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We raise several elementary questions pertaining to various aspects of means. These questions refer to both known and newly
introduced families of means, and include questions of characterizations of certain families, relations among certain families,
comparability among the members of certain families, and concordance of certain sequences of means.They also include questions
about internality tests for certain mean-looking functions and about certain triangle centers viewed as means of the vertices. The
questions are accessible to people with no background in means, and it is also expected that these people can seriously investigate,
and contribute to the solutions of, these problems. The solutions are expected to require no more than simple tools from analysis,
algebra, functional equations, and geometry.

1. Definitions and Terminology

In all that follows, R denotes the set of real numbers and J

denotes an interval in R.
By a data set (or a list) in a set 𝑆, wemean a finite subset of

𝑆 in which repetition is allowed. Although the order in which
the elements of a data set are written is not significant, we
sometimes find it convenient to represent a data set in 𝑆 of
size 𝑛 by a point in 𝑆𝑛, the cartesian product of 𝑛 copies of 𝑆.

We will call a data set 𝐴 = (𝑎
1
, . . . , 𝑎

𝑛
) in R ordered if

𝑎
1
≤ ⋅ ⋅ ⋅ ≤ 𝑎

𝑛
. Clearly, every data set in R may be assumed

ordered.
A mean of 𝑘 variables (or a 𝑘-dimensional mean) on J is

defined to be any functionM : J𝑘 → J that has the internal-
ity property

min {𝑎
1
, . . . , 𝑎

𝑘
} ≤M (𝑎

1
, . . . , 𝑎

𝑘
) ≤ max {𝑎

1
, . . . , 𝑎

𝑘
} (1)

for all 𝑎
𝑗
inJ. It follows that ameanMmust have the property

M(𝑎, . . . , 𝑎) = 𝑎 for all 𝑎 in J.
Most means that we encounter in the literature, and all

means considered below, are also symmetric in the sense that
M (𝑎
1
, . . . , 𝑎

𝑘
) =M (𝑎

𝜎(1)
, . . . , 𝑎

𝜎(𝑛)
) (2)

for all permutations 𝜎 on {1, . . . , 𝑛}, and 1-homogeneous in the
sense that

M (𝜆𝑎
1
, . . . , 𝜆𝑎

𝑘
) = 𝜆M (𝑎

𝜎(1)
, . . . , 𝑎

𝜎(𝑛)
) (3)

for all permissible 𝜆 ∈ R.

IfM andN are two 𝑘-dimensional means on J, then we
say that M ≤ N if M(𝑎

1
, . . . , 𝑎

𝑘
) ≤ N(𝑎

1
, . . . , 𝑎

𝑘
) for all

𝑎
𝑗
∈ J. We say thatM < N ifM(𝑎

1
, . . . , 𝑎

𝑘
) < N(𝑎

1
, . . . , 𝑎

𝑘
)

for all 𝑎
𝑗
∈ J for which 𝑎

1
, . . . , 𝑎

𝑘
are not all equal. This

exception is natural since M(𝑎, . . . , 𝑎) and N(𝑎, . . . , 𝑎) must
be equal, with each being equal to 𝑎. We say that M and N

are comparable ifM ≤N orN ≤M.
A distance (or a distance function) on a set 𝑆 is defined to

be any function 𝑑 : 𝑆 × 𝑆 → [0,∞) that is symmetric and
positive definite, that is,

𝑑 (𝑎, 𝑏) = 𝑑 (𝑏, 𝑎) , ∀𝑎, 𝑏 ∈ 𝑆,

𝑑 (𝑎, 𝑏) = 0 ⇐⇒ 𝑎 = 𝑏.

(4)

Thus ametric is a distance that satisfies the triangle inequality

𝑑 (𝑎, 𝑏) + 𝑑 (𝑏, 𝑐) ≥ 𝑑 (𝑎, 𝑐) , ∀𝑎, 𝑏, 𝑐 ∈ 𝑆, (5)

a condition that we find too restrictive for our purposes.

2. Examples of Means

The arithmetic, geometric, and harmonic means of two pos-
itive numbers were known to the ancient Greeks; see [1,
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pp. 84–90]. They are usually denoted by A, G, and H,
respectively, and are defined, for 𝑎, 𝑏 > 0, by

A (𝑎, 𝑏) =
𝑎 + 𝑏

2
,

G (𝑎, 𝑏) = √𝑎𝑏,

H (𝑎, 𝑏) =
2

1/𝑎 + 1/𝑏
=
2𝑎𝑏

𝑎 + 𝑏
.

(6)

The celebrated inequalities

H (𝑎, 𝑏) < G (𝑎, 𝑏) < A (𝑎, 𝑏) ∀𝑎, 𝑏 > 0 (7)

were also known to the Greeks and can be depicted in the
well-known figure that is usually attributed to Pappus and
that appears in [2, p. 364]. Several other less well known
means were also known to the ancient Greeks; see [1, pp. 84–
90].

The three means above, and their natural extensions to
any number 𝑛 of variables, are members of a large two-
parameter family ofmeans, knownnowas theGinimeans and
defined by

𝐺
𝑟,𝑠
(𝑥
1
, . . . , 𝑥

𝑛
) = (

𝑁
𝑟
(𝑥
1
, . . . , 𝑥

𝑛
)

𝑁
𝑠
(𝑥
1
, . . . , 𝑥

𝑛
)
)

1/(𝑟−𝑠)

, (8)

where𝑁
𝑗
are the Newton polynomials defined by

𝑁
𝑗
(𝑥
1
, . . . , 𝑥

𝑛
) =

𝑛

∑

𝑘=1

𝑥
𝑗

𝑘
. (9)

Means of the type 𝐺
𝑟,𝑟−1

are known as Lehmer’s means, and
those of the type 𝐺

𝑟,0
are known as Hölder or power means.

Other means that have been studied extensively are the
elementary symmetric polynomial and elementary symmetric
polynomial ratiomeans defined by

(
𝜎
𝑟

𝐶𝑛
𝑟

)

1/𝑟

,
𝜎
𝑟
/𝐶
𝑛

𝑟

𝜎
𝑟−1
/𝐶
𝑟−1
𝑛

, (10)

where 𝜎
𝑟
is the 𝑟th elementary symmetric polynomial in 𝑛

variables, and where

𝐶
𝑛

𝑟
= (

𝑛

𝑟
) . (11)

These are discussed in full detail in the encyclopedic work [3,
Chapters III and V].

It is obvious that the power meansP
𝑟
defined by

P
𝑟
(𝑎
1
, . . . , 𝑎

𝑛
) = 𝐺
𝑟,0
(𝑎
1
, . . . , 𝑎

𝑛
) = (

𝑎
𝑟

1
+ ⋅ ⋅ ⋅ + 𝑎

𝑟

𝑛

𝑛
)

1/𝑟

(12)

that correspond to the values 𝑟 = −1 and 𝑟 = 1 are nothing but
the harmonic and arithmetic meansH andA, respectively. It
is also natural to set

P
0
(𝑎
1
, . . . , 𝑎

𝑛
) = G (𝑎

1
, . . . , 𝑎

𝑛
) = (𝑎

1
. . . 𝑎
𝑛
)
1/𝑛

, (13)

since

lim
𝑟→0

(
𝑎
𝑟

1
+ ⋅ ⋅ ⋅ + 𝑎

𝑟

𝑛

𝑛
)

1/𝑟

= (𝑎
1
. . . 𝑎
𝑛
)
1/𝑛 (14)

for all 𝑎
1
, . . . , 𝑎

𝑛
> 0.

The inequalities (7) can be written as P
−1
< P
0
< P
1
.

These inequalities hold for any number of variables and they
follow from the more general fact that P

𝑟
(𝑎
1
, . . . , 𝑎

𝑛
), for

fixed 𝑎
1
, . . . , 𝑎

𝑛
> 0, is strictly increasing with 𝑟. Power means

are studied thoroughly in [3, Chapter III].

3. Mean-Producing Distances and
Distance Means

It is natural to think of the mean of any list of points in any
set to be the point that is closest to that list. It is also natural
to think of a point as closest to a list of points if the sum of its
distances from these points isminimal.Thismode of thinking
associates means to distances.

If 𝑑 is a distance on 𝑆, and if 𝐴 = (𝑎
1
, . . . , 𝑎

𝑛
) is a data set

in 𝑆, then a 𝑑-mean of 𝐴 is defined to be any element of 𝑆 at
which the function

𝑓 (𝑥) =

𝑛

∑

𝑖=1

𝑑 (𝑥, 𝑎
𝑖
) (15)

attains its minimum. It is conceivable that (15) attains its min-
imum at many points, or nowhere at all. However, we shall be
mainly interested in distances 𝑑 on J for which (15) attains
its minimum at a unique point 𝑥

𝐴
that, furthermore, has the

property

min {𝑎 : 𝑎 ∈ 𝐴} ≤ 𝑥
𝐴
≤ max {𝑎 : 𝑎 ∈ 𝐴} (16)

for every data set 𝐴. Such a distance is called amean-produc-
ing or amean-defining distance, and the point 𝑥

𝐴
is called the

𝑑-mean of𝐴 or themean of 𝐴 arising from the distance 𝑑 and
will be denoted by 𝜇

𝑑
(𝐴). AmeanM is called a distance mean

if it is of the form 𝜇
𝑑
for some distance 𝑑.

Problem Set 1. (1-a) Characterize those distances on J that are
mean-producing.

(1-b) Characterize those pairs of mean producing distan-
ces on J that produce the same mean.

(1-c) Characterize distance means.

4. Examples of Mean-Producing Distances

If 𝑑
0
is the discrete metric defined on R by

𝑑
0
(𝑎, 𝑏) = {

1 if 𝑎 ̸= 𝑏,

0 if 𝑎 = 𝑏,
(17)

then the function 𝑓(𝑥) in (15) is nothing but the number
of elements in the given data set 𝐴 that are different from
𝑥, and therefore every element having maximum frequency
in 𝐴 minimizes (15) and is hence a 𝑑

0
-mean of 𝐴. Thus the

discrete metric gives rise to what is referred to in statistics as
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“the”mode of 𝐴. Due to the nonuniqueness of the mode, the
discrete metric is not a mean-producing distance.

Similarly, the usual metric 𝑑 = 𝑑
1
defined on R by

𝑑
1
(𝑎, 𝑏) = |𝑎 − 𝑏| (18)

is not a mean-producing distance. In fact, it is not very diffi-
cult to see that if 𝐴 = (𝑎

1
, . . . , 𝑎

𝑛
) is an ordered data set of

even size 𝑛 = 2𝑚, then any number in the closed interval
[𝑎
𝑚
, 𝑎
𝑚+1

]minimizes

𝑛

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑥 − 𝑎
𝑗

󵄨󵄨󵄨󵄨󵄨 (19)

and is therefore a 𝑑
1
-mean of 𝐴. Similarly, one can show that

if 𝐴 is of an odd size 𝑛 = 2𝑚 − 1, then 𝑎
𝑚
is the unique 𝑑

1
-

mean of 𝐴. Thus the usual metric on R gives rise to what is
referred to in statistics as “the”median of 𝐴.

On the other hand, the distance 𝑑
2
defined on R by

𝑑
2
(𝑎, 𝑏) = (𝑎 − 𝑏)

2 (20)

is a mean-producing distance, although it is not a metric. In
fact, it follows from simple derivative considerations that the
function

𝑛

∑

𝑗=1

(𝑥 − 𝑎
𝑗
)
2

(21)

attains its minimum at the unique point

𝑥 =
1

𝑛
(

𝑛

∑

𝑗=1

𝑎
𝑗
) . (22)

Thus𝑑
2
is amean-producing distance, and the corresponding

mean is nothing but the arithmetic mean.
It is noteworthy that the three distances that come to

mind most naturally give rise to the three most commonly
used “means” in statistics. In this respect, it is also worth
mentioning that a fourth mean of statistics, the so-called
midrange, will be encountered below as a very natural limiting
distance mean.

The distances 𝑑
1
and 𝑑
2
(and in a sense, 𝑑

0
also) aremem-

bers of the family 𝑑
𝑝
of distances defined by

𝑑
𝑝
(𝑎, 𝑏) = |𝑎 − 𝑏|

𝑝

. (23)

It is not difficult to see that if𝑝 > 1, then𝑑
𝑝
is amean-produc-

ing distance. In fact, if𝐴 = (𝑎
1
, . . . , 𝑎

𝑛
) is a given data set, and

if

𝑓 (𝑥) =

𝑛

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑥 − 𝑎
𝑗

󵄨󵄨󵄨󵄨󵄨

𝑝

, (24)

then

𝑓
󸀠󸀠

(𝑥) = 𝑝 (𝑝 − 1)

𝑛

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑥 − 𝑎
𝑗

󵄨󵄨󵄨󵄨󵄨

𝑝−2

≥ 0, (25)

with equality if and only if 𝑎
1
= ⋅ ⋅ ⋅ = 𝑎

𝑛
= 𝑥. Thus 𝑓

is convex and cannot attain its minimum at more than one
point.That it attains itsminimum follows from the continuity
of 𝑓(𝑥), the compactness of [𝑎

1
, 𝑎
𝑛
], and the obvious fact that

𝑓(𝑥) is increasing on [𝑎
𝑛
,∞) and is decreasing on (−∞, 𝑎

1
].

If we denote the mean that 𝑑
𝑝
defines by 𝜇

𝑝
, then 𝜇

𝑝
(𝐴) is the

unique zero of

𝑛

∑

𝑗=1

sign (𝑥 − 𝑎
𝑗
)
󵄨󵄨󵄨󵄨󵄨
𝑥 − 𝑎
𝑗

󵄨󵄨󵄨󵄨󵄨

𝑝−1

, (26)

where sign(𝑡) is defined to be 1 if 𝑡 is nonnegative and −1
otherwise.

Note that no matter what 𝑝 > 1 is, the two-dimensional
mean 𝜇

𝑝
arising from 𝑑

𝑝
is the arithmetic mean. Thus when

studying 𝜇
𝑝
, we confine our attention to the case when the

number 𝑘 of variables is greater than two. For such 𝑘, it is
impossible in general to compute 𝜇

𝑝
(𝐴) in closed form.

Problem 2. It would be interesting to investigate comparabil-
ity among {𝜇

𝑝
: 𝑝 > 1}.

It is highly likely that no two means 𝜇
𝑝
are comparable.

5. Deviation and Sparseness

If 𝑑 is a mean-producing distance on 𝑆, and if 𝜇
𝑑
is the

associated mean, then it is natural to define the 𝑑-deviation
D
𝑑
(𝐴) of a data set 𝐴 = (𝑎

1
, . . . , 𝑎

𝑛
) by an expression like

D
𝑑
(𝐴) = 𝜇

𝑑
{𝑑 (𝜇
𝑑
(𝐴) , 𝑎

𝑖
) : 1 ≤ 𝑖 ≤ 𝑛} . (27)

Thus if 𝑑 is defined by

𝑑 (𝑥, 𝑦) = (𝑥 − 𝑦)
2

, (28)

then 𝜇
𝑑
is nothing but the arithmetic mean or ordinary

average 𝜇 defined by

𝜇 = 𝜇 (𝑎
1
, . . . , 𝑎

𝑛
) =

𝑎
1
+ ⋅ ⋅ ⋅ + 𝑎

𝑛

𝑛
, (29)

andD
𝑑
is the (squared) standard deviation 𝜎(2) given by

𝜎
(2)

(𝑎
1
, . . . , 𝑎

𝑛
) =

󵄨󵄨󵄨󵄨𝑎1 − 𝜇
󵄨󵄨󵄨󵄨

2

+ ⋅ ⋅ ⋅ +
󵄨󵄨󵄨󵄨𝑎𝑛 − 𝜇

󵄨󵄨󵄨󵄨

2

𝑛
. (30)

In a sense, this provides an answer to those who are puzzled
and mystified by the choice of the exponent 2 (and not any
other exponent) in the standard definition of the standard
deviation given in the right-hand side of (30). In fact, distance
means were devised by the author in an attempt to remove
that mystery. Somehow, we are saying that the ordinary
average 𝜇 and the standard deviation 𝜎

(2) must be taken
or discarded together, being both associated with the same
distance 𝑑 given in (28). Since few people question the
sensibility of the definition of 𝜇 given in (29), accepting the
standard definition of the standard deviation given in (30) as
is becomes amust.
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It is worth mentioning that choosing an exponent other
than 2 in (30) would result in an essentially different notion
of deviations. More precisely, if one defines 𝜎(𝑘) by

𝜎
(𝑘)

(𝑎
1
, . . . , 𝑎

𝑛
) =

󵄨󵄨󵄨󵄨𝑎1 − 𝜇
󵄨󵄨󵄨󵄨

𝑘

+ ⋅ ⋅ ⋅ +
󵄨󵄨󵄨󵄨𝑎𝑛 − 𝜇

󵄨󵄨󵄨󵄨

𝑘

𝑛
, (31)

then 𝜎
(𝑘) and 𝜎(2) would of course be unequal, but more

importantly, theywould not bemonotonewith respect to each
other, in the sense that there would exist data sets 𝐴 and 𝐵
with 𝜎(2)(𝐴) > 𝜎(𝑘)(𝐵) and 𝜎(2)(𝐴) < 𝜎(𝑘)(𝐵). Thus the choice
of the exponent 𝑘 in defining deviations is not as arbitrary as
some may feel. On the other hand, it is (27) and not (31) that
is the natural generalization of (30).This raises the following,
expectedly hard, problem.

Problem 3. Let 𝑑 be the distance defined by 𝑑(𝑥, 𝑦) =

|𝑥 − 𝑦|
𝑘, and let the associated deviation D

𝑑
defined in (27)

be denoted byD
𝑘
. IsD
𝑘
monotonewith respect toD

2
for any

𝑘 ̸= 2, in the sense that

D
𝑘
(𝐴) > D

𝑘
(𝐵) 󳨐⇒ D

2
(𝐴) > D

2
(𝐵)? (32)

We end this section by introducing the notion of sparse-
ness and by observing its relation with deviation. If 𝑑 is a
mean-producing distance on J, and if 𝜇

𝑑
is the associated

mean, then the 𝑑-sparseness S
𝑑
(𝐴) of a data set 𝐴 =

(𝑎
1
, . . . , 𝑎

𝑛
) in J can be defined by

S
𝑑
(𝐴) = 𝜇

𝑑
{𝑑 (𝑎
𝑖
, 𝑎
𝑗
) : 1 ≤ 𝑖 < 𝑗 ≤ 𝑛} . (33)

It is interesting that when 𝑑 is defined by (28), the standard
deviation coincides, up to a constant multiple, with the
sparsenss. One wonders whether this pleasant property char-
acterizes this distance 𝑑.

Problem Set 4. (4-a) Characterize thosemean-producing dis-
tances whose associated mean is the arithmetic mean.

(4-b) If 𝑑 is as defined in (28), and if 𝑑󸀠 is another mean-
producing distance whose associated mean is the arithmetic
mean, does it follow that D

𝑑
󸀠 and D

𝑑
are monotone with

respect to each other?
(4-c) Characterize those mean-producing distances 𝛿 for

which the deviation D
𝛿
(𝐴) is determined by the sparseness

S
𝛿
(𝐴) for every data set 𝐴, and vice versa.

6. Best Approximation Means

It is quite transparent that the discussion in the previous sec-
tion regarding the distance mean 𝜇

𝑝
, 𝑝 > 1, can be written

in terms of best approximation in ℓ𝑛
𝑝
, the vector space R𝑛

endowed with the 𝑝-norm ‖ ⋅ ⋅ ⋅ ‖
𝑝
defined by

󵄩󵄩󵄩󵄩(𝑎1, . . . , 𝑎𝑛)
󵄩󵄩󵄩󵄩𝑝 = (

𝑛

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑎
𝑗

󵄨󵄨󵄨󵄨󵄨

𝑝

)

1/𝑝

. (34)

If we denote by Δ = Δ
𝑛
the line in R𝑛 consisting of the

points (𝑥
1
, . . . , 𝑥

𝑛
) with 𝑥

1
= ⋅ ⋅ ⋅ = 𝑥

𝑛
, then to say that

𝑎 = 𝜇
𝑝
(𝑎
1
, . . . , 𝑎

𝑛
) is just another way of saying that the point

(𝑎, . . . , 𝑎) is a best approximant in Δ
𝑛
of the point (𝑎

1
, . . . , 𝑎

𝑛
)

with respect to the 𝑝-norm given in (34). Here, a point 𝑠
𝑡
in

a subset 𝑆 of a metric (or distance) space (𝑇,𝐷) is said to be a
best approximant in 𝑆 of 𝑡 ∈ 𝑇 if 𝐷(𝑡, 𝑠

𝑡
) = min{𝐷(𝑡, 𝑠) : 𝑠 ∈

𝑆}. Also, a subset 𝑆 of (𝑇,𝐷) is said to be Chebyshev if every 𝑡
in 𝑇 has exactly one best approximant in 𝑆; see [4, p. 21].

The discussion above motivates the following definition.

Definition 1. Let J be an interval inR and let𝐷 be a distance
on J𝑛. If the diagonal Δ(J𝑛) of J𝑛 defined by

Δ (J
𝑛

) = {(𝑎
1
, . . . , 𝑎

𝑛
) ∈ J
𝑛

: 𝑎
1
= ⋅ ⋅ ⋅ = 𝑎

𝑛
} (35)

is Chebyshev (with respect to 𝐷), then the 𝑛-dimensional
mean 𝑀

𝐷
on J defined by declaring 𝑀

𝐷
(𝑎
1
, . . . , 𝑎

𝑛
) = 𝑎 if

and only if (𝑎, . . . , 𝑎) is the best approximant of (𝑎
1
, . . . , 𝑎

𝑛
) in

Δ(J𝑛) is called the Chebyshev or best approximation 𝐷-mean
or the best approximation mean arising from𝐷.

In particular, if one denotes by𝑀
𝑝
the best approximation

𝑛-dimensional mean on R arising from (the distance on R𝑛

induced by) the norm ‖ ⋅ ⋅ ⋅ ‖
𝑝
, then the discussion above says

that𝑀
𝑝
exists for all 𝑝 > 1 and that it is equal to 𝜇

𝑝
defined

in Section 4.
In view of this, one may also define 𝑀

∞
to be the best

approximationmean arising from the∞-norm of ℓ𝑛
∞
, that is,

the norm ‖ ⋅ ⋅ ⋅ ‖
∞

defined on R𝑛 by

󵄩󵄩󵄩󵄩(𝑎1, . . . , 𝑎𝑛)
󵄩󵄩󵄩󵄩∞ = max {󵄨󵄨󵄨󵄨󵄨𝑎𝑗

󵄨󵄨󵄨󵄨󵄨
: 1 ≤ 𝑗 ≤ 𝑛} . (36)

It is not very difficult to see that 𝜇
∞
(𝐴) is nothing but what

is referred to in statistics as the mid-range of 𝐴. Thus if 𝐴 =

(𝑎
1
, . . . , 𝑎

𝑛
) is an ordered data set, then

𝑀
∞
(𝐴) =

𝑎
1
+ 𝑎
𝑛

2
. (37)

In view of the fact that 𝑑
∞
cannot be defined by anything like

(23) and 𝜇
∞
is thus meaningless, natural question arises as to

whether

𝑀
∞
(𝐴) = lim

𝑝→∞

𝜇
𝑝
(𝐴) (or equivalently = lim

𝑝→∞

𝑀
𝑝
(𝐴))

(38)

for every 𝐴. An affirmative answer is established in [5,
Theorem 1]. In that theorem, it is also established that

lim
𝑝→𝑞

𝜇
𝑝
(𝐴) (or equivalently lim

𝑝 → 𝑞

𝑀
𝑝
(𝐴)) = 𝑀

𝑞
(𝐴)

(39)

for all 𝑞 and all 𝐴. All of this can be expressed by saying that
𝜇
𝑝
is continuous in 𝑝 for 𝑝 ∈ (1,∞] for all 𝐴.
We remark that there is no obvious reason why (38)

should immediately follow from the well known fact that

lim
𝑝→∞

‖𝐴‖
𝑝
= ‖𝐴‖

∞ (40)

for all points 𝐴 in R𝑛.
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Problem Set 5. Suppose that 𝛿
𝑝
is a sequence of distances on

a set 𝑆 that converges to a distance 𝛿
∞

(in the sense that
lim
𝑝→∞

𝛿
𝑝
(𝑎, 𝑏) = 𝛿

∞
(𝑎, 𝑏) for all 𝑎, 𝑏 in 𝑆). Let 𝑇 ⊆ 𝑆.

(5-a) If 𝑇 is Chebyshev with respect to each 𝛿
𝑝
, is it

necessarily true that 𝑇 is Chebyshev with respect to
𝛿
∞
?

(5-b) If 𝑇 is Chebyshev with respect to each 𝛿
𝑝
and with

respect to 𝛿
∞
and if 𝑥

𝑝
is the best approximant in𝑇 of

𝑥 with respect to 𝛿
𝑝
and 𝑥

∞
is the best approximant

in 𝑇 of 𝑥 with respect to 𝛿
∞
, does it follow that 𝑥

𝑝

converges to 𝑥
∞
?

We end this section by remarking that if 𝑀 = 𝑀
𝑑
is

the 𝑛-dimensional best approximation mean arising from a
distance 𝑑 on J𝑛, then 𝑑 is significant only up to its values of
the type 𝑑(𝑢, V), where 𝑢 ∈ Δ(J𝑛) and V ∉ Δ(J𝑛). Other values
of 𝑑 are not significant. This, together with the fact that

every mean is a best approximation mean arising

from a metric,
(41)

makes the study of best approximationmeans less interesting.
Fact (41) was proved in an unduly complicated manner in
[6], and in a trivial way based on a few-line set-theoretic
argument in [7].

Problem 6. Given a mean M on J, a metric 𝐷 on J is
constructed in [6] so that M is the best approximation
mean arising from 𝐷. Since the construction is extremely
complicated in comparison with the construction in [7], it is
desirable to examine the construction of𝐷 in [6] and seewhat
other nice properties (such as continuity with respect to the
usualmetric)𝐷 has.This would restoremerit to the construc-
tion in [6] and to the proofs therein and provide raison d’être
for the so-called generalizedmeans introduced there.

7. Towards a Unique Median

As mentioned earlier, the distance 𝑑
1
on R defined by (23)

does not give rise to a (distance) mean. Equivalently, the 1-
norm ‖ ⋅ ⋅ ⋅ ‖

1
on R𝑛 defined by (34) does not give rise to a

(best approximation) mean. These give rise, instead, to the
many-valued function known as the median. Thus, following
the statistician’s mode of thinking, one may set

𝜇
1
(𝐴) = 𝑀

1
(𝐴) = the median interval of 𝐴

= the set of all medians of 𝐴.
(42)

From a mathematician’s point of view, however, this leaves a
lot to be desired, to say the least.The feasibility and naturality
of defining 𝜇

∞
as the limit of 𝜇

𝑝
as 𝑝 approaches ∞ gives

us a clue on how the median 𝜇
1
may be defined. It is a

pleasant fact, proved in [5,Theorem 4], that the limit of𝜇
𝑝
(𝐴)

(equivalently of 𝑀
𝑝
(𝐴)) as 𝑝 decreases to 1 exists for every

𝐴 ∈ R𝑛 and equals one of the medians described in (42).This
limit can certainly be used as the definition of themedian.

Problem Set 7. Let 𝜇
𝑝
be as defined in Section 4, and let 𝜇∗ be

the limit of 𝜇
𝑝
as 𝑝 decreases to 1.

(7-a) Explore how the value of 𝜇∗(𝐴) compares with the
common practice of taking the median of 𝐴 to be the
midpoint of the median interval (defined in (42) for
various values of 𝐴.

(7-b) Is 𝜇∗ continuous on R𝑛? If not, what are its points of
discontinuity?

(7-c) Given 𝐴 ∈ R𝑛, is the convergence of 𝜇
𝑝
(𝐴) (as 𝑝

decreases to 1) to 𝜇∗(𝐴)monotone?

The convergence of 𝜇
𝑝
(𝐴) (as 𝑝 decreases to 1) to 𝜇∗(𝐴)

is described in [5, Theorem 4], where it is proved that the
convergence is ultimately monotone. It is also proved in
[5, Theorem 5] that when 𝑛 = 3, then the convergence is
monotone.

It is of course legitimate to question the usefulness of
defining the median to be 𝜇∗, but that can be left to statis-
ticians and workers in relevant disciplines to decide. It is also
legitimate to question the path that we have taken the limit
along. In other words, it is conceivable that there exists, in
addition to𝑑

𝑝
, a sequence𝑑󸀠

𝑝
of distances onR that converges

to 𝑑
1
such that the limit 𝜇∗∗, as 𝑝 decreases to 1, of their

associated distancemeans 𝜇󸀠
𝑝
is not the same as the limit 𝜇∗ of

𝜇
𝑝
. In this case, 𝜇∗∗ would have as valid a claim as 𝜇∗ to being

themedian. However, the naturality of 𝑑
𝑝
may help accepting

𝜇
∗ as a most legitimate median.

Problem Set 8. Suppose that 𝛿
𝑝
and 𝛿󸀠
𝑝
, 𝑝 ∈ N, are sequences

of distances on a set 𝑆 that converge to the distances 𝛿
∞

and 𝛿󸀠
∞
, respectively (in the sense that lim

𝑝→∞
𝛿
𝑝
(𝑎, 𝑏) =

𝛿
∞
(𝑎, 𝑏) for all 𝑎, 𝑏 in 𝑆, etc.).

(8-a) If each 𝛿
𝑝
, 𝑝 ∈ N, is mean producing with corre-

sponding mean 𝑚
𝑝
, does it follow that 𝛿

∞
is mean

producing? If so, and if the mean produced by 𝛿
∞

is
𝑚
∞
, is it necessarily true that𝑚

𝑝
converges to𝑚

∞
?

(8-b) If 𝛿
𝑝
and 𝛿󸀠

𝑝
, 𝑝 ∈ N ∪ {∞}, are mean producing

distances with corresponding means𝑚
𝑝
and𝑚󸀠

𝑝
, and

if 𝑚
𝑝
= 𝑚
󸀠

𝑝
for all 𝑝 ∈ N, does it follow that 𝑚

∞
=

𝑚
󸀠

∞
?

8. Examples of Distance Means

It is clear that the arithmetic mean is the distance mean
arising from the the distance 𝑑

2
given by 𝑑

2
(𝑎, 𝑏) = (𝑎 − 𝑏)

2.
Similarly, the geometric mean on the set of positive numbers
is the distance mean arising from the distance 𝑑G given by

𝑑G (𝑎, 𝑏) = (ln 𝑎 − ln 𝑏)2. (43)

In fact, this should not be amazing since the arithmetic mean
A on R and the geometric mean G on (0,∞) are equivalent
in the sense that there is a bijection 𝑔 : (0,∞) → R, namely
𝑔(𝑥) = ln𝑥, for which G(𝑎, 𝑏) = 𝑔

−1A(𝑔(𝑎), 𝑔(𝑏)) for all
𝑎, 𝑏. Similarly, the harmonic and arithmetic means on (0,∞)

are equivalent via the bijection ℎ(𝑥) = 1/𝑥, and therefore
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the harmonic mean is the distance mean arising from the
distance 𝑑H given by

𝑑H (𝑎, 𝑏) = (
1

𝑎
−
1

𝑏
)

2

. (44)

The analogous question pertaining to the logarithmic mean
L defined by

L (𝑎, 𝑏) =
𝑎 − 𝑏

ln 𝑎 − ln 𝑏
, 𝑎, 𝑏 > 0, (45)

remains open.

Problem 9. Decide whether the mean L (defined in (45)) is
a distance mean.

9. Quasi-Arithmetic Means

A 𝑘-dimensional mean M on J is called a quasi-arithmetic
mean if there is a continuous strictly monotone function 𝑔
from J to an interval I in R such that

M (𝑎
1
, . . . , 𝑎

𝑘
) = 𝑔
−1

(A (𝑔 (𝑎
1
) , . . . , 𝑔 (𝑎

𝑘
))) (46)

for all 𝑎
𝑗
in J. We have seen that the geometric and harmonic

means are quasi-arithmetic and concluded that they are
distance means. To see that L is not quasi-arithmetic, we
observe that the (two-dimensional) arithmetic mean, and
hence any quasi-arithmetic mean M, satisfies the elegant
functional equation

M (M (M (𝑎, 𝑏) , 𝑏) ,M (M (𝑎, 𝑏) , 𝑎)) =M (𝑎, 𝑏) (47)

for all 𝑎, 𝑏 > 0. However, a quick experimentation with a
random pair (𝑎, 𝑏) shows that (47) is not satisfied byL.

This shows that L is not quasi-arithmetic, but does not
tell us whether L is a distance mean, and hence does not
answer Problem 9.

The functional equation (47) is a weaker form of the
functional equation

M (M (𝑎, 𝑏) ,M (𝑐, 𝑑)) =M (M (𝑎, 𝑐) ,M (𝑏, 𝑑)) (48)

for all 𝑎, 𝑏, 𝑐, 𝑑 > 0. This condition, together with the
assumption that M is strictly increasing in each variable,
characterizes two-dimensional quasi-arithmetic means; see
[8, Theorem 1, pp. 287–291]. A thorough discussion of quasi-
arithmetic means can be found in [3, 8].

Problem 10. Decidewhether ameanM that satisfies the func-
tional equation (47) (together with any necessary smoothness
conditions) is necessarily a quasi-arithmetic mean.

10. Deviation Means

Deviation means were introduced in [9] and were further
investigated in [10]. They are defined as follows.

A real-valued function 𝐸 = 𝐸(𝑥, 𝑡) on R2 is called a
deviation if 𝐸(𝑥, 𝑥) = 0 for all 𝑥 and if 𝐸(𝑥, 𝑡) is a strictly
decreasing continuous function of 𝑡 for every 𝑥. If 𝐸 is a

deviation, and if 𝑥
1
, . . . , 𝑥

𝑛
are given, then the 𝐸-deviation

mean of 𝑥
1
, . . . , 𝑥

𝑛
is defined to be the unique zero of

𝐸 (𝑥
1
, 𝑡) + ⋅ ⋅ ⋅ + 𝐸 (𝑥

𝑛
, 𝑡) . (49)

It is direct to see that (49) has a unique zero and that this zero
does indeed define a mean.

Problem 11. Characterize deviation means and explore their
exact relationship with distance means.

If 𝐸 is a deviation, then (following [11]), one may define
𝑑
𝐸
by

𝑑
𝐸
(𝑥, 𝑡) = ∫

𝑡

𝑥

𝐸 (𝑥, 𝑠) 𝑑𝑠. (50)

Then 𝑑
𝐸
(𝑥, 𝑡) ≥ 0 and 𝑑

𝐸
(𝑥, 𝑡) is a strictly convex function in 𝑡

for every 𝑥.The𝐸-deviationmean of 𝑥
1
, . . . , 𝑥

𝑛
is nothing but

the unique value of 𝑡 at which 𝑑
𝐸
(𝑥
1
, 𝑡)+ ⋅ ⋅ ⋅+𝑑

𝐸
(𝑥
𝑛
, 𝑡) attains

its minimum. Thus if 𝑑
𝐸
happens to be symmetric, then 𝑑

𝐸

would be a distance and the 𝐸-deviation mean would be the
distance mean arising from the distance 𝑑

𝐸
.

11. Other Ways of Generating New Means

If 𝑓 and 𝑔 are differentiable on an open interval J, and if 𝑎 <
𝑏 are points in J such that 𝑓(𝑏) ̸= 𝑓(𝑎), then there exists, by
Cauchy’s mean value theorem, a point 𝑐 in (𝑎, 𝑏), such that

𝑓
󸀠

(𝑐)

𝑔󸀠 (𝑐)
=
𝑔 (𝑏) − 𝑔 (𝑎)

𝑓 (𝑏) − 𝑓 (𝑎)
. (51)

If 𝑓 and 𝑔 are such that 𝑐 is unique for every 𝑎, 𝑏, then we call
𝑐 the Cauchymean of 𝑎 and 𝑏 corresponding to the functions
𝑓 and 𝑔, and we denote it byC

𝑓,𝑔
(𝑎, 𝑏).

Another natural way of defining means is to take a
continuous function 𝐹 that is strictly monotone on J, and to
define the mean of 𝑎, 𝑏 ∈ J, 𝑎 ̸= 𝑏, to be the unique point 𝑐 in
(𝑎, 𝑏) such that

𝐹 (𝑐) =
1

𝑏 − 𝑎
∫

𝑏

𝑎

𝐹 (𝑥) 𝑑𝑥. (52)

We call 𝑐 themean value (mean) of 𝑎 and 𝑏 corresponding to
𝐹, and we denote it byV(𝑎, 𝑏).

Clearly, if 𝐻 is an antiderivative of 𝐹, then (53) can be
written as

𝐻
󸀠

(𝑐) =
𝐻 (𝑏) − 𝐻 (𝑎)

𝑏 − 𝑎
. (53)

ThusV
𝐹
(𝑎, 𝑏) = C

𝐻,𝐸
(𝑎, 𝑏), where 𝐸 is the identity function.

For more on the these two families of means, the reader
is referred to [12] and [13], and to the references therein.

In contrast to the attitude of thinking of the mean as the
number that minimizes a certain function, there is what one
may call the Chisini attitude that we now describe. A function
𝑓 on J𝑛 may be called a Chisini function if and only if the
equation

𝑓 (𝑎
1
, . . . , 𝑎

𝑛
) = 𝑓 (𝑥, . . . , 𝑥) (54)



International Journal of Mathematics and Mathematical Sciences 7

has a unique solution 𝑥 = 𝑎 ∈ [𝑎
1
, 𝑎
𝑛
] for every ordered data

set (𝑎
1
, . . . , 𝑎

𝑛
) in J. This unique solution is called the Chisini

mean associated to 𝑓. In Chisini’s own words, 𝑥 is said to be
the mean of 𝑛 numbers 𝑥

1
, . . . , 𝑥

𝑛
with respect to a problem,

in which a function of them 𝑓(𝑥
1
, . . . , 𝑥

𝑛
) is of interest, if the

function assumes the same value when all the 𝑥
ℎ
are replaced

by themean value 𝑥:𝑓(𝑥
1
, . . . , 𝑥

𝑛
) = 𝑓(𝑥, . . . , 𝑥); see [14, page

256] and [1]. Examples of such Chisini means that arise in
geometric configurations can be found in [15].

Problem 12. Investigate how the families of distance, devia-
tion, Cauchy, mean value, and Chisini means are related.

12. Internality Tests

According to the definition of a mean, all that is required of a
functionM : J𝑛 → J to be amean is to satisfy the internality
property

min {𝑎
1
, . . . , 𝑎

𝑘
} ≤M (𝑎

1
, . . . , 𝑎

𝑘
) ≤ max {𝑎

1
, . . . , 𝑎

𝑘
} (55)

for all 𝑎
𝑗
∈ J. However, one may ask whether it is sufficient,

for certain types of functions M, to verify (55) for a finite,
preferably small, number of well-chosen 𝑛-tuples. This ques-
tion is inspired by certain elegant theorems in the theory of
copositive forms that we summarize below.

12.1. Copositivity Tests for Quadratic and Cubic Forms. By a
(real) form in 𝑛 variables, we shall always mean a homoge-
neous polynomial 𝐹 = 𝐹(𝑥

1
, . . . , 𝑥

𝑛
) in the indeterminates

𝑥
1
, . . . , 𝑥

𝑛
having coefficients in R. When the degree 𝑡 of a

form 𝐹 is to be emphasized, we call 𝐹 a 𝑡-form. Forms of
degrees 1, 2, 3, 4, and 5 are referred to as linear, quadratic,
cubic, quartic, and quintic forms, respectively.

The set of all 𝑡-forms in 𝑛 variables is a vector space (over
R) that we shall denote by F (𝑛)

𝑡
. It may turn out to be an

interesting exercise to prove that the set

{

{

{

𝑑

∏

𝑗=1

𝑁
𝑒
𝑗

𝑗
:

𝑑

∑

𝑗=1

𝑗𝑒
𝑗
= 𝑑

}

}

}

(56)

is a basis, where𝑁
𝑗
is the Newton polynomial defined by

𝑁
𝑗
=

𝑛

∑

𝑘=1

𝑥
𝑗

𝑘
. (57)

The statement above is quite easy to prove in the special case
𝑑 ≤ 3, and this is the case we are interested in in this paper.
We also discard the trivial case 𝑛 = 1 and assume always that
𝑛 ≥ 2.

Linear forms can be written as 𝑎𝑁
1
, and they are not

worth much investigation. Quadratic forms can be written as

𝑄 = 𝑎𝑁
2

1
+ 𝑏𝑁
2
= 𝑎(

𝑛

∑

𝑘=1

𝑥
𝑘
)

2

+ 𝑏(

𝑛

∑

𝑘=1

𝑥
2

𝑘
) . (58)

Cubic and quartic forms can be written, respectively, as

𝑎𝑁
3

1
+ 𝑏𝑁
1
𝑁
2
+ 𝑐𝑁
3
,

𝑎𝑁
4

1
+ 𝑏𝑁
2

1
𝑁
2
+ 𝑐𝑁
1
𝑁
3
+ 𝑑𝑁
2

2
.

(59)

A form 𝐹 = 𝐹(𝑥
1
, . . . , 𝑥

𝑛
) is said to be copositive if

𝑓(𝑎
1
, . . . , 𝑎

𝑛
) ≥ 0 for all 𝑥

𝑖
≥ 0. Copositive forms arise

in the theory of inequalities and are studied in [14] (and in
references therein). One of the interesting questions that one
may ask about forms pertains to algorithms for deciding
whether a given form is copositive. This problem, in full
generality, is still open. However, for quadratic and cubic
forms, we have the following satisfactory answers.

Theorem 2. Let 𝐹 = 𝐹(𝑥
1
, . . . , 𝑥

𝑛
) be a real symmetric form

in any number 𝑛 ≥ 2 of variables. Let v(𝑛)
𝑚
, 1 ≤ 𝑚 ≤ 𝑛, be the

𝑛-tuple whose first 𝑚 coordinates are 1’s and whose remaining
coordinates are 0󸀠s.

(i) If𝐹 is quadratic, then𝐹 is copositive if and only if𝐹 ≥ 0
at the two test 𝑛-tuples

k
(𝑛)

1
= (1, 0, . . . , 0) , k

(𝑛)

𝑛
= (1, 1, . . . , 1) . (60)

(ii) If 𝐹 is cubic, then 𝐹 is copositive if and only if 𝐹 ≥ 0 at
the 𝑛 test 𝑛-tuples

k
(𝑛)

𝑚
= (

𝑚

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
1, . . . , 1,

𝑛−𝑚

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
0, . . . , 0) , 1 ≤ 𝑚 ≤ 𝑛. (61)

Part (i) is a restatement of Theorem 1(a) in [16]. Theo-
rem 1(b) there is related and can be restated as

𝐹 (𝑎
1
, . . . , 𝑎

𝑛
) ≥ 0, ∀𝑎

𝑖
∈ R,

⇐⇒ 𝐹 ≥ 0 at the 3 𝑛-tuples

(1, 0, . . . , 0) , (1, 1, . . . , 1) , (1, −1, 0, . . . , 0) .

(62)

Part (ii) was proved in [17] for 𝑛 ≤ 3 and in [18] for all 𝑛. Two
very short and elementary inductive proofs are given in [19].

It is worth mentioning that the 𝑛 test 𝑛-tuples in (61)
do not suffice for establishing the copositivity of a quartic
form even when 𝑛 = 3. An example illustrating this that
uses methods from [20] can be found in [19]. However, an
algorithm for deciding whether a symmetric quartic form 𝑓

in 𝑛 variables is copositive that consists in testing𝑓 at 𝑛-tuples
of the type

(

𝑚

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝑎, . . . , 𝑎,

𝑟

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
1, . . . , 1,

𝑛−𝑚−𝑟

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
0, . . . , 0) ,

0 ≤ 𝑚, 𝑟 ≤ 𝑛, 𝑚 + 𝑟 ≤ 𝑛

(63)

is established in [21]. It is also proved there that if 𝑛 = 3, then
the same algorithm works for quintics but does not work for
forms of higher degrees.

12.2. Internality Tests for Means Arising from Symmetric
Forms. Let F (𝑛)

𝑡
be the vector space of all real 𝑡-forms in 𝑛

variables, and let𝑁
𝑗
, 1 ≤ 𝑗 ≤ 𝑑, be the Newton polynomials

defined in (57). Means of the type

M = (
𝐹
𝑟

𝐹
𝑠

)

1/(𝑟−𝑠)

, (64)
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where 𝐹
𝑗
is a symmetric form of degree 𝑗, are clearly sym-

metric and 1-homogeneous, and they abound in the literature.
These include the family of Gini means 𝐺

𝑟,𝑠
defined in (8)

(and hence the Lehmer andHöldermeans).They also include
the elementary symmetric polynomial and elementary sym-
metric polynomial ratio means defined earlier in (10).

In view of Theorem 2 of the previous section, it is tempt-
ing to ask whether the internality of a functionM of the type
described in (64) can be established by testing it at a finite
set of test 𝑛-tuples. Positive answers for some special cases of
(64), and for other related types, are given in the following
theorem.

Theorem3. Let 𝐿,𝑄, and𝐶 be real symmetric forms of degrees
1, 2, and 3, respectively, in any number 𝑛 ≥ 2 of nonnegative
variables. Let v(𝑛)

𝑘
, 1 ≤ 𝑘 ≤ 𝑛, be as defined in Theorem 2.

(i) √𝑄 is internal if and only if it is internal at the two test
𝑛-tuples: k(𝑛)

𝑛
= (1, 1, . . . , 1) and V(𝑛)

𝑛−1
= (1, 1, . . . , 1, 0).

(ii) 𝑄/𝐿 is internal if and only if it is internal at the two test
𝑛-tuples: k(𝑛)

𝑛
= (1, 1, . . . , 1) and V(𝑛)

1
= (1, 0, . . . , 0).

(iii) If 𝑛 ≤ 4, then 3√𝐶 is internal if and only if it is internal
at the 𝑛 test 𝑛-tuples

k
(𝑛)

𝑚
= (

𝑚

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
1, . . . , 1,

𝑛−𝑚

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
0, . . . , 0) , 1 ≤ 𝑚 ≤ 𝑛. (65)

Parts (i) and (ii) are restatements of Theorems 3 and 5 in
[16]. Part (iii) is proved in [22] in a manner that leaves a lot to
be desired. Besides being rather clumsy, the proof works for
𝑛 ≤ 4 only. The problem for 𝑛 ≥ 5, together with other open
problems, is listed in the next problem set.

Problem Set 13. Let𝐿,𝑄, and𝐶 be real symmetric cubic forms
of degrees 1, 2, and 3, respectively, in 𝑛non-negative variables.

(13-a) Prove or disprove that 3√𝐶 is internal if and only if it
is internal at the 𝑛 test 𝑛-tuples

k
(𝑛)

𝑚
= (

𝑚

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
1, . . . , 1,

𝑛−𝑚

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
0, . . . , 0) , 1 ≤ 𝑚 ≤ 𝑛. (66)

(13-b) Find, or prove the nonexistence of, a finite set 𝑇 of
test 𝑛-tuples such that the internality of 𝐶/𝑄 at the 𝑛-
tuples in 𝑇 gurantees its internality at all nonnegative
𝑛-tuples.

(13-c) Find, or prove the nonexistence of, a finite set 𝑇 of
test 𝑛-tuples such that the internality of 𝐿 ± √𝑄 at
the 𝑛-tuples in 𝑇 guarantees its internality at all non-
negative 𝑛-tuples.

Problem (13-b) is open even for 𝑛 = 2. In Section 6 of [15],
it is shown that the two pairs (1, 0) and (1, 1) do not suffice as
test pairs.

As for Problem (13-c), we refer the reader to [23],
where means of the type 𝐿 ± √𝑄 were considered. It is
proved in Theorem 2 there that when 𝑄 has the special form

𝑎∏
1≤𝑖<𝑗≤𝑛

(𝑥
𝑖
− 𝑥
𝑗
)
2, then 𝐿 ± √𝑄 is internal if and only

if it is internal at the two test 𝑛-tuples k(𝑛)
𝑛

= (1, 1, . . . , 1)

and k
(𝑛)

𝑛−1
= (1, 1, . . . , 1, 0). In the general case, sufficient and

necessary conditions for internality of 𝐿 ± √𝑄, in terms of
the coefficients of 𝐿 and 𝑄, are found in [23, Theorem 3].
However, it is not obvious whether these conditions can be
rewritten in terms of test 𝑛-tuples in the manner done in
Theorem 3.

13. Extension of Means, Concordance
of Means

The two-dimensional arithmetic meanA(2) defined by

A
(2)

(𝑎
1
, 𝑎
2
) =

𝑎
1
+ 𝑎
2

2
(67)

can be extended to any dimension 𝑘 by setting

A
(𝑘)

(𝑎
1
, . . . , 𝑎

𝑘
) =

𝑎
1
+ ⋅ ⋅ ⋅ + 𝑎

𝑘

𝑘
. (68)

Although very few people would disagree on this, nobody
can possibly give a mathematically sound justification of the
feeling that the definition in (68) is the only (or even the best)
definition that makes the sequence𝐴(𝑘) ofmeans harmonious
or concordant. This does not seem to be an acceptable defini-
tion of the notion of concordance.

In a private communication several years ago, Professor
Zsolt Páles told me that Kolmogorov suggested calling a
sequenceM(𝑘) of means on J, whereM(𝑘) is 𝑘-dimensional,
concordant if for every𝑚 and 𝑛 and every 𝑎

𝑖
, 𝑏
𝑖
in J, we have

M
(𝑛+𝑚)

(𝑎
1
, . . . , 𝑎

𝑛
, 𝑏
1
, . . . , 𝑏

𝑚
)

=M
(2)

(M
(𝑛)

(𝑎
1
, . . . , 𝑎

𝑛
) ,M
𝑚
(𝑏
1
, . . . , 𝑏

𝑚
)) .

(69)

He also told me that such a definition is too restrictive and
seems to confirm concordance in the case of the quasi-arith-
metic means only.

Problem 14. Suggest a definition of concordance, and test it
on sequences ofmeans that you feel concordant. In particular,
test it on the existing generalizations, to higher dimensions,
of the logarithmic meanL defined in (45).

14. Distance Functions in Topology

Distance functions, which are not necessarily metrics, have
appeared early in the literature on topology. Given a distance
function 𝑑 on any set𝑋, one may define the open ball 𝐵(𝑎, 𝑟)
in the usual manner, and then one may declare a subset 𝐴 ⊆

𝑋 open if it contains, for every 𝑎 ∈ 𝐴, an open ball𝐵(𝑎, 𝑟)with
𝑟 > 0. If 𝑑 has the triangle inequality, then one can proceed in
the usual manner to create a topology. However, for a general
distance 𝑑, this need not be the case, and distances that give
rise to a coherent topology in the usual manner are called
semimetrics and they are investigated and characterized in
[24–29]. Clearly, these are the distances𝑑 for which the family
{𝐵(𝑎, 𝑟) : 𝑟 > 0} of open balls centered at 𝑎 ∈ 𝑆 forms a local
base at 𝑎 for every 𝑎 in𝑋.
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15. Centers and Center-Producing Distances

A distance 𝑑 may be defined on any set 𝑆 whatsoever. In
particular, if 𝑑 is a distance on R2 and if the function 𝑓(𝑋)
defined by

𝑓 (𝑋) =

𝑛

∑

𝑖=1

𝑑 (𝑋,𝐴
𝑖
) (70)

attains its minimum at a unique point 𝑋
0
that lies in the

convex hull of {𝐴
1
, . . . , 𝐴

𝑛
} for every choice of 𝐴

1
, . . . , 𝐴

𝑛
in

R2, then 𝑑 will be called a center-producing distance.
The Euclidean metric 𝑑

1
on R2 produces the Fermat-

Torricelli center. This is defined to be the point whose distan-
ces from the given points have a minimal sum. Its square,
𝑑
2
, which is just a distance but not a metric, produces the

centroid. This is the center of mass of equal masses placed at
the given points. It would be interesting to explore the centers
defined by 𝑑

𝑝
for other values of 𝑝.

Problem 15. Let 𝑑
𝑝
, 𝑝 > 1, be the distance defined on R2 by

𝑑
𝑝
(𝐴, 𝐵) = ‖𝐴 − 𝐵‖

𝑝, and let 𝐴𝐵𝐶 be a triangle. Let 𝑍
𝑝
=

𝑍
𝑝
(𝐴, 𝐵, 𝐶) be the point that minimizes

𝑑
𝑝
(𝑍, 𝐴) + 𝑑

𝑝
(𝑍, 𝐵) + 𝑑

𝑝
(𝑍, 𝐶)

= ‖𝑍 − 𝐴‖
𝑝

+ ‖𝑍 − 𝐵‖
𝑝

+ ‖𝑍 − 𝐶‖
𝑝

.

(71)

Investigate how 𝑍
𝑝
, 𝑝 ≥ 1, are related to the known triangle

centers, and study the curve traced by them.

The papers [30, 31] may turn out to be relevant to this
problem.
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[11] Z. Páles, Private Communications.

[12] M. E. Mays, “Functions which parametrize means,”The Ameri-
can Mathematical Monthly, vol. 90, no. 10, pp. 677–683, 1983.

[13] B. Ebanks, “Looking for a few good means,” American Mathe-
matical Monthly, vol. 119, no. 8, pp. 658–669, 2012.

[14] M. Hall, and M. Newman, “Copositive and completely positive
quadratic forms,” Proceedings of the Cambridge Philosophical
Society, vol. 59, pp. 329–339, 1963.

[15] R. Abu-Saris and M. Hajja, “Geometric means of two positive
numbers,” Mathematical Inequalities & Applications, vol. 9, no.
3, pp. 391–406, 2006.

[16] M. Hajja, “Radical and rational means of degree two,” Mathe-
matical Inequalities & Applications, vol. 6, no. 4, pp. 581–593,
2003.

[17] J. F. Rigby, “A method of obtaining related triangle inequalities,
with applications,” Univerzitet u Beogradu. Publikacije Elek-
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