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We study the Dirichlet problem for the equation Δ𝑢 − 𝑘
2
𝑢 = 0 in the exterior of nonclosed Lipschitz surfaces in 𝑅

3. The Dirichlet
problem for the Laplace equation is a particular case of our problem. Theorems on existence and uniqueness of a weak solution of
the problem are proved. The integral representation for a solution is obtained in the form of single-layer potential. The density in
the potential is defined as a solution of the operator (integral) equation, which is uniquely solvable.

Weak solvability of elliptic boundary value problems with
Dirichlet, Neumann, and mixed Dirichlet-Neumann bound-
ary conditions in Lipschitz domains has been studied in [1–6].
It is pointed out in the book [1, page 91] that domains with
cracks (cuts) are not Lipschitz domains. So, solvability of
elliptic boundary value problems in domains with cracks
does not follow from general results on solvability of ellip-
tic boundary value problems in Lipschitz domains. In the
present paper, the weak solvability of the Dirichlet problem
for the equation Δ𝑢 − 𝑘

2
𝑢 = 0 in the exterior of nonclosed

Lipschitz surfaces (cracks) in 𝑅
3 is studied. The Dirichlet

problem for the Laplace equation is a particular case of our
problem. Theorems on existence and uniqueness of a weak
solution are proved, integral representation for a solution in
the form of single-layer potential is obtained, the problem is
reduced to the uniquely solvable operator equation.

The weak solvability of the Neumann problem for the
Laplace equation in the exterior of several smooth nonclosed
surfaces in 𝑅

3 has been studied in [7]. Boundary value
problems for the Helmholtz equation in the exterior of
smooth nonclosed screens have been studied in [8, 9].

In Cartesian coordinates 𝑥 = (𝑥
1
, 𝑥
2
, 𝑥
3
) in 𝑅

3 consider
bounded Lipschitz domain 𝐺 with the boundary 𝑆, that is, 𝑆
is closed Lipschitz surface. Let 𝛾 be nonempty subset of the
boundary 𝑆 and 𝛾 ̸= 𝑆. Assume that 𝛾 is a nonclosed Lipschitz
surface with Lipschitz boundary 𝜕𝛾 in the space 𝑅

3, and
assume that 𝛾 includes its limiting points, or, alternatively,

assume that 𝛾 is a union of finite number of such nonclosed
surfaces, which do not have common points, in particular,
they do not have common boundary points. In the latter case,
𝛾 is not a connected set. Notice that 𝛾 is a closed set. Let us
introduce Sobolev spaces on 𝛾 as follows:

𝐻
1/2

(𝛾) = {𝑣 : 𝑣 = 𝑉|
𝛾\𝜕𝛾

, 𝑉 ∈ 𝐻
1/2

(𝑆)} ,

�̃�
−1/2

(𝛾) = {𝑣 : 𝑣 ∈ 𝐻
−1/2

(𝑆) , supp 𝑣 ⊂ 𝛾} .

(1)

Spaces 𝐻
1/2

(𝛾) and �̃�
−1/2

(𝛾) are dual spaces in the sense of
scalar product in 𝐿

2
(𝛾) [1, pages 91-92]. Furthermore, one can

set ‖𝑣‖
�̃�
−1/2

(𝛾)
= ‖𝑣‖
𝐻
−1/2

(𝑆)
for 𝑣 ∈ �̃�

−1/2
(𝛾) (see [1, page 79]),

and ‖𝑣‖
𝐻
1/2

(𝛾)
= min

𝑉|
𝛾\𝜕𝛾

=𝑣,𝑉∈𝐻
1/2

(𝑆)
‖𝑉‖
𝐻
1/2

(𝑆)
(see [1, pages 77,

99]). Spaces𝐻1/2(𝑆) and𝐻
−1/2

(𝑆) on closed Lipschitz surface
𝑆 and their norms are defined, for example, in [1, page 98].

Let Δ be Laplacian in 𝑅
3, then for the equation

Δ𝑢 (𝑥) − 𝑘
2
𝑢 (𝑥) = 0, 𝑘 = const ≥ 0, (2)

consider the single-layer potential

𝑈 [ℎ] (𝑥) =
1

4𝜋
∫

𝑆

ℎ (𝑦)
exp (−𝑘

𝑥 − 𝑦
)

𝑥 − 𝑦


𝑑𝑠
𝑦
, (3)

with the density ℎ ∈ 𝐻
−1/2

(𝑆). The function (3) is defined for
𝑥 ∈ 𝑅

3
\ 𝑆. According to Theorem 6.11 in [1], the potential
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𝑈[ℎ](𝑥) belongs to 𝐻
1

loc(𝑅
3
) and does not have jump on

𝑆, when approaching 𝑆 from 𝐺 and from 𝑅
3
\ 𝐺 it has the

same trace 𝑈[ℎ]|
𝑆

∈ 𝐻
1/2

(𝑆). The overline means closure.
Moreover, potential 𝑈[ℎ](𝑥) belongs to 𝐶

∞
(𝑅
3
\ 𝑆) (see [1,

page 202]), obeys (2) in 𝑅
3

\ 𝑆, and satisfies conditions at
infinity

𝑢 = 𝑂 (|𝑥|
−1

) , |∇𝑢| = 𝑜 (|𝑥|
−1

) , |𝑥| → ∞. (4)

Lemma 1. Let ℎ ∈ 𝐻
−1/2

(𝑆), 𝑘 > 0, and 𝑆 is a boundary
of an open bounded Lipschitz domain 𝐺. Then there is such a
constant 𝑐 > 0, that inequality

(𝑈 [ℎ] |𝑆, ℎ)𝐿
2

(𝑆)
≥ 𝑐‖ℎ‖

2

𝐻
−1/2

(𝑆)
(5)

holds.

Proof. Note that normal vector exists on the Lipschitz surface
almost everywhere [1, page 96]. Let 𝐵

𝑟
be an open ball of the

radius 𝑟with the center in the origin and𝐺 ⊂ 𝐵
𝑟
. By 𝑛 denote

outward (with respect to 𝐺) unit normal vector on 𝑆 where
exists and outward unit normal vector on 𝜕𝐵

𝑟
. Writing down

Green’s formula [1, page 118] for the function𝑈[ℎ](𝑥) in𝐵
𝑟
\𝐺

and in 𝐺, we obtain

‖∇𝑈[ℎ]‖
2

𝐿
2

(𝐵
𝑟

\𝐺)
+ 𝑘
2
‖𝑈[ℎ]‖

2

𝐿
2

(𝐵
𝑟

\𝐺)

= −(𝑈[ℎ]|
𝑆
, (

𝜕𝑈[ℎ]

𝜕𝑛
)

+

)

𝐿
2

(𝑆)

+ (𝑈[ℎ],
𝜕𝑈[ℎ]

𝜕𝑛
)

𝐿
2

(𝜕𝐵
𝑟

)

,

(6)

‖∇𝑈[ℎ]‖
2

𝐿
2

(𝐺)
+ 𝑘
2
‖𝑈[ℎ]‖

2

𝐿
2

(𝐺)
= (𝑈[ℎ]|

𝑆
, (

𝜕𝑈[ℎ]

𝜕𝑛
)

−

)

𝐿
2

(𝑆)

.

(7)

By (𝜕𝑈[ℎ]/𝜕𝑛)
− and (𝜕𝑈[ℎ]/𝜕𝑛)

+, we mean traces of normal
derivative of the function 𝑈[ℎ](𝑥) on 𝑆 when approaching
𝑆 from 𝐺 and from 𝑅

3
\ 𝐺, respectively. According to The-

orem 6.11 in [1], traces (𝜕𝑈[ℎ]/𝜕𝑛)
+ and (𝜕𝑈[ℎ]/𝜕𝑛)

− of the
normal derivative of the function 𝑈[ℎ](𝑥) exist and belong
to𝐻
−1/2

(𝑆). Remind that under conditions of the lemma, the
function 𝑈[ℎ](𝑥) has the same trace 𝑈[ℎ]|

𝑆
∈ 𝐻
1/2

(𝑆) when
approaching 𝑆 both from 𝐺 and from 𝑅

3
\ 𝐺. Since spaces

𝐻
−1/2

(𝑆) and𝐻
1/2

(𝑆) are dual, the scalar products are defined
in 𝐿
2
(𝑆) in right sides of (6) and (7). Tending 𝑟 → ∞ in (6)

and taking into account that the potential 𝑈[ℎ](𝑥) satisfies
conditions (4), we obtain

‖∇𝑈[ℎ]‖
2

𝐿
2

(𝑅
3

\𝐺)
+ 𝑘
2
‖𝑈[ℎ]‖

2

𝐿
2

(𝑅
3

\𝐺)

= −(𝑈[ℎ]|
𝑆
, (

𝜕𝑈[ℎ]

𝜕𝑛
)

+

)

𝐿
2

(𝑆)

.

(8)

By Theorem 6.11 in [1], the jump of the normal derivative of
potential 𝑈[ℎ] on 𝑆 is given by the following formula:

(
𝜕𝑈[ℎ]

𝜕𝑛
)

−

− (
𝜕𝑈[ℎ]

𝜕𝑛
)

+

= ℎ. (9)

Adding (7) and (8), we obtain

‖∇𝑈 [ℎ]‖
2

𝐿
2

(𝑅
3

\𝑆)
+ 𝑘
2
‖𝑈 [ℎ]‖

2

𝐿
2

(𝑅
3

\𝑆)
= (𝑈 [ℎ] |𝑆, ℎ)𝐿

2

(𝑆)
.

(10)

Since 𝐿
2
(𝑅
3
\ 𝑆) = 𝐿

2
(𝑅
3
) and 𝑈[ℎ] ∈ 𝐻

1

loc(𝑅
3
), then taking

into account the theorem on equivalence of Sobolev spaces
[1, Theorem 3.16], we observe, that there is such a constant
𝑐
1
> 0, for which inequality holds

𝑐
1‖𝑈[ℎ]‖

2

𝐻
1

(𝑅
3

)

≤ min {𝑘
2
, 1} (‖∇𝑈 [ℎ]‖

2

𝐿
2

(𝑅
3

\𝑆)
+ ‖𝑈 [ℎ]‖

2

𝐿
2

(𝑅
3

\𝑆)
)

≤ (𝑈 [ℎ] |𝑆, ℎ)𝐿
2

(𝑆)
.

(11)

Using inequality for single-layer potential from [1, page 227]
(it follows from [1, Lemma 4.3]), for some constant 𝑐

2
> 0, we

obtain

‖ℎ‖
2

𝐻
−1/2

(𝑆)
=



(
𝜕𝑈[ℎ]

𝜕𝑛
)

+

− (
𝜕𝑈[ℎ]

𝜕𝑛
)

−

2

𝐻
−1/2

(𝑆)

≤ 𝑐
2

𝑈0[ℎ]


2

𝐻
1

(𝑅
3

)
.

(12)

Here 𝑈
0
[ℎ](𝑥) = 𝛿(𝑥)𝑈[ℎ](𝑥), where 𝛿(𝑥) ∈ 𝐶

∞
(𝑅
3
) is a

cutoff function, such that 𝛿(𝑥) ≤ 1 for all 𝑥 ∈ 𝑅
3, 𝛿(𝑥) ≡ 1

in an open bounded domain containing 𝐺, and 𝛿(𝑥) ≡ 0 in
the exterior of some ball with the center in the origin. Clearly,

𝑈0[ℎ]


2

𝐻
1

(𝑅
3

)
≤ 𝑐
3‖𝑈[ℎ]‖

2

𝐻
1

(𝑅
3

)
(13)

for some constant 𝑐
3
> 0, so

‖ℎ‖
2

𝐻
−1/2

(𝑆)
≤ 𝑐
2
𝑐
3‖𝑈[ℎ]‖

2

𝐻
1

(𝑅
3

)
. (14)

Using (11), we obtain

𝑐‖ℎ‖
2

𝐻
−1/2

(𝑆)
≤ (𝑈[ℎ]|

𝑆
, ℎ)
𝐿
2

(𝑆)
, 𝑐 =

𝑐
1

𝑐
2
𝑐
3

. (15)

Lemma is proved.

Let us formulate the Dirichlet problem for (2) in the
exterior of nonclosed Lipschitz surfaces 𝛾.

ProblemD. Find a function 𝑢(𝑥) ∈ 𝐻
1

loc(𝑅
3
)∩𝐶
2
(𝑅
3
\𝛾), that

obeys (2) in 𝑅
3
\ 𝛾, satisfies the boundary condition

𝑢|
𝛾
= 𝑓 ∈ 𝐻

1/2
(𝛾) (16)

and conditions at infinity (4).
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Note that Lapalce equation Δ𝑢 = 0 is a particular case of
(2) as 𝑘 = 0. So, the Dirichlet problem for Laplace equation is
included in the ProblemD.

Boundary condition (16) implies that the function 𝑢(𝑥)

has the same trace 𝑢|
𝛾
, when approaching 𝛾 from𝐺 and from

𝑅
3
\ 𝐺, and this trace has to satisfy condition (16).
Let us construct the solution of the problem. We look for

a solution in the form of a single-layer potential

𝑢 (𝑥) = 𝑈 [𝑔] (𝑥)

= ∫

𝛾

𝑔 (𝑦)
exp (−𝑘

𝑥 − 𝑦
)

4𝜋
𝑥 − 𝑦



𝑑𝑠
𝑦

= ∫

𝑆

𝑔 (𝑦)
exp (−𝑘

𝑥 − 𝑦
)

4𝜋
𝑥 − 𝑦



𝑑𝑠
𝑦

(17)

with the density 𝑔 ∈ �̃�
−1/2

(𝛾) ⊂ 𝐻
−1/2

(𝑆). The function (17)
is defined as 𝑥 ∈ 𝑅

3
\ 𝛾.

It follows from aforementioned properties of a single-
layer potential (3) that the potential 𝑈[𝑔](𝑥) belongs to
𝐻
1

loc(𝑅
3
), has a trace on 𝑆 : 𝑈[𝑔]|

𝑆
∈ 𝐻
1/2

(𝑆), and has a trace
on 𝛾 : 𝑈[𝑔]|

𝛾
∈ 𝐻
1/2

(𝛾). Furthermore, the potential 𝑈[𝑔](𝑥)

belongs to𝐶
∞

(𝑅
3
\𝛾) (see [1, page 202]), satisfies (2) in𝑅

3
\𝛾,

and conditions at infinity (4). Therefore, for any function
𝑔 from the space �̃�

−1/2
(𝛾), the potential 𝑈[𝑔](𝑥) satisfies

all conditions of the Problem D, except for the boundary
condition (16). We have to find the function 𝑔 ∈ �̃�

−1/2
(𝛾) to

satisfy the boundary condition (16). Substituting (17) into the
boundary condition (16), we arrive at the operator equation

𝑈 [𝑔] |
𝛾
= 𝑓 ∈ 𝐻

1/2
(𝛾) . (18)

Here by 𝑈[𝑔]|
𝛾
, we mean the trace of the function (17) on 𝛾,

this trace belongs to 𝐻
1/2

(𝛾). To prove solvability of (18), we
have to study properties of the operator in the left side of the
equation.

Operator 𝑈 is bounded when acting from 𝐻
−1/2

(𝑆)

into 𝐻
1/2

(𝑆) by Theorem 6.11 in [1], so when acting from
�̃�
−1/2

(𝛾) ⊂ 𝐻
−1/2

(𝑆) into𝐻
1/2

(𝑆) it is bounded as well. If a set
of functions is bounded (in norm) in 𝐻

1/2
(𝑆), by a constant,

then set of restrictions of these functions to 𝛾 is bounded (in
norm) in 𝐻

1/2
(𝛾) also and by the same constant. Therefore,

the operator 𝑈 is bounded when acting from �̃�
−1/2

(𝛾) into
𝐻
1/2

(𝛾). Since 𝑔 ∈ �̃�
−1/2

(𝛾) ⊂ 𝐻
−1/2

(𝑆), we have for 𝑘 ≥ 0

(𝑈 [𝑔] |
𝑆
, 𝑔)
𝐿
2

(𝑆)
= (𝑈 [𝑔] |

𝛾
, 𝑔)
𝐿
2

(𝛾)

≥ 𝑐
𝑔



2

𝐻
−1/2

(𝑆)

= 𝑐
𝑔



2

�̃�
−1/2

(𝛾)
.

(19)

If 𝑘 > 0, then this estimate follows from Lemma 1, while if
𝑘 = 0, then this estimate is proved in Corollary 8.13 in [1].
Therefore, for some constant 𝑐 > 0, we have

(𝑈 [𝑔] |
𝛾
, 𝑔)
𝐿
2

(𝛾)
≥ 𝑐

𝑔


2

�̃�
−1/2

(𝛾)
. (20)

Note, that the operator 𝑈 acts from �̃�
−1/2

(𝛾) into 𝐻
1/2

(𝛾)

and is bounded, while spaces �̃�
−1/2

(𝛾), 𝐻
1/2

(𝛾) are dual
in the sense of scalar product in 𝐿

2
(𝛾). Inequality (20)

implies that the operator 𝑈 is positive and bounded below.
Consequently, fromLemma 2.32 in [1, page 43], it follows that
the operator𝑈 is invertible (it has bounded inverse operator).
Therefore, (18) has unique solution 𝑔 ∈ �̃�

−1/2
(𝛾) for any

function 𝑓 ∈ 𝐻
1/2

(𝛾). The potential (17), constructed on this
solution, satisfies all conditions of the Problem D. From
above considerations it follows the theorem.

Theorem 2. The solution of the ProblemD exists and is given
by formula (17), where𝑔 ∈ �̃�

−1/2
(𝛾) is a solution of (18), which

is uniquely solvable in �̃�
−1/2

(𝛾).

Let us prove the uniqueness of a solution to the Problem
D.

Theorem 3. The ProblemD has at most one solution.

Proof. Let 𝑢(𝑥) be a solution of the homogeneous ProblemD.
Consider the ball 𝐵

𝑟
of enough large radius 𝑟 with the center

in the origine. Suppose that 𝐺 ⊂ 𝐵
𝑟
and 𝐺 ∩ 𝜕𝐵

𝑟
= 0. The

overline means closure, while 𝜕𝐵
𝑟
is a sphere, the boundary

of the ball 𝐵
𝑟
. Since 𝑢 ∈ 𝐻

1

loc(𝑅
3
), the Green’s formulae [1,

Theorem 4.4, page 118]

‖∇𝑢‖
2

𝐿
2

(𝐺)
+ 𝑘
2
‖𝑢‖
2

𝐿
2

(𝐺)
= (𝑢|

𝑆
, (

𝜕𝑢

𝜕𝑛
)

−

)

𝐿
2

(𝑆)

, (21)

‖∇𝑢‖
2

𝐿
2

(𝐵
𝑟

\𝐺)
+ 𝑘
2
‖𝑢‖
2

𝐿
2

(𝐵
𝑟

\𝐺)
= − (𝑢|

𝑆
, (

𝜕𝑢

𝜕𝑛
)

+

)

𝐿
2

(𝑆)

+ (𝑢,
𝜕𝑢

𝜕𝑛
)

𝐿
2

(𝜕𝐵
𝑟

)

(22)

hold for the function 𝑢. By 𝑛 on 𝜕𝐵
𝑟
, the outward (regarding

to 𝐵
𝑟
) unite normal vector is understood, while by 𝑛 on 𝑆, the

outward (regarding to 𝐺) unite normal vector is understood
(where exists). By (𝜕𝑢/𝜕𝑛)

− and (𝜕𝑢/𝜕𝑛)
+, we denote the

traces of the normal derivative of the function 𝑢(𝑥) on 𝑆

when approaching to 𝑆 from 𝐺 and from 𝑅
3
\ 𝐺, respectively.

Since the function 𝑢(𝑥) belongs to 𝐻
1

loc(𝑅
3
), the traces of

this function exist on 𝑆 when approaching both from 𝐺 and
from 𝑅

3
\ 𝐺. According to the formulation of the Problem

D, these traces are the same, they are denoted by 𝑢|
𝑆
and

belong to 𝐻
1/2

(𝑆) (see [1, Theorems 3.37, 3.38, page 102]).
Since, in addition, the function 𝑢(𝑥) obeys (2) outside 𝑆, the
traces (𝜕𝑢/𝜕𝑛)+ and (𝜕𝑢/𝜕𝑛)

− of the normal derivative of the
function 𝑢 exist and belong to 𝐻

−1/2
(𝑆) by Lemma 4.3 in [1].

Since spaces𝐻−1/2(𝑆) and𝐻
1/2

(𝑆) are dual, the scalar product
in 𝐿
2
(𝑆) in the right sides of (21) and (22) is defined. Note that

𝑢|
𝛾

= 0 ∈ 𝐻
1/2

(𝛾), since 𝑢 is a solution of the homogeneous
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ProblemD. Moreover, (𝜕𝑢/𝜕𝑛)+ = (𝜕𝑢/𝜕𝑛)
− on 𝑆\𝛾. Adding

(21) and (22), we obtain

‖∇𝑢‖
2

𝐿
2

(𝐵
𝑟

\𝑆)
+ 𝑘
2
‖𝑢‖
2

𝐿
2

(𝐵
𝑟

\𝑆)
= (𝑢,

𝜕𝑢

𝜕𝑛
)

𝐿
2

(𝜕𝐵
𝑟

)

= ∫

𝜕𝐵
𝑟

𝑢
𝜕𝑢

𝜕𝑛
𝑑𝑠.

(23)

Using conditions (4) at infinity, we obtain from (23) as
𝑟 → ∞

lim
𝑟→∞

(‖∇𝑢‖
2

𝐿
2

(𝐵
𝑟

\𝑆)
+ 𝑘
2
‖𝑢‖
2

𝐿
2

(𝐵
𝑟

\𝑆)
)

= ‖∇𝑢‖
2

𝐿
2

(𝑅
3

\𝑆)
+ 𝑘
2
‖𝑢‖
2

𝐿
2

(𝑅
3

\𝑆)
= 0.

(24)

Since 𝑘 ≥ 0, we have that 𝑢 ≡ 𝑐
1
in 𝐺 and 𝑢 ≡ 𝑐

2
in

𝑅
3
\𝐺, where 𝑐

1
and 𝑐
2
are some constants. Furthermore, since

𝑢 ∈ 𝐶
2
(𝑅
3
\ 𝛾), we observe that 𝑐

1
= 𝑐
2
and 𝑢 ≡ const in

𝑅
3
\ 𝛾. Taking into account conditions at infinity (4), we have

const = 0, so𝑢 ≡ 0 in𝑅
3
\𝛾.Thus, the homogeneous Problem

D has only the trivial solution. In view of the linearity of the
ProblemD, the inhomogeneous ProblemD has at most one
solution. The theorem is proved.

In conclusion we note that the paper [10] treats the
Dirichlet problem for the Laplace equation in planar domains
with cracks without compatibility conditions at the tips of the
cracks. The well-posed classical formulation of the problem
is given. It is shown that classical solution exists and unique,
while weak solution in 𝐻

1

loc space does not exist typically.
In addition, the Dirichlet problem for the Laplace equa-

tion in a planar domain with cracks with compatibility
conditions at the tips of the cracks has been studied in
[11] (bounded domain) and in [12] (unbounded domain).
The Dirichlet problem for the Helmholtz equation in both
bounded and unbounded planar domains with cracks with
compatibility conditions at the tips of the cracks has been
treated in [13, 14]. Furthermore, problems in [11–14] have been
reduced to the uniquely solvable integral equations of the
2nd kind and index zero. Moreover, theorems on uniqueness
and existence of a classical solution have been proved in
[11–14], and integral representations for solutions in the form
of potentials have been obtained.
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