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The notion of symmetric left bi-derivation of a BCI-algebra X is introduced, and related properties are investigated. Some results
on componentwise regular and d-regular symmetric left bi-derivations are obtained. Finally, characterizations of a p-semisimple
BCI-algebra are explored, and it is proved that, in a p-semisimple BCI-algebra, F is a symmetric left bi-derivation if and only if it is
a symmetric bi-derivation.

1. Introduction

BCK-algebras and BCI-algebras are two classes of nonclassi-
cal logic algebras which were introduced by Imai and Iséki
in 1966 [1, 2]. They are algebraic formulation of BCK-system
and BCI-system in combinatory logic. Later on, the notion
of BCI-algebras has been extensively investigated by many
researchers (see [3–6], and references therein). The notion
of a BCI-algebra generalizes the notion of a BCK-algebra
in the sense that every BCK-algebra is a BCI-algebra but
not vice versa (see [7]). Hence, most of the algebras related
to the 𝑡-norm-based logic such as MTL [8], BL, hoop, MV
[9] (i.e lattice implication algebra), and Boolean algebras
are extensions of BCK-algebras (i.e. they are subclasses of
BCK-algebras) which have a lot of applications in computer
science (see [10]). This shows that BCK-/BCI-algebras are
considerably general structures.

Throughout our discussion, 𝑋 will denote a BCI-algebra
unless otherwise mentioned. In the year 2004, Jun and Xin
[11] applied the notion of derivation in ring and near-ring
theory to 𝐵𝐶𝐼-algebras, and as a result they introduced a
new concept, called a (regular) derivation, in 𝐵𝐶𝐼-algebras.
Using this concept as defined they investigated some of its
properties. Using the notion of a regular derivation, they
also established characterizations of a 𝑝-semisimple 𝐵𝐶𝐼-
algebra. For a self-map 𝑑 of a 𝐵𝐶𝐼-algebra, they defined a 𝑑-
invariant ideal and gave conditions for an ideal to be 𝑑-
invariant. According to Jun and Xin, a self map 𝑑 : 𝑋 → 𝑋

is called a left-right derivation (briefly (𝑙, 𝑟)-derivation)
of 𝑋 if 𝑑(𝑥 ∗𝑦) = 𝑑(𝑥) ∗ 𝑦∧𝑥∗𝑑(𝑦) holds for all 𝑥, 𝑦 ∈ 𝑋.
Similarly, a self map 𝑑 : 𝑋 → 𝑋 is called a right-left
derivation (briefly (𝑟, 𝑙)-derivation) of 𝑋 if 𝑑(𝑥 ∗ 𝑦) = 𝑥 ∗

𝑑(𝑦) ∧ 𝑑(𝑥) ∗ 𝑦 holds for all 𝑥, 𝑦 ∈ 𝑋. Moreover, if 𝑑 is
both (𝑙, 𝑟)- and (𝑟, 𝑙)-derivation, it is a derivation on 𝑋. After
the work of Jun and Xin [11], many research articles have
appeared on the derivations of BCI-algebras and a greater
interest has been devoted to the study of derivations in BCI-
algebras on various aspects (see [12–17]).

Inspired by the notions of 𝜎-derivation [18], left deriva-
tion [19], and symmetric bi-derivations [20, 21] in rings and
near-rings theory, many authors have applied these notions
in a similar way to the theory of BCI-algebras (see [12, 13,
17]). For instantce in 2005 [17], Zhan and Liu have given
the notion of 𝑓-derivation of BCI-algebras as follows: a self
map 𝑑𝑓 : 𝑋 → 𝑋 is said to be a left-right 𝑓-derivation or
(𝑙, 𝑟)-𝑓-derivation of 𝑋 if it satisfies the identity 𝑑𝑓(𝑥 ∗

𝑦) = 𝑑𝑓(𝑥) ∗ 𝑓(𝑦) ∧ 𝑓(𝑥) ∗ 𝑑𝑓(𝑦) for all 𝑥, 𝑦 ∈ 𝑋.
Similarly, a self map 𝑑𝑓 : 𝑋 → 𝑋 is said to be a right-
left 𝑓-derivation or (𝑟, 𝑙)-𝑓-derivation of 𝑋 if it satisfies the
identity 𝑑𝑓(𝑥 ∗ 𝑦) = 𝑓(𝑥) ∗ 𝑑𝑓(𝑦) ∧ 𝑑𝑓(𝑥) ∗ 𝑓(𝑦) for all
𝑥, 𝑦 ∈ 𝑋. Moreover, if 𝑑𝑓 is both (𝑙, 𝑟)- and (𝑟, 𝑙)-𝑓-deriva-
tion, it is said that 𝑑𝑓 is an 𝑓-derivation, where 𝑓 is an
endomorphism. In the year 2007, Abujabal and Al-Shehri
[12] defined and studied the notion of left derivation of BCI-
algebras as follows: a self map 𝐷 : 𝑋 → 𝑋 is said to be a left
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derivation of 𝑋 if satisfying 𝐷(𝑥∗𝑦) = 𝑥∗𝐷(𝑦)∧𝑦∗𝐷(𝑥) for
all 𝑥, 𝑦 ∈ 𝑋. Furthermore, in 2011 [13], Ilbira et al. have
introduced the notion of symmetric bi-derivations in BCI-
algebras. Following [13], a mapping 𝐷(⋅, ⋅) : 𝑋 × 𝑋 → 𝑋

is said to be symmetric if 𝐹(𝑥, 𝑦) = 𝐹(𝑦, 𝑥) holds for all
pairs 𝑥, 𝑦 ∈ 𝑋. A symmetric mapping 𝐷(⋅, ⋅) : 𝑋 × 𝑋 → 𝑋

is called left-right symmetric bi-derivation (briefly (𝑙, 𝑟)-
symmetric bi-derivation) if it satisfies the identity 𝐷(𝑥 ∗

𝑦, 𝑧) = 𝐷(𝑥, 𝑧)∗𝑦∧𝑥∗𝐷(𝑦, 𝑧) for all 𝑥, 𝑦, 𝑧 ∈ 𝑋. 𝐷 is called
right-left symmetric bi-derivation (briefly (𝑟, 𝑙)-symmetric
bi-derivation) if it satisfies the identity 𝐷(𝑥 ∗ 𝑦, 𝑧) = 𝑥 ∗

𝐷(𝑦, 𝑧) ∧ 𝐷(𝑥, 𝑧) ∗ 𝑦 for all 𝑥, 𝑦, 𝑧 ∈ 𝑋. Moreover, if 𝐷 is
both a (𝑙, 𝑟)- and a (𝑟, 𝑙)-symmetric bi-derivation, it is said
that 𝐷 is a symmetric bi-derivation on 𝑋.

Motivated by the notion of symmetric bi-derivations
[13] in the theory of 𝐵𝐶𝐼-algebras, in the present analysis,
we introduced the notion of symmetric left bi-derivations
on 𝐵𝐶𝐼-algebras and investigated related properties. Further,
we obtain some results on componentwise regular and 𝑑-
regular symmetric left bi-derivations. Finally, we charac-
terize the notion of 𝑝-semisimple BCI-algebra 𝑋 by using
the concept of symmetric left bi-derivation and show that,
in a 𝑝-semisimple 𝐵𝐶𝐼-algebra 𝑋, 𝐹 is a symmetric left bi-
derivation if and only if it is a symmetric bi-derivation.

2. Preliminaries

We begin with the following definitions and properties that
will be needed in the sequel.

A nonempty set 𝑋 with a constant 0 and a binary
operation ∗ is called a 𝐵𝐶𝐼-algebra if for all 𝑥, 𝑦, 𝑧 ∈ 𝑋 the
following conditions hold:

(I) ((𝑥 ∗ 𝑦) ∗ (𝑥 ∗ 𝑧)) ∗ (𝑧 ∗ 𝑦) = 0,

(II) (𝑥 ∗ (𝑥 ∗ 𝑦)) ∗ 𝑦 = 0,

(III) 𝑥 ∗ 𝑥 = 0,

(IV) 𝑥 ∗ 𝑦 = 0 and 𝑦 ∗ 𝑥 = 0 imply 𝑥 = 𝑦.

Define a binary relation ≤ on 𝑋 by letting 𝑥 ∗ 𝑦 = 0 if
and only if 𝑥 ≤ 𝑦. Then (𝑋, ≤) is a partially ordered set. A
BCI-algebra 𝑋 satisfying 0 ≤ 𝑥 for all 𝑥 ∈ 𝑋 is called BCK-
algebra.

A 𝐵𝐶𝐼-algebra 𝑋 has the following properties for all
𝑥, 𝑦, 𝑧 ∈ 𝑋.

(a1) 𝑥 ∗ 0 = 𝑥.
(a2) (𝑥 ∗ 𝑦) ∗ 𝑧 = (𝑥 ∗ 𝑧) ∗ 𝑦.

(a3) 𝑥 ≤ 𝑦 implies 𝑥 ∗ 𝑧 ≤ 𝑦 ∗ 𝑧 and 𝑧 ∗ 𝑦 ≤ 𝑧 ∗ 𝑥.
(a4) (𝑥 ∗ 𝑧) ∗ (𝑦 ∗ 𝑧) ≤ 𝑥 ∗ 𝑦.

(a5) 𝑥 ∗ (𝑥 ∗ (𝑥 ∗ 𝑦)) = 𝑥 ∗ 𝑦.

(a6) 0 ∗ (𝑥 ∗ 𝑦) = (0 ∗ 𝑥) ∗ (0 ∗ 𝑦).

(a7) 𝑥 ∗ 0 = 0 implies 𝑥 = 0.

For a 𝐵𝐶𝐼-algebra 𝑋, denote by 𝑋+ (resp., 𝐺(𝑋)) the
𝐵𝐶𝐾-part (resp., the 𝐵𝐶𝐼-G part) of 𝑋; that is, 𝑋+ is the
set of all 𝑥 ∈ 𝑋 such that 0 ≤ 𝑥 (resp., 𝐺(𝑋) := {𝑥 ∈

𝑋 | 0 ∗ 𝑥 = 𝑥}). Note that 𝐺(𝑋) ∩ 𝑋+ = {0} (see [22]).

If 𝑋+ = {0}, then 𝑋 is called a 𝑝-semisimple 𝐵𝐶𝐼-algebra. In
a 𝑝-semisimple 𝐵𝐶𝐼-algebra 𝑋, the following hold.

(a8) (𝑥 ∗ 𝑧) ∗ (𝑦 ∗ 𝑧) = 𝑥 ∗ 𝑦.
(a9) 0 ∗ (0 ∗ 𝑥) = 𝑥 for all 𝑥 ∈ 𝑋.
(a10) 𝑥 ∗ (0 ∗ 𝑦) = 𝑦 ∗ (0 ∗ 𝑥).
(a11) 𝑥 ∗ 𝑦 = 0 implies 𝑥 = 𝑦.
(a12) 𝑥 ∗ 𝑎 = 𝑥 ∗ 𝑏 implies 𝑎 = 𝑏.
(a13) 𝑎 ∗ 𝑥 = 𝑏 ∗ 𝑥 implies 𝑎 = 𝑏.
(a14) 𝑎 ∗ (𝑎 ∗ 𝑥) = 𝑥.
(a15) (𝑥 ∗ 𝑦) ∗ (𝑤 ∗ 𝑧) = (𝑥 ∗ 𝑤) ∗ (𝑦 ∗ 𝑧).

Let 𝑋 be a 𝑝-semisimple 𝐵𝐶𝐼-algebra. We define addi-
tion “+” as 𝑥+𝑦 = 𝑥∗(0∗𝑦) for all 𝑥, 𝑦 ∈ 𝑋.Then (𝑋, +) is
an abelian groupwith identity 0 and𝑥−𝑦 = 𝑥 ∗ 𝑦. Conversely,
let (𝑋, +) be an abelian group with identity 0, and let 𝑥∗𝑦 =
𝑥 − 𝑦. Then 𝑋 is a 𝑝-semisimple 𝐵𝐶𝐼-algebra and 𝑥 + 𝑦 =

𝑥 ∗ (0 ∗ 𝑦) for all 𝑥, 𝑦 ∈ 𝑋 (see [6]).
For a 𝐵𝐶𝐼-algebra 𝑋, we denote 𝑥 ∧ 𝑦 = 𝑦 ∗ (𝑦 ∗ 𝑥), in

particular 0 ∗ (0 ∗ 𝑥) = 𝑎𝑥, and 𝐿𝑝(𝑋) := {𝑎 ∈ 𝑋 | 𝑥 ∗ 𝑎 =

0 ⇒ 𝑥 = 𝑎, ∀𝑥 ∈ 𝑋}. We call the elements of 𝐿𝑝(𝑋) the 𝑝-
atoms of 𝑋. For any 𝑎 ∈ 𝑋, let 𝑉(𝑎) := {𝑥 ∈ 𝑋 | 𝑎 ∗ 𝑥 = 0},
which is called the branch of 𝑋 with respect to 𝑎. It follows
that 𝑥 ∗ 𝑦 ∈ 𝑉(𝑎 ∗ 𝑏) whenever 𝑥 ∈ 𝑉(𝑎) and 𝑦 ∈ 𝑉(𝑏) for
all 𝑥, 𝑦 ∈ 𝑋 and all 𝑎, 𝑏 ∈ 𝐿𝑝(𝑋). Note that 𝐿𝑝(𝑋) = {𝑥 ∈

𝑋 | 𝑎𝑥 = 𝑥},which is the 𝑝-semisimple part of 𝑋, and 𝑋 is
a 𝑝-semisimple 𝐵𝐶𝐼-algebra if and only if 𝐿𝑝(𝑋) = 𝑋 (see
[23, Proposition 3.2]). Note also that 𝑎𝑥 ∈ 𝐿𝑝(𝑋); that is, 0 ∗
(0∗𝑎𝑥) = 𝑎𝑥, which implies that 𝑎𝑥∗𝑦 ∈ 𝐿𝑝(𝑋) for all 𝑦 ∈ 𝑋.
It is clear that 𝐺(𝑋) ⊂ 𝐿𝑝(𝑋), and 𝑥 ∗ (𝑥 ∗ 𝑎) = 𝑎 and 𝑎 ∗

𝑥 ∈ 𝐿𝑝(𝑋) for all 𝑎 ∈ 𝐿𝑝(𝑋) and all 𝑥 ∈ 𝑋. Let 𝐷(⋅, ⋅) :

𝑋 × 𝑋 → 𝑋 be a symmetric mapping. Then for all 𝑥 ∈ 𝑋,
a mapping 𝑑 : 𝑋 → 𝑋 defined by 𝑑(𝑥) = 𝐷(𝑥, 𝑥) is called
trace of 𝐷 [13]. For more details, refer to [3, 4, 6, 11, 22, 23].

3. Symmetric Left Bi-Derivations

The following definition introduces the notion of symmetric
left bi-derivation for a BCI-algebra 𝑋.

Definition 1. A symmetric mapping 𝐹(⋅, ⋅) : 𝑋 × 𝑋 → 𝑋 is
called a symmetric left bi-derivation of 𝑋 if it satisfies the
following identity:

(∀𝑥, 𝑦, 𝑧 ∈ 𝑋) (𝐹 (𝑥 ∗ 𝑦, 𝑧) = (𝑥 ∗ 𝐹 (𝑦, 𝑧))

∧ (𝑦 ∗ 𝐹 (𝑥, 𝑧))) .

(1)

Example 2 (see [24]). Consider a 𝑝-semisimple 𝐵𝐶𝐼-algebra
𝑋 = {0, 3, 4, 5} with the following Cayley table:

∗ 0 3 4 5

0 0 3 4 5

3 3 0 5 4

4 4 5 0 3

5 5 4 3 0

(2)
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Define a mapping 𝐹(⋅, ⋅) : 𝑋 × 𝑋 → 𝑋 by

𝐹 (0, 0) = 𝐹 (3, 3) = 𝐹 (4, 4) = 𝐹 (5, 5) = 0,

𝐹 (0, 3) = 𝐹 (3, 0) = 3,

𝐹 (0, 4) = 𝐹 (4, 0) = 4,

𝐹 (0, 5) = 𝐹 (5, 0) = 5,

𝐹 (3, 4) = 𝐹 (4, 3) = 5,

𝐹 (3, 5) = 𝐹 (5, 3) = 4,

𝐹 (4, 5) = 𝐹 (5, 4) = 3.

(3)

It is routine to verify that 𝐹 is a symmetric left bi-
derivation of 𝑋.

Theorem 3. Let 𝐹(⋅, ⋅) : 𝑋 × 𝑋 → 𝑋 be a symmetric left bi-
derivation of 𝑋. Then

(1) (∀𝑧 ∈ 𝑋) (𝑎 ∈ 𝐺(𝑋) ⇒ 𝐹(𝑎, 𝑧) ∈ 𝐺(𝑋)).

(2) (∀𝑧 ∈ 𝑋) (𝑎 ∈ 𝐿𝑝(𝑋) ⇒ 𝐹(𝑎, 𝑧) ∈ 𝐿𝑝(𝑋)).

(3) (∀𝑧 ∈ 𝑋) (𝑎 ∈ 𝐿𝑝(𝑋) ⇒ 𝐹(𝑎, 𝑧) = 0 + 𝐹(𝑎, 𝑧)).

(4) (∀𝑧 ∈ 𝑋) (𝑎 ∈ 𝐿𝑝(𝑋) ⇒ 𝐹(𝑎, 𝑧) = 𝑎 ∗ 𝐹(0, 𝑧) =

𝑎 + 𝐹(0, 𝑧)).

Proof. (1) Let 𝑎 ∈ 𝐺(𝑋). Then 0 ∗ 𝑎 = 𝑎, and so

𝐹 (𝑎, 𝑧) = 𝐹 (0 ∗ 𝑎, 𝑧)

= (0 ∗ 𝐹 (𝑎, 𝑧)) ∧ (𝑎 ∗ 𝐹 (0, 𝑧))

= (𝑎 ∗ 𝐹 (0, 𝑧)) ∗ ((𝑎 ∗ 𝐹 (0, 𝑧)) ∗ (0 ∗ 𝐹 (𝑎, 𝑧)))

= 0 ∗ 𝐹 (𝑎, 𝑧) ,

(4)

since 0 ∗ 𝐹(𝑎, 𝑧) ∈ 𝐿𝑝(𝑋). Hence 𝐹(𝑎, 𝑧) ∈ 𝐺(𝑋).
(2) For any 𝑎 ∈ 𝐿𝑝(𝑋) implies 𝑎 = 0 ∗ (0 ∗ 𝑎) and so

𝐹 (𝑎, 𝑧) = 𝐹 (0 ∗ (0 ∗ 𝑎) , 𝑧)

= (0 ∗ 𝐹 (0 ∗ 𝑎, 𝑧)) ∧ ((0 ∗ 𝑎) ∗ 𝐹 (0, 𝑧))

= ((0 ∗ 𝑎) ∗ 𝐹 (0, 𝑧))

∗ (((0 ∗ 𝑎) ∗ 𝐹 (0, 𝑧)) ∗ (0 ∗ 𝐹 (0 ∗ 𝑎, 𝑧)))

= 0 ∗ 𝐹 (0 ∗ 𝑎, 𝑧) ∈ 𝐿𝑝 (𝑋) .

(5)

(3) By (2), we have 𝐹(𝑎, 𝑧) ∈ 𝐿𝑝(𝑋). Then

𝐹 (𝑎, 𝑧) = 0 ∗ (0 ∗ 𝐹 (𝑎, 𝑧)) = 0 + 𝐹 (𝑎, 𝑧) . (6)

(4) For any 𝑎 ∈ 𝐿𝑝(𝑋) and 𝑧 ∈ 𝑋, we have

𝐹 (𝑎, 𝑧) = 𝐹 (𝑎 ∗ 0, 𝑧)

= (𝑎 ∗ 𝐹 (0, 𝑧)) ∧ (0 ∗ 𝐹 (𝑎, 𝑧))

= (0 ∗ 𝐹 (𝑎, 𝑧)) ∗ ((0 ∗ 𝐹 (𝑎, 𝑧)) ∗ (𝑎 ∗ 𝐹 (0, 𝑧)))

= 𝑎 ∗ 𝐹 (0, 𝑧)

= 𝑎 ∗ (0 ∗ 𝐹 (0, 𝑧))

= 𝑎 + 𝐹 (0, 𝑧) .

(7)

This completes the proof.

UsingTheorem 3, we have the following corollary.

Corollary 4. Let 𝐹(⋅, ⋅) : 𝑋 × 𝑋 → 𝑋 be a symmetric left
bi-derivation and 𝑑 : 𝑋 → 𝑋 be the trace of 𝐹. Then

(1) (∀𝑎 ∈ 𝐺(𝑋)) (𝑑(𝑎) ∈ 𝐺(𝑋)).
(2) (∀𝑎 ∈ 𝐿𝑝(𝑋)) (𝑑(𝑎) ∈ 𝐿𝑝(𝑋)).

Theorem 5. Let 𝐹 be a symmetric left bi-derivation of 𝑋.
Then

(1) (∀𝑧 ∈ 𝑋) (𝑎, 𝑏 ∈ 𝐿𝑝(𝑋) ⇒ 𝐹(𝑎 + 𝑏, 𝑧) = 𝑎 + 𝐹(𝑏, 𝑧)).

(2) (∀𝑧 ∈ 𝑋) (𝑎 ∈ 𝐿𝑝(𝑋) ⇒ 𝐹(𝑎, 𝑧) = 𝑎 if and only if
𝐹(0, 𝑧) = 0).

(3) (∀𝑥, 𝑦, 𝑧 ∈ 𝑋) (𝐹(𝑥 ∗ 𝑦, 𝑧) ≤ 𝑥 ∗ 𝐹(𝑦, 𝑧)).

(4) (∀𝑥, 𝑦, 𝑧 ∈ 𝑋) (𝑥 ∗ 𝐹(𝑥, 𝑧) = 𝑦 ∗ 𝐹(𝑦, 𝑧)).

Proof. (1) Let 𝑎, 𝑏 ∈ 𝐿𝑝(𝑋). Then

𝐹 (𝑎 + 𝑏, 𝑧) = 𝐹 (𝑎 ∗ (0 ∗ 𝑏) , 𝑧)

= 𝑎 ∗ 𝐹 (0 ∗ 𝑏, 𝑧) ∧ (0 ∗ 𝑏) ∗ 𝐹 (𝑎, 𝑧)

= 𝑎 ∗ 𝐹 (0 ∗ 𝑏, 𝑧)

= 𝑎 ∗ (0 ∗ 𝐹 (𝑏, 𝑧) ∧ 𝑏 ∗ 𝐹 (0, 𝑧))

= 𝑎 ∗ (0 ∗ 𝐹 (𝑏, 𝑧)) = 𝑎 + 𝐹 (𝑏, 𝑧) .

(8)

(2) Suppose 𝐹(𝑎, 𝑧) = 𝑎 for all 𝑎 ∈ 𝐿𝑝(𝑋), 𝑧 ∈ 𝑋. It is
clear that, for 0 ∈ 𝐿𝑝(𝑋), we have 𝐹(0, 𝑧) = 0. Conversely let
us assume that 𝐹(0, 𝑧) = 0; then by using Theorem 3(4), we
have 𝐹(𝑎, 𝑧) = 𝑎 + 𝐹(0, 𝑧) = 𝑎 + 0 = 𝑎.

(3) For any 𝑥, 𝑦, 𝑧 ∈ 𝑋, we have

𝐹 (𝑥 ∗ 𝑦, 𝑧) = (𝑥 ∗ 𝐹 (𝑦, 𝑧)) ∧ (𝑦 ∗ 𝐹 (𝑥, 𝑧))

= (𝑦 ∗ 𝐹 (𝑥, 𝑧))

∗ ((𝑦 ∗ 𝐹 (𝑥, 𝑧)) ∗ (𝑥 ∗ 𝐹 (𝑦, 𝑧)))

≤ 𝑥 ∗ 𝐹 (𝑦, 𝑧) .

(9)

(4) For any 𝑥, 𝑧 ∈ 𝑋, we have

𝐹 (0, 𝑧) = 𝐹 (𝑥 ∗ 𝑥, 𝑧) = (𝑥 ∗ 𝐹 (𝑥, 𝑧)) ∧ (𝑥 ∗ 𝐹 (𝑥, 𝑧))

= 𝑥 ∗ 𝐹 (𝑥, 𝑧) .

(10)

Thus, we can write 𝐹(0, 𝑧) = 𝑥 ∗ 𝐹(𝑥, 𝑧) = 𝑦 ∗ 𝐹(𝑦, 𝑧) for
any 𝑦 ∈ 𝑋. This completes the proof.

Definition 6. A symmetric left bi-derivation 𝐹(⋅, ⋅) : 𝑋×𝑋 →

𝑋 of a 𝐵𝐶𝐼-algebra 𝑋 is said to be componentwise regular
if 𝐹(0, 𝑧) = 0 for all 𝑧 ∈ 𝑋. In particular, 𝐹 is called 𝑑-
regular if 𝐹(0, 0) = 𝑑(0) = 0.

Theorem 7. Let 𝐹 be a symmetric left bi-derivation of 𝐵𝐶𝐼-
algebra 𝑋. Then 𝑋 is a 𝐵𝐶𝐾-algebra if and only if 𝐹 is com-
ponentwise regular symmetric left bi-derivation.
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Proof. Suppose 𝑋 is a 𝐵𝐶𝐾-algebra. Then for any 𝑥, 𝑧 ∈ 𝑋,
we have

𝐹 (0, 𝑧) = 𝐹 (0 ∗ 𝑥, 𝑧)

= (0 ∗ 𝐹 (𝑥, 𝑧)) ∧ (𝑥 ∗ 𝐹 (0, 𝑧))

= 0 ∧ (𝑥 ∗ 𝐹 (0, 𝑧)) = 0.

(11)

Hence 𝐹 is componentwise regular.
Conversely, let 𝐹 be a componentwise regular symmetric

left bi-derivation. Let for any 𝑎 ∈ 𝐿𝑝(𝑋) be such that 𝑎 ̸= 0.
Then

𝐹 (𝑎 ∗ 0, 0) = 𝐹 (𝑎, 0) = 0. (12)

But it is clear that

𝑎 ∗ 𝐹 (0, 0) ∧ 0 ∗ 𝐹 (𝑎, 0) = 𝑎 ∗ 0 ∧ 0 ∗ 0

= 𝑎 ∧ 0 = 0 ∗ (0 ∗ 𝑎)

= 𝑎 ̸= 0,

(13)

which is not possible as 𝐹 is a componentwise regular
symmetric left bi-derivation. Thus 0 is the unique 𝑝-atom.
Assume that for some 𝑚 ∈ 𝑋, we have 0∗𝑚 ̸= 0, then 𝑎0∗𝑚 =

0 ∗ (0 ∗ (0 ∗ 𝑚)) = 0, so 0 ∗ 𝑚 ∈ 𝐿𝑝(𝑋), which is a
contradiction. Henceforth, for all 𝑚 ∈ 𝑋, we have 0 ∗ 𝑚 = 0

implying thereby, 𝑋 is a 𝐵𝐶𝐾-algebra.
This completes the proof.

Theorem 8. Let 𝐹 be a componentwise regular symmetric left
bi-derivation of a 𝐵𝐶𝐼-algebra 𝑋. Then

(1) Both 𝑥 and 𝐹(𝑥, 𝑧) belong to the same branch for
all 𝑥, 𝑧 ∈ 𝑋.

(2) (∀𝑥, 𝑧 ∈ 𝑋) (𝐹(𝑥, 𝑧) ≤ 𝑥).

(3) (∀𝑥, 𝑦, 𝑧 ∈ 𝑋) (𝐹(𝑥, 𝑧) ∗ 𝑦 ≤ 𝑥 ∗ 𝐹(𝑦, 𝑧)).

Proof. (1) For any 𝑥, 𝑧 ∈ 𝑋, we get

0 = 𝐹 (0, 𝑧) = 𝐹 (𝑎𝑥 ∗ 𝑥, 𝑧)

= (𝑎𝑥 ∗ 𝐹 (𝑥, 𝑧)) ∧ (𝑥 ∗ 𝐹 (𝑎𝑥, 𝑧))

= (𝑥 ∗ 𝐹 (𝑎𝑥, 𝑧)) ∗ ((𝑥 ∗ 𝐹 (𝑎𝑥, 𝑧)) ∗ (𝑎𝑥 ∗ 𝐹 (𝑥, 𝑧)))

= 𝑎𝑥 ∗ 𝐹 (𝑥, 𝑧) ,

(14)

since 𝑎𝑥 ∗ 𝐹(𝑥, 𝑧) ∈ 𝐿𝑝(𝑋). Hence 𝑎𝑥 ≤ 𝐹(𝑥, 𝑧), and so
𝐹(𝑥, 𝑧) ∈ 𝑉(𝑎𝑥). Obviously, 𝑥 ∈ 𝑉(𝑎𝑥).

(2) Since 𝐹 is componentwise regular, 𝐹(0, 𝑧) = 0. Then

𝐹 (𝑥, 𝑧) = 𝐹 (𝑥 ∗ 0, 𝑧)

= (𝑥 ∗ 𝐹 (0, 𝑧)) ∧ (0 ∗ 𝐹 (𝑥, 𝑧))

= (𝑥 ∗ 0) ∧ (0 ∗ 𝐹 (𝑥, 𝑧))

= (0 ∗ 𝐹 (𝑥, 𝑧)) ∗ ((0 ∗ 𝐹 (𝑥, 𝑧)) ∗ 𝑥)

≤ 𝑥.

(15)

(3) Since 𝐹(𝑥, 𝑧) ≤ 𝑥 for all 𝑥, 𝑧 ∈ 𝑋 by (2), using (a3)
we obtain

𝐹 (𝑥, 𝑧) ∗ 𝑦 ≤ 𝑥 ∗ 𝑦 ≤ 𝑥 ∗ 𝐹 (𝑦, 𝑧) . (16)

This completes the proof.

Next, we prove some results in a 𝑝-semisimple 𝐵𝐶𝐼-
algebra.

Theorem 9. Let 𝐹 be a symmetric left bi-derivation of a 𝑝-
semisimple 𝐵𝐶𝐼-algebra 𝑋; one has the following assertions.

(1) (∀𝑥, 𝑦, 𝑧 ∈ 𝑋) (𝐹(𝑥 ∗ 𝑦, 𝑧) = 𝑥 ∗ 𝐹(𝑦, 𝑧)).

(2) (∀𝑥, 𝑦, 𝑧 ∈ 𝑋) (𝐹(𝑥, 𝑧) ∗ 𝑥 = 𝐹(𝑦, 𝑧) ∗ 𝑦).

(3) (∀𝑥, 𝑦, 𝑧 ∈ 𝑋) (𝐹(𝑥, 𝑧) ∗ 𝑥 = 𝑦 ∗ 𝐹(𝑦, 𝑧)).

Proof. (1) Let 𝑋 be a 𝑝-semisimple 𝐵𝐶𝐼-algebra. Then for
any 𝑥, 𝑦, 𝑧 ∈ 𝑋, we have

𝐹 (𝑥 ∗ 𝑦, 𝑧) = (𝑥 ∗ 𝐹 (𝑦, 𝑧)) ∧ (𝑦 ∗ 𝐹 (𝑥, 𝑧)) = 𝑥 ∗ 𝐹 (𝑦, 𝑧) .

(17)

(2) Let 𝑥, 𝑦, 𝑧 ∈ 𝑋. Using (I), we have

(𝑥 ∗ 𝑦) ∗ (𝑥 ∗ 𝐹 (𝑦, 𝑧)) ≤ 𝐹 (𝑦, 𝑧) ∗ 𝑦,

(𝑦 ∗ 𝑥) ∗ (𝑦 ∗ 𝐹 (𝑥, 𝑧)) ≤ 𝐹 (𝑥, 𝑧) ∗ 𝑥.

(18)

These above inequalities can be rewritten as

((𝑥 ∗ 𝑦) ∗ (𝑥 ∗ 𝐹 (𝑦, 𝑧))) ∗ (𝐹 (𝑦, 𝑧) ∗ 𝑦) = 0,

((𝑦 ∗ 𝑥) ∗ (𝑦 ∗ 𝐹 (𝑥, 𝑧))) ∗ (𝐹 (𝑥, 𝑧) ∗ 𝑥) = 0.

(19)

Consequently, we get

((𝑥 ∗ 𝑦) ∗ (𝑥 ∗ 𝐹 (𝑦, 𝑧))) ∗ (𝐹 (𝑦, 𝑧) ∗ 𝑦)

= ((𝑦 ∗ 𝑥) ∗ (𝑦 ∗ 𝐹 (𝑥, 𝑧))) ∗ (𝐹 (𝑥, 𝑧) ∗ 𝑥)

(20)

Also, usingTheorem 5(4) and (1), we obtain

(𝑥 ∗ 𝑦) ∗ 𝐹 (𝑥 ∗ 𝑦, 𝑧) = (𝑦 ∗ 𝑥) ∗ 𝐹 (𝑦 ∗ 𝑥, 𝑧)

⇒ (𝑥 ∗ 𝑦) ∗ (𝑥 ∗ 𝐹 (𝑦, 𝑧)) = (𝑦 ∗ 𝑥) ∗ (𝑦 ∗ 𝐹 (𝑥, 𝑧)) .

(21)

Since 𝑋 is a 𝑝-semisimple 𝐵𝐶𝐼-algebra, hence, by using
(21) and (a12), the above (20) yields 𝐹(𝑥, 𝑧) ∗ 𝑥 = 𝐹(𝑦, 𝑧) ∗𝑦.

(3) We have 𝐹(0, 𝑧) = 𝑥 ∗ 𝐹(𝑥, 𝑧) by Theorem 5(4). Fur-
ther, on letting 𝑥 = 0, we get that 𝐹(0, 𝑧) ∗ 0 = 𝐹(𝑦, 𝑧) ∗ 𝑦

implies 𝐹(0, 𝑧) = 𝐹(𝑦, 𝑧) ∗ 𝑦. Henceforth 𝐹(𝑦, 𝑧) ∗ 𝑦 = 𝑥 ∗

𝐹(𝑥, 𝑧), which amounts to say that 𝐹(𝑥, 𝑧) ∗ 𝑥 = 𝑦 ∗ 𝐹(𝑦, 𝑧).
This completes the proof.

Theorem 10. Let 𝑋 be a 𝑝-semisimple 𝐵𝐶𝐼-algebra. Then 𝐹
is a symmetric left bi-derivation if and only if it is a symmetric
bi-derivation on 𝑋.
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Proof. Suppose that 𝐹 is a symmetric left bi-derivation on 𝑋.
First, we show that 𝐹 is a (r,l)-symmetric bi-derivation on 𝑋.
Let 𝑥, 𝑦, 𝑧 ∈ 𝑋. UsingTheorem 9(1) and (a14), we have

𝐹 (𝑥 ∗ 𝑦, 𝑧) = 𝑥 ∗ 𝐹 (𝑦, 𝑧)

= (𝐹 (𝑥, 𝑧) ∗ 𝑦)

∗ ((𝐹 (𝑥, 𝑧) ∗ 𝑦) ∗ (𝑥 ∗ 𝐹 (𝑦, 𝑧)))

= (𝑥 ∗ 𝐹 (𝑦, 𝑧)) ∧ (𝐹 (𝑥, 𝑧) ∗ 𝑦) .

(22)

Hence 𝐹 is a (𝑟, 𝑙)-symmetric bi-derivation on 𝑋.
Again, we show that 𝐹 is a (l,r)-symmetric bi-derivation

on 𝑋. Let 𝑥, 𝑦, 𝑧 ∈ 𝑋. Using Theorem 9(1), (3) and (a15), we
have
𝐹 (𝑥 ∗ 𝑦, 𝑧) = 𝑥 ∗ 𝐹 (𝑦, 𝑧)

= (𝑥 ∗ 0) ∗ 𝐹 (𝑦, 𝑧)

= (𝑥 ∗ (𝐹 (0, 𝑧) ∗ 𝐹 (0, 𝑧))) ∗ 𝐹 (𝑦, 𝑧)

= (𝑥 ∗ ((𝑥 ∗ 𝐹 (𝑥, 𝑧)) ∗ (𝐹 (𝑦, 𝑧) ∗ 𝑦)))

∗ 𝐹 (𝑦, 𝑧)

= (𝑥 ∗ 𝐹 (𝑦, 𝑧))

∗ ((𝑥 ∗ 𝐹 (𝑥, 𝑧)) ∗ (𝐹 (𝑦, 𝑧) ∗ 𝑦))

= (𝑥 ∗ 𝐹 (𝑦, 𝑧))

∗ ((𝑥 ∗ 𝐹 (𝑦, 𝑧)) ∗ (𝐹 (𝑥, 𝑧) ∗ 𝑦))

= (𝐹 (𝑥, 𝑧) ∗ 𝑦) ∧ (𝑥 ∗ 𝐹 (𝑦, 𝑧)) .

(23)

Conversely, suppose that 𝐹 is a symmetric bi-derivation
of 𝑋. As 𝐹 is a (r,l)-symmetric bi-derivation on 𝑋, then for
any 𝑥, 𝑦, 𝑧 ∈ 𝑋 and using (a14), we have

𝐹 (𝑥 ∗ 𝑦, 𝑧) = (𝑥 ∗ 𝐹 (𝑦, 𝑧)) ∧ (𝐹 (𝑥, 𝑧) ∗ 𝑦)

= (𝐹 (𝑥, 𝑧) ∗ 𝑦)

∗ ((𝐹 (𝑥, 𝑧) ∗ 𝑦) ∗ (𝑥 ∗ 𝐹 (𝑦, 𝑧)))

= 𝑥 ∗ 𝐹 (𝑦, 𝑧)

= (𝑦 ∗ 𝐹 (𝑥, 𝑧))

∗ ((𝑦 ∗ 𝐹 (𝑥, 𝑧)) ∗ (𝑥 ∗ 𝐹 (𝑦, 𝑧)))

= (𝑥 ∗ 𝐹 (𝑦, 𝑧)) ∧ (𝑦 ∗ 𝐹 (𝑥, 𝑧)) .

(24)

Hence 𝐹 is a symmetric left bi-derivation. This completes the
proof.
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