =(0,0,0,0,-1) 1,1,-1,-1,1) (1,0,0,-1,0) (0,1,-1,0,0) (0,1,0,-1,0) (1,0,-1,0,0,)
j=1 (2,2,-2,-2,1) (1,1,-1,-1,-1) (1,2,-2,-1,0) 2,1,-1,-2,0) (2,1,-2,-1,0) 1,2,-1,-2,0)
j=2 2,2,-2,-2,-1) (3,3,-3,-3,1) (3,2,-2,-3,0) (2,3,-3,-2,0) (2,3,-2,-3,0) (3,2,-3,-2,0)
j=3 (4,4,-4,-4,1) (3,3,-3,-3,-1) (3,4,-4,-3,0) (4,3,-3,-4,0) (4,3,-4,-3,0) (3,4,-3,-4,0)
j=4 (4,4,-4,-4,-1) (5,5,-5,-5,1) (5,4, -4, -5,0) (4,5,-5,~4,0) (4,5,-4,-5,0) (5,4, -5, ~4,0)
j=5 (6,6,-6,-6,1) (5,5,-5,-5,-1) (5,6,-6,-5,0) (6,5,-5,-6,0) (6,5,-6,-5,0) (5,6,-5,-6,0)
j=6 (6,6,—6,—-6,—1) (7,7,-7,-7,1) (7,6,-6,-7,0) (6,7,-7,-6,0) (6,7,-6,-7,0) (7,6,-7,-6,0)
j=7 (7,7,-7,-7,-1)

(8,8,-8,-8,1)

(7,8,-8,-7,0)

(8,7,-7,-8,0) (8,7,-8,-7,0) (7,8,-7,-8,0)

Throughout this section, we freely use the ®;-mesh
terminology and notation introduced in [2, 34, 40].

(2) 6I—mesh quiver I'(P, EISI) = F(BIT%%, 51). It follows
from our earlier remarks that the set %, := 5;9?@1 of the
negative defect roots of g; splits into the five ®;-orbits O(e, ),
O(e,), O(es), O(e,), O(py,). By applying the mesh toroidal
algorithm defined in [2, 34], one constructs the following
infinite ®;-mesh translation quiver of the negative defect
roots of g;; see Figure 2, where we set @ := —a for any positive
integer a > 1.

(3) @,-mesh quiver (@, ®,) = I“(a;“(%%,ﬁl). Since
the group isomorphism 7' — 7', v — -—uv, carries roots

to roots, ®;-meshes to ®;-meshes, and ®,-orbits to -
orbits, then it defines the bijections 8}%% - 8}%@1 and
5?.%% - 5?9?@1, because 51(—v) = —51(1}). It follows that the
set @ = 5}%% of the positive defect roots of g; splits into
the five 51—0rbits 0(e,), 0(&,), 0(&;), 0(&,), O(P;,), and one
constructs the infinite ®;-mesh translation quiver

r(@,®,)=r(0; %, ;) (95)
of the positive defect roots of g; by interchanging any vector
vin F(@I, 51) = F(O;%q,, 51) with its negative 0 := —v.
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(4) 6I—mesh quiver F(é?%ql, 6,). By the equality
DI(v) = v~ 0;(v) - lAll,Athe @, -orbit of any v € 5?%§Lconsists
of two vectors v and @, (v). Now, we show that the ®;-orbits
in 8?%51 form a ®;-mesh translation quiver r(aﬁ%, D).

Note that ;(es) = (-1,-1,1,1,~1), D} (es) = es, ;(es) =
0, and 0,(®,(e5)) = 0. It follows that the two-element ®@,-
orbits of e; and —e; lie in a?nggh. Moreover, the vectors

uV = (1,1,-1,-1,-1), -,
w” =(1,0,0,-1,0),
w? =&, (w?”) = (0,1,-1,0,0),
U(O) = (0) l’ 0) _l’ 0) > (96)
v =0, (v'”) = (1,0,-1,0,0)
w = (2,1,-1,-2,0),
oV =(1,2,-1,-2,0)

belong to 5?9?%. It is easy to see that we have the following
®Z-mesh quivers of vectors in 5?9?%:

X
:%
£

Sﬁ
=)
B

(97)

e
\

/

<

o

[
c/\
)
2

o 2
|
+7= +c8

c/-\
)
i
=
<
S

/
\,

+

Note that the ®,-orbit of uil) consists of the following two
vectors:

u = 2,-2,-2,-2,1), WV =0,(uV). (98

By (92), a vector v = (v}, v,, 05, 0,,U5) € Z° is a root of g :
Z° — Z of defect zero if and only if

(2v, + U3 + v, - 05)2 +(2vy + U5 + Uy — 05)2

+2(0y —v,)" + 207 = 4, (99)

v +v, +v3+u, =0.

It follows that v or —v belongs to any of the six series of roots
presented in Table 2.

Hence, we conclude that the ®;-orbits in the set 6?92’@
form three ®;-mesh quivers 7, 7, 7, and each of them
has the form of infinite two-surface tube of rank 2:

Ta

|

N

s

1
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iz
Q

8
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X
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|
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(100)
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YRR

where a is one of the vectors

u=u?=(0,0,0,0,-1),

w=w"?=(1,0,0,-1,0), (101)

v=09=(0,1,0,-1,0).

(5) @,-mesh quiver F@?%, UKer §;, @;). We recall that
Kerg, =Z- Bp where HI =(1,1,-1,-1,0). Note that

o, (EI) =h, & (m : HI) =m-hy, for any m ¢ Z.
(102)

Obviously, the vectors lying in Kerg, form the ®-mesh

translation quiver 7, B presented in (108).
Now, we construct from the ®;-orbits in the set a?gzzq] U

Ker §; an infinite ®;-mesh translation quiver. For this pur-
pose, we note that the following six vectors

—es, e5, Dy (—es), By (es), _BI’ lAlI (103)
form two ®;-meshes of width 1. If we complete them by the
three vectors

0,ul”:=(1,1,-1,-1,-1), -uV, (104)
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(P}, ®)) = T(0; Ry,

;)

02232330 _--- 12221-_. 21220 --. 01111 —_. 70110 --- 10001 —_. 01000
...... 7233215 -+ /22230\- - o/ 11211\ -, T1120N- - 700101\~ - 500010\~ - - " 11011
NSO N N N N N N

---55661 —-- 44551 --- 33441 --- 22331 --- 11221 --- 00111 --- 11001 - =~
/oy NN S N T T
———-\22321/——\2232(7——-\11121/——-\11220/---\00011/——-\00100/——-\11101/
------ 23330 ---- 21221 --- 12220 --- To111 --- 01110 --- 01001 -~ 10000
01000 - ——- 21TT1--- 12770 ——. 32221 __. 23220 ___ 43331 --- 34330 ——_ ---
11011\'"'/11100\'"/22121\" /22210\“ 33331\ 7~ 333205 ~ 44341 -
SN N N SN S N N
--- 22111 Y TRV 55441 --- 66551 --- 77661 --—=" -+ -
a N NG N /N /N v
11701 /___x11010/___\22111/__ N221207- - N333317- - 133330~ -\ 44431 - -+
10000 ----12111 ---'21T10 --- 23221 --- 32220 --- 34331 --- 43330 --- -
FIGURE 2
we get the ®;-mesh quiver v =(0,1,0,-1,0),
O _F Yy _
& i o =@, () = (1,0,-1,0,0),
-~ hy
o 7N
65\'6'/(1)_156_5 s wl = (2,1,-1,-2,0),
e By (e e (105) <1>
\B/’ S\B/ 5 vy’ =(1,2,-1,-2,0).
I\ AN Py 1
W (107)
Analogously, we construct the following two ®;-mesh quiv- . 1o a1 that if v € 50.9?@[, then v or —v is one of the vectors
ers — ~
presented in Table 2. It follows that the ®;-orbits in BO% .U
)
7 —wy S Z hI form three infinite ®;-mesh sand-glass tubes 7 7, 9' w
0)/__f\:1;(5)/_ I O T, of rank (2, 1), and each of them has the shape presented
_ + - .
WIN A N2 in (109)
O === @70
WINL 2 TN 2
IR
+
T
_0 (106) by
(Y
A
N G G © LN
0. ---"0 —2b; -----2h
N Vs 1 1
SO w0 ===y © [N 2
bR RS Y
NG i i
N o N
§ oo 0
N 7
I ~ I
poooohy oo (108)
h Voo N
where D T "
PN -
= (2) _2> _2) _2) 1) > : ——-3?11——-:
1 1
D_& 1) [ N
=P (” ) 4h; - 4h;
b -
9 = (1,0,0,-1,0), [ N
: A v :
I I

w? =&, (w?”) = (0,1,-1,0,0),
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[ (109)

1
1
13
=
1
1
1

where a is one of the vectors

u=u=(0,0,0,0-1),
w=w"?=(1,0,0,-1,0), (110)

v=09=(0,1,0,-1,0).

Construct the disjoint union 7, U7, UT, of the tubes 7,
T w» T » and note that each of them contains the tube 7, . By
making the identification of the vectors m - h;, with m € Z,
lying in the corresponding ®;-orbits, we get the quotient ®;-
mesh translation quiver

q)
c
9

F(é?@ql U Ker@,@,) _

that has a shape of a threefold sand-glass tube of rank
(2,2,2,1) in the sense of [40]. It is obtained from the disjoint
union of three copies of the onefold sand-glass tube of rank
(2,1) presented in Figure 3 (see also [34, Figure 5.8]) by
making an obvious identification of their waist vectors.

(6) A Z-congruence of the bigraph A ; with the Euclidean
diagram D,. Since we have cox,(t) = Fg,(t) = £t -2 -
2t* + £+ 1 and specc; = speccp , the Euclidean diagram D, is
the diagram DI associated to I. A technique developed in [2,
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17,18, 34, 40] allows us to construct a Z-invertible matrix B €
Gl (5, Z) such that the following diagrams are commutative:

ar (112)

where b5 and g, are the forms of the Euclidean diagram

2

Dy 1 —— 5¢——3 (113)

[

defined by the formulae by (x, y) = x1 y;+X,y,+X3 y3+x, Y4+
X5Y5 = (X + 2, + X3+ %) Y5 = X‘Gﬁi, oA g5, (%) = b, (x, x),

for x,y € Z°, hy : Z> — Z° is the group automorphism
defined by the formula hg(x) = x - B, and

10-1-10
00-10 -1
B=|00 0 -1 -1],
01-1-10
001 1 1
(114)
1000 -1
0100 -1
G5, =00 10 -1
0001 -1
0000 1

Itis easy to check that the equality Gﬂ; = B-C; - B"holds,and
therefore the diagrams (112) are commutative. Furthermore,
by the same technique, we construct another matrix

10 0 0 -1
00 0 -1 0

B,=|0 0 -10 0 (115)
0 -1 0 0 -1
1 1 0 0 1

such that the equality GE = B, -C, - B" holds.

6. Concluding Remarks

6.1 It follows from Lemma 3 and the results obtained
recently in [3, 4] that for any connected positive (resp.,
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6.2.

6.3.
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FIGURE 3: Sand-glass tube of rank (2, 1).

principal) poset ], there exists a simply laced Dynkin
diagram D] ¢ {A,,,D,,, E E;, Eg} (resp., a simply
laced Euclidean diagram DJ), uniquely determined
by J, such that the symmetric Gram matrices Gy, Gp;
are Z-congruent.

Analogous Coxeter spectral classification of one-peak
posets I, with almost P-critical Tits form g; : Z' —
Z, is obtained in [33] by a reduction to computer
calculations.

Although the Coxeter spectral classification problem
for arbitrary finite posets remains unsolved, we have
a solution for positive one-peak posets. Indeed, it
follows from the results in [17] that for any one-
peak positive poset J, there exists a simply laced
Dynkin diagram D] € {A,,D,, E4, E;, Eg} (uniquely
determined by J) such that specc; speccpy,
the nonsymmetric Gram matrices G], GD] are Z-
congruent, and the symmetric Gram matrices Gy, Gpy;
are Z-congruent.

We can determine the diagram DJ as follows. Fix an
upper-triangular numbering {a,,...,a,,} of elements
of J. Then, the incidence matrix C; € M,,,(Z) is upper-
triangular, and the Euler matrix C; := C;l is also
upper triangular. Then, the Euler edge-bipartite graph
ZI (33) is loop-free, and we have CK/ = 6]. Hence,
the symmetric Gram matrices GZ,’ GI coincide, and,
by Lemma 3, the poset ] is positive (resp., principal) if
and only if the bigraph A ; is positive (resp., principal).
By applying to A; the inflation algorithm constructed

in [4, 21] (see also [45]), we get (in a finite number
of steps) an edge-bipartite graph DA such that the

symmetric Gram matrix GA/ = Gj is Z-congruent

6.4.

with the symmetric Gram matrix Gp, , and the edge-
bipartite graph DA ; has no dotted edges; that is, DA ;
is a (multi) graph. We set D] := DA. It follows
from the results in [3, 4] that DJ is a simply laced
Dynkin diagram, if J is positive, and D] is a simply
laced Euclidean diagram, if ] is principal. Moreover,
the matrix G, is Z-congruent with Gp,. Since the
incidence Gram matrix G; of ] is Z-congruent with
the matrix 6] (by Proposition 5), then the matrices
Gy and Gp; are Z-congruent.

Although we can apply in 6.3 the inflation algorithm
to the incidence edge-bipartite graph A ;, we use in the
construction of DJ the Euler edge-bipartite graph A},
because the number of nonzero entries in the Euler
matrixC, := C;l does not increase the number for the
matrix Cj; see [28, Proposition 2.12]. It follows that
the number of the dotted edges in A; does not increase
the number of the dotted edges in A, and the use in
6.3 the bigraph Z] reduces the time of calculation in

the procedure ZI — DJ.
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