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Let 𝑁 be a near ring. An additive mapping 𝑓 : 𝑁 → 𝑁 is said to be a right generalized (resp., left generalized) derivation with
associated derivation 𝑑 on𝑁 if 𝑓(𝑥𝑦) = 𝑓(𝑥)𝑦 + 𝑥𝑑(𝑦) (resp., 𝑓(𝑥𝑦) = 𝑑(𝑥)𝑦 + 𝑥𝑓(𝑦)) for all 𝑥, 𝑦 ∈ 𝑁. A mapping 𝑓 : 𝑁 → 𝑁 is
said to be a generalized derivation with associated derivation 𝑑 on𝑁 if𝑓 is both a right generalized and a left generalized derivation
with associated derivation 𝑑 on𝑁. The purpose of the present paper is to prove some theorems in the setting of a semigroup ideal
of a 3-prime near ring admitting a generalized derivation, thereby extending some known results on derivations.

1. Introduction

Throughout the paper,𝑁 denotes a zero-symmetric left near
ring withmultiplicative center𝑍, and for any pair of elements
𝑥, 𝑦 ∈ 𝑁, [𝑥, 𝑦] denotes the commutator 𝑥𝑦 − 𝑦𝑥, while the
symbol (𝑥, 𝑦) denotes the additive commutator𝑥+𝑦−𝑥−𝑦. A
near ring𝑁 is called zero-symmetric if 0𝑥 = 0, for all 𝑥 ∈ 𝑁
(recall that left distributivity yields that 𝑥0 = 0).The near ring
𝑁 is said to be 3-prime if 𝑥𝑁𝑦 = {0} for 𝑥, 𝑦 ∈ 𝑁 implies that
𝑥 = 0 or 𝑦 = 0. A near ring𝑁 is called 2-torsion-free if (𝑁, +)
has no element of order 2. A nonempty subset𝐴 of𝑁 is called
a semigroup right (resp., semigroup left) ideal if 𝐴𝑁 ⊆ 𝐴
(resp.,𝑁𝐴 ⊆ 𝐴), and if𝐴 is both a semigroup right ideal and a
semigroup left ideal, it is called a semigroup ideal. An additive
mapping 𝑑 : 𝑁 → 𝑁 is a derivation on𝑁 if 𝑑(𝑥𝑦) = 𝑑(𝑥)𝑦+
𝑥𝑑(𝑦), for all 𝑥, 𝑦 ∈ 𝑁. An additive mapping 𝑓 : 𝑁 → 𝑁
is said to be a right (resp., left) generalized derivation with
associated derivation 𝑑 if 𝑓(𝑥𝑦) = 𝑓(𝑥)𝑦 + 𝑥𝑑(𝑦) (resp.,
𝑓(𝑥𝑦) = 𝑑(𝑥)𝑦 + 𝑥𝑓(𝑦)), for all 𝑥, 𝑦 ∈ 𝑁, and 𝑓 is said to be
a generalized derivation with associated derivation 𝑑 on𝑁 if
it is both a right generalized derivation and a left generalized
derivation on𝑁 with associated derivation 𝑑. (Note that this
definition differs from the one given by Hvala in [1]; his
generalized derivations are our right generalized derivations.)
Every derivation on𝑁 is a generalized derivation.

In the case of rings, generalized derivations have received
significant attention in recent years.We prove some theorems

in the setting of a semigroup ideal of a 3-prime near ring
admitting a generalized derivation and thereby extend some
known results [2, Theorem 2.1], [3, Theorem 3.1], [4,
Theorem 3], and [5, Theorem 3.3].

2. Preliminary Results

We begin with several lemmas, most of which have been
proved elsewhere.

Lemma 1 (see [3, Lemma 1.3]). Let𝑁 be a 3-prime near ring
and 𝑑 be a nonzero derivation on𝑁.

(i) If 𝑈 is a nonzero semigroup right ideal or a nonzero
semigroup left ideal of𝑁, then 𝑑(𝑈) ̸= {0}.

(ii) If 𝑈 is a nonzero semigroup right ideal of 𝑁 and 𝑥 is
an element of𝑁 which centralizes 𝑈, then 𝑥 ∈ 𝑍.

Lemma 2 (see [3, Lemma 1.2]). Let𝑁 be a 3-prime near ring.

(i) If 𝑧 ∈ 𝑍 \ {0}, then 𝑧 is not a zero divisor.

(ii) If 𝑍 \ {0} contains an element 𝑧 for which 𝑧 + 𝑧 ∈ 𝑍,
then (𝑁, +) is abelian.

(iii) If 𝑧 ∈ 𝑍\{0} and𝑥 is an element of𝑁 such that𝑥𝑧 ∈ 𝑍,
then 𝑥 ∈ 𝑍.
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Lemma 3 (see [3, Lemmas 1.3 and 1.4]). Let 𝑁 be a 3-prime
near ring and 𝑈 be a nonzero semigroup ideal of𝑁. Let 𝑑 be a
nonzero derivation on𝑁.

(i) If 𝑥, 𝑦 ∈ 𝑁 and 𝑥𝑈𝑦 = {0}, then 𝑥 = 0 or 𝑦 = 0.
(ii) If 𝑥 ∈ 𝑁 and 𝑥𝑈 = {0} or 𝑈𝑥 = {0}, then 𝑥 = 0.
(iii) If 𝑥 ∈ 𝑁 and 𝑑(𝑈)𝑥 = {0} or 𝑥𝑑(𝑈) = {0}, then 𝑥 = 0.

Lemma 4 (see [3, Lemma 1.5]). If 𝑁 is a 3-prime near ring
and 𝑍 contains a nonzero semigroup left ideal or a semigroup
right ideal, then𝑁 is a commutative ring.

Lemma 5. If 𝑓 is a generalized derivation on 𝑁 with associ-
ated derivation 𝑑, then (𝑑(𝑥)𝑦 +𝑥𝑓(𝑦))𝑧 = 𝑑(𝑥)𝑦𝑧+𝑥𝑓(𝑦)𝑧,
for all 𝑥, 𝑦, 𝑧 ∈ 𝑁.

Proof. We prove only (ii), since (i) is proved in [2]. For all
𝑥, 𝑦, 𝑧 ∈ 𝑁 we have 𝑓((𝑥𝑦)𝑧) = 𝑓(𝑥𝑦)𝑧 + 𝑥𝑦𝑑(𝑧) =
(𝑑(𝑥)𝑦+𝑥𝑓(𝑦))𝑧+𝑥𝑦𝑑(𝑧) and𝑓(𝑥(𝑦𝑧)) = 𝑑(𝑥)𝑦𝑧+𝑥𝑓(𝑦𝑧) =
𝑑(𝑥)𝑦𝑧 + 𝑥𝑓(𝑓(𝑦)𝑧 + 𝑦𝑑(𝑧)) = 𝑑(𝑥)𝑦𝑧 + 𝑥𝑓(𝑦)𝑧 + 𝑥𝑦𝑑(𝑧).
Comparing the two expressions for 𝑓(𝑥𝑦𝑧) gives (ii).

Lemma 6. Let 𝑁 be a 3-prime near ring and 𝑓 a generalized
derivation with associated derivation 𝑑.

(i) 𝑓(𝑥)𝑦 + 𝑥𝑑(𝑦) = 𝑥𝑑(𝑦) + 𝑓(𝑥)𝑦 for all 𝑥, 𝑦 ∈ 𝑁.
(ii) 𝑑(𝑥)𝑦 + 𝑥𝑓(𝑦) = 𝑥𝑓(𝑦) + 𝑑(𝑥)𝑦 for all 𝑥, 𝑦 ∈ 𝑁.

Proof. (i) 𝑓(𝑥(𝑦 + 𝑦)) = 𝑓(𝑥)(𝑦 + 𝑦) + 𝑥𝑑(𝑦 + 𝑦) = 𝑓(𝑥)𝑦 +
𝑓(𝑥)𝑦 + 𝑥𝑑(𝑦) + 𝑥𝑑(𝑦), and 𝑓(𝑥𝑦 + 𝑥𝑦) = 𝑓(𝑥)𝑦 + 𝑥𝑑(𝑦) +
𝑓(𝑥)𝑦 + 𝑥𝑑(𝑦). Comparing these two equations gives the
desired result.

(ii) Again, calculate 𝑓(𝑥(𝑦 + 𝑦)) and 𝑓(𝑥𝑦 + 𝑥𝑦) and
compare.

Lemma 7. Let 𝑁 be a 3-prime near ring and 𝑓 a generalized
derivation with associated derivation 𝑑. Then 𝑓(𝑍) ⊆ 𝑍.

Proof. Let 𝑧 ∈ 𝑍 and 𝑥 ∈ 𝑁. Then 𝑓(𝑧𝑥) = 𝑓(𝑥𝑧); that is,
𝑓(𝑧)𝑥+𝑧𝑑(𝑥) = 𝑑(𝑥)𝑧+𝑥𝑓(𝑧). Applying Lemma 6(i), we get
𝑧𝑑(𝑥) +𝑓(𝑧)𝑥 = 𝑑(𝑥)𝑧+𝑥𝑓(𝑧). It follows that 𝑓(𝑧)𝑥 = 𝑥𝑓(𝑧)
for all 𝑥 ∈ 𝑁, so 𝑓(𝑧) ∈ 𝑍.

Lemma 8. Let 𝑁 be a 3-prime near ring and 𝑈 a nonzero
semigroup ideal of𝑁. If 𝑓 is a nonzero right generalized deri-
vation of𝑁 with associated derivation 𝑑, then 𝑓(𝑈) ̸= {0}.

Proof. Suppose 𝑓(𝑈) = {0}. Then 𝑓(𝑢𝑥) = 𝑓(𝑢)𝑥 + 𝑢𝑑(𝑥) =
0 = 𝑢𝑑(𝑥) for all 𝑢 ∈ 𝑈 and 𝑥 ∈ 𝑁, and it follows by
Lemma 3(ii) that 𝑑 = 0. Therefore 𝑓(𝑥𝑢) = 𝑓(𝑥)𝑢 = 0 for
all 𝑢 ∈ 𝑈 and 𝑥 ∈ 𝑁, and another appeal to Lemma 3(ii)
gives 𝑓 = 0, which is a contradiction.

Lemma9 (see [2,Theorem 2.1]). Let𝑁 be a 3-prime near ring
with a nonzero right generalized derivation 𝑓 with associated
derivation 𝑑. If 𝑓(𝑁) ⊆ 𝑍 then (𝑁, +) is abelian. Moreover, if
𝑁 is 2-torsion-free, then𝑁 is a commutative ring.

Lemma 10 (see [2, Theorem 4.1]). Let 𝑁 be a 2-torsion-free
3-prime near ring and 𝑓 a nonzero generalized derivation on

𝑁 with associated derivation 𝑑. If [𝑓(𝑁), 𝑓(𝑁)] = {0}, then𝑁
is a commutative ring.

3. Main Results

The theorems that we prove in this section extend the results
proved in [2, Theorems 2.1 and 3.1], [3, Theorems 2.1, 3.1, and
3.3], and [5, Theorem 3.3].

Theorem 11. Let𝑁 be a 3-prime near ring and𝑈 be a nonzero
semigroup ideal of 𝑁. Let 𝑓 be a nonzero right generalized
derivation with associated derivation 𝑑. If 𝑓(𝑈) ⊆ 𝑍, then
(𝑁, +) is abelian. Moreover, if 𝑁 is 2-torsion-free, then 𝑁 is
a commutative ring.

Proof. We begin by showing that (𝑁, +) is abelian, which by
Lemma 2(ii) is accomplished by producing 𝑧 ∈ 𝑍 \ {0} such
that 𝑧 + 𝑧 ∈ 𝑍. Let 𝑎 be an element of 𝑈 such that 𝑓(𝑎) ̸= 0.
Then for all 𝑥 ∈ 𝑁, 𝑎𝑥 ∈ 𝑈 and 𝑎𝑥 + 𝑎𝑥 = 𝑎(𝑥 + 𝑥) ∈ 𝑈, so
that𝑓(𝑎𝑥) ∈ 𝑍 and𝑓(𝑎𝑥)+𝑓(𝑎𝑥) ∈ 𝑍; hence we need only to
show that there exists𝑥 ∈ 𝑁 such that𝑓(𝑎𝑥) ̸= 0. Suppose that
this is not the case, so that𝑓((𝑎𝑥)𝑎) = 0 = 𝑓(𝑎𝑥)𝑎+𝑎𝑥𝑑(𝑎) =
𝑎𝑥𝑑(𝑎), for all 𝑥 ∈ 𝑁. By Lemma 3(i) either 𝑎 = 0 or 𝑑(𝑎) = 0.

If 𝑑(𝑎) = 0, then 𝑓(𝑥𝑎) = 𝑓(𝑥)𝑎 + 𝑥𝑑(𝑎); that is, 𝑓(𝑥𝑎) =
𝑓(𝑥)𝑎 ∈ 𝑍, for all 𝑥 ∈ 𝑁. Thus [𝑓(𝑢)𝑎, 𝑦] = 0, for all 𝑦 ∈ 𝑁,
and 𝑢 ∈ 𝑈. This implies that 𝑓(𝑢)[𝑎, 𝑦] = 0, for all 𝑢 ∈ 𝑈
and 𝑦 ∈ 𝑁 and Lemma 2(i) gives 𝑎 ∈ 𝑍. Thus 0 = 𝑓(𝑎𝑥) =
𝑓(𝑥𝑎) = 𝑓(𝑥)𝑎, for all 𝑥 ∈ 𝑁. Replacing 𝑥 by 𝑢 ∈ 𝑈, we have
𝑓(𝑈)𝑎 = 0, and by Lemmas 2(i) and 8, we get that 𝑎 = 0.
Thus, we have a contradiction.

To complete the proof, we show that if𝑁 is 2-torsion-free,
then𝑁 is commutative.

Consider first the case 𝑑 = 0. This implies that 𝑓(𝑢𝑥) =
𝑓(𝑢)𝑥 ∈ 𝑍 for all 𝑢 ∈ 𝑈 and 𝑥 ∈ 𝑁. By Lemma 8, we have
𝑢 ∈ 𝑈 such that 𝑓(𝑢) ∈ 𝑍 \ {0}, so 𝑁 is commutative by
Lemma 2(iii).

Now consider the case 𝑑 ̸= 0. Let 𝑐 ∈ 𝑍 \ {0}. This implies
that if 𝑥 ∈ 𝑈, 𝑓(𝑥𝑐) = 𝑓(𝑥)𝑐 + 𝑥𝑑(𝑐) ∈ 𝑍. Thus (𝑓(𝑥)𝑐 +
𝑥𝑑(𝑐))𝑦 = 𝑦(𝑓(𝑥)𝑐 + 𝑥𝑑(𝑐)) for all 𝑥, 𝑦 ∈ 𝑈 and 𝑐 ∈ 𝑍.
Therefore by Lemma 5(i),𝑓(𝑥)𝑐𝑦+𝑥𝑑(𝑐)𝑦 = 𝑦𝑓(𝑥)𝑐+𝑦𝑥𝑑(𝑐)
for all 𝑥, 𝑦 ∈ 𝑈 and 𝑐 ∈ 𝑍. Since 𝑑(𝑐) ∈ 𝑍 and 𝑓(𝑥) ∈ 𝑍, we
obtain 𝑑(𝑐)[𝑥, 𝑦] = 0, for all 𝑥, 𝑦 ∈ 𝑈 and 𝑐 ∈ 𝑍. Let 𝑑(𝑍) ̸= 0.
Choosing 𝑐 such that𝑑(𝑐) ̸= 0 andnoting that𝑑(𝑐) is not a zero
divisor, we have [𝑥, 𝑦] = 0 for all 𝑥, 𝑦 ∈ 𝑈. By Lemma 1(ii),
𝑈 ⊆ 𝑍; hence𝑁 is commutative by Lemma 4.

The remaining case is 𝑑 ̸= 0 and 𝑑(𝑍) = {0}. Suppose we
can show that 𝑈 ∩ 𝑍 ̸= {0}. Taking 𝑧 ∈ (𝑈 ∩ 𝑍) \ {0} and 𝑥 ∈
𝑁, we have 𝑓(𝑥𝑧) = 𝑓(𝑥)𝑧 ∈ 𝑍; therefore 𝑓(𝑁) ⊆ 𝑍 by
Lemma 2(iii) and𝑁 is commutative by Lemma 9.

Assume, then, that 𝑈 ∩ 𝑍 = {0}. For each 𝑢 ∈ 𝑈, 𝑓(𝑢2) =
𝑓(𝑢)𝑢 + 𝑢𝑑(𝑢) = 𝑢(𝑓(𝑢) + 𝑑(𝑢)) ∈ 𝑈 ∩ 𝑍, so 𝑓(𝑢2) = 0.
Thus, for all 𝑢 ∈ 𝑈 and 𝑥 ∈ 𝑁, 𝑓(𝑢2𝑥) = 𝑓(𝑢2)𝑥 + 𝑢2𝑑(𝑥) =
𝑢
2
𝑑(𝑥) ∈ 𝑈 ∩ 𝑍, so 𝑢2𝑑(𝑥) = 0, and by Lemma 3(iii) 𝑢2 = 0.

Since 𝑓(𝑥𝑢) = 𝑓(𝑥)𝑢 + 𝑥𝑑(𝑢) ∈ 𝑍 for all 𝑢 ∈ 𝑈 and
𝑥 ∈ 𝑁, we have (𝑓(𝑥)𝑢 + 𝑥𝑑(𝑢))𝑢 = 𝑢(𝑓(𝑥)𝑢 + 𝑥𝑑(𝑢)),
and right multiplying by 𝑢 gives 𝑢𝑥𝑑(𝑢)𝑢 = 0. Consequently
𝑑(𝑢)𝑢𝑁𝑑(𝑢)𝑢 = {0}, so that 𝑑(𝑢)𝑢 = 0 for all 𝑢 ∈ 𝑈. Since
𝑢
2
= 0, 𝑑(𝑢2) = 𝑑(𝑢)𝑢 + 𝑢𝑑(𝑢) = 0 for all 𝑢 ∈ 𝑈, so
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𝑓(𝑢)𝑢 = 0 for all 𝑢 ∈ 𝑈. But by Lemma 8, there exists 𝑢
0
∈ 𝑈

for which 𝑓(𝑢
0
) ̸= 0; and since 𝑓(𝑢

0
) ∈ 𝑍, we get 𝑢

0
= 0—a

contradiction. Therefore 𝑈 ∩ 𝑍 ̸= {0} as required.

Theorem 12. Let 𝑁 be a 3-prime near ring with a nonzero
generalized derivation 𝑓with associated nonzero derivation 𝑑.
Let 𝑈 be a nonzero semigroup ideal of𝑁. If [𝑓(𝑈), 𝑓(𝑈)] = 0,
then (𝑁, +) is abelian.

Proof. Assume that 𝑥 ∈ 𝑁 is such that [𝑥, 𝑓(𝑈)] = [𝑥 +
𝑥, 𝑓(𝑈)] = 0. For all 𝑢, 𝑣 ∈ 𝑈 such that 𝑢 + 𝑣 ∈ 𝑈,
[𝑥 + 𝑥, 𝑓(𝑢 + 𝑣)] = 0.

This implies that

(𝑥 + 𝑥) 𝑓 (𝑢 + 𝑣) = 𝑓 (𝑢 + 𝑣) (𝑥 + 𝑥) ,

(𝑥 + 𝑥) 𝑓 (𝑢) + (𝑥 + 𝑥) 𝑓 (𝑣)

= 𝑓 (𝑢 + 𝑣) 𝑥 + 𝑓 (𝑢 + 𝑣) 𝑥,

𝑓 (𝑢) (𝑥 + 𝑥) + 𝑓 (𝑣) (𝑥 + 𝑥)

= 𝑥𝑓 (𝑢 + 𝑣) + 𝑥𝑓 (𝑢 + 𝑣) ,

𝑓 (𝑢) 𝑥 + 𝑓 (𝑢) 𝑥 + 𝑓 (𝑣) 𝑥 + 𝑓 (𝑣) 𝑥

= 𝑥𝑓 (𝑢) + 𝑥𝑓 (𝑣) + 𝑥𝑓 (𝑢) + 𝑥𝑓 (𝑣) ,

𝑥𝑓 (𝑢) + 𝑥𝑓 (𝑢) + 𝑥𝑓 (𝑣) + 𝑥𝑓 (𝑣)

= 𝑥𝑓 (𝑢) + 𝑥𝑓 (𝑣) + 𝑥𝑓 (𝑢) + 𝑥𝑓 (𝑣) ,

𝑥 (𝑓 (𝑢) + 𝑓 (𝑣) − 𝑓 (𝑢) − 𝑓 (𝑣)) = 0,

𝑥𝑓 (𝑢 + 𝑣 − 𝑢 − 𝑣) = 0.

(1)

This equation may be restated as 𝑥𝑓(𝑐) = 0, where 𝑐 = (𝑢, 𝑣).
Let 𝑎, 𝑏 ∈ 𝑈. Then 𝑎𝑏 ∈ 𝑈 and 𝑎𝑏 + 𝑎𝑏 = 𝑎(𝑏 + 𝑏) ∈ 𝑈,

so [𝑓(𝑎𝑏), 𝑓(𝑈)] = {0} = [𝑓(𝑎𝑏) + 𝑓(𝑎𝑏), 𝑓(𝑈)], and by the
argument in the previous paragraph, 𝑓(𝑎𝑏)𝑓(𝑐) = 0. We now
have 𝑓(𝑈2)𝑓(𝑢, 𝑣) = 0 for all 𝑢, 𝑣 ∈ 𝑈 such that 𝑢 + 𝑣 ∈ 𝑈.
Taking 𝑤 ∈ 𝑈2 and 𝑥 ∈ 𝑁, we get 𝑓(𝑥𝑤)𝑓((𝑢, 𝑣)) =
(𝑑(𝑥)𝑤 + 𝑥𝑓(𝑤))𝑓((𝑢, 𝑣)) = 0 = 𝑑(𝑥)𝑤𝑓((𝑢, 𝑣)), and since
𝑈
2 is a nonzero semigroup ideal by Lemma 3(ii) and 𝑑 ̸= 0,

Lemma 3(i) gives

𝑓 ((𝑢, 𝑣)) = 0 ∀𝑢, 𝑣 ∈ 𝑈 such that 𝑢 + 𝑣 ∈ 𝑈. (2)

Take 𝑢 = 𝑟𝑦 and 𝑣 = 𝑟𝑧, where 𝑟 ∈ 𝑈 and 𝑦, 𝑧 ∈ 𝑁, so that
𝑢 + 𝑣 = 𝑟𝑦 + 𝑟𝑧 = 𝑟(𝑦 + 𝑧) ∈ 𝑈. By (2) we have

𝑓 ((𝑟𝑦, 𝑟𝑧)) = 𝑓 (𝑟 (𝑦, 𝑧)) = 0 ∀ 𝑟 ∈ 𝑈, 𝑦, 𝑧 ∈ 𝑁. (3)

Replacing 𝑟 by 𝑟𝑤, 𝑤 ∈ 𝑈, we obtain 𝑓(𝑟(𝑤𝑦, 𝑤𝑧)) = 0 =
𝑑(𝑟)(𝑤(𝑦, 𝑧)) + 𝑟𝑓((𝑤𝑦, 𝑤𝑧)); so by (3) 𝑑(𝑟)𝑈(𝑦, 𝑧) = 0 for all
𝑟 ∈ 𝑈 and 𝑦, 𝑧 ∈ 𝑁. It follows immediately by Lemmas 1(i)
and 3(i) that (𝑦, 𝑧) = 0 for all 𝑦, 𝑧 ∈ 𝑁; that is, (𝑁, +) is
abelian.

Theorem 13. Let 𝑁 be a 2-torsion-free 3-prime near ring
and 𝑈 be a nonzero semigroup ideal of 𝑁. If 𝑓 is a nonzero
generalized derivation with associated derivation 𝑑 such that
[𝑓(𝑈), 𝑓(𝑈)] = 0, then 𝑁 is a commutative ring if it satisfies

one of the following: (i) 𝑑(𝑍) ̸= {0}; (ii) 𝑈∩𝑍 ̸= {0}; (iii) 𝑑 = 0
and 𝑓(𝑍) ̸= {0}.

Proof. (i) Let 𝑎 ∈ 𝑁 centralizes 𝑓(𝑈), and let 𝑧 ∈ 𝑍 such
that 𝑑(𝑧) ̸= 0. Then a centralizes 𝑓(𝑢𝑧) for all 𝑢 ∈ 𝑈, so that
𝑎(𝑓(𝑢)𝑧 + 𝑢𝑑(𝑧)) = (𝑓(𝑢)𝑧 + 𝑢𝑑(𝑧))𝑎 and 𝑎𝑢𝑑(𝑧) = 𝑢𝑑(𝑧)𝑎.
Since 𝑑(𝑧) ∈ 𝑍 \ {0}, 𝑑(𝑧)[𝑎, 𝑢] = 0 = [𝑎, 𝑢] for all 𝑢 ∈ 𝑈.
Therefore a centralizes 𝑈, and by Lemma 1(ii), 𝑎 ∈ 𝑍. Since
𝑓(𝑈) centralizes 𝑓(𝑈), 𝑓(𝑈) ⊆ 𝑍 and our result follows by
Theorem 11.

(ii) We may assume 𝑑(𝑍) = {0}. Let 𝑧 ∈ (𝑈 ∩ 𝑍) \ {0}.
Then for all 𝑥, 𝑦 ∈ 𝑁, 𝑓(𝑥𝑧) = 𝑓(𝑥)𝑧 and 𝑓(𝑦𝑧) = 𝑓(𝑦)𝑧
commute; hence 𝑧2[𝑓(𝑥), 𝑓(𝑦)] = 0 = [𝑓(𝑥), 𝑓(𝑦)]. Our
result now follows from Lemma 10.

(iii) Let 𝑢, 𝑣 ∈ 𝑈 and 𝑧 ∈ 𝑍 such that 𝑓(𝑧) ̸= 0. Then
[𝑓(𝑧𝑢), 𝑓(𝑢)] = 0 = [𝑓(𝑧)𝑢, 𝑓(𝑣)], and since 𝑓(𝑧) ∈ 𝑍 \ {0},
𝑓(𝑧)[𝑢, 𝑓(𝑢)] = 0 = [𝑢, 𝑓(𝑣)]. Thus 𝑓(𝑈) centralizes 𝑈,
and by Lemma 1(ii), 𝑓(𝑈) ⊆ 𝑍. Our result now follows by
Theorem 11.

We have already observed that if 𝑓 is a generalized
derivation with 𝑑 = 0, then 𝑓(𝑥)𝑦 = 𝑥𝑓(𝑦) for all 𝑥, 𝑦 ∈ 𝑁.
For 3-prime near rings, we have the following converse.

Theorem 14. Let𝑁 be a 3-prime near ring and𝑈 be a nonzero
semigroup ideal of 𝑁. If 𝑓 is a nonzero right generalized
derivation of 𝑁 with associated derivation 𝑑 and 𝑓(𝑥)𝑦 =
𝑥𝑓(𝑦), for all 𝑥, 𝑦 ∈ 𝑈, then 𝑑 = 0.

Proof. We are given that 𝑓(𝑥)𝑦 = 𝑥𝑓(𝑦) for all 𝑥, 𝑦 ∈ 𝑈.
Substituting 𝑦𝑧 for 𝑦, we get 𝑓(𝑥)𝑦𝑧 = 𝑥𝑓(𝑦𝑧) = 𝑥(𝑓(𝑦)𝑧 +
𝑦𝑑(𝑧)) for all 𝑥, 𝑦, 𝑧 ∈ 𝑈. It follows that 𝑥𝑦𝑑(𝑧) = 0 for
all 𝑥, 𝑦, 𝑧 ∈ 𝑈; that is, 𝑥𝑈𝑑(𝑧) = {0} for all 𝑥, 𝑧 ∈ 𝑈. By
Lemma 3(i), 𝑑(𝑈) = 0, and hence 𝑑 = 0 by Lemma 1(i).

4. Generalized Derivations
Acting as a Homomorphism or
an Antihomomorphism

In [4], Bell andKappe proved that if𝑅 is a semiprime ring and
𝑑 is a derivation on 𝑅which is either an endomorphism or an
antiendomorphism on 𝑅, then 𝑑 = 0. Of course, derivations
which are not endomorphisms or antiendomorphisms on 𝑅
may behave as such on certain subsets of 𝑅; for example,
any derivation 𝑑 behaves as the zero endomorphism on the
subring 𝐶 consisting of all constants (i.e., the elements 𝑥
for which 𝑑(𝑥) = 0). In fact in a semiprime ring 𝑅, 𝑑
may behave as an endomorphism on a proper ideal of 𝑅.
However as noted in [4], the behaviour of 𝑑 is somewhat
restricted in the case of a prime ring. Recently the authors in
[6] considered (𝜃, 𝜙)-derivation𝑑 acting as a homomorphism
or an antihomomorphism on a nonzero Lie ideal of a prime
ring and concluded that 𝑑 = 0. In this section we establish
similar results in the setting of a semigroup ideal of a 3-prime
near ring admitting a generalized derivation.

Theorem 15. Let 𝑁 be a 3-prime near ring and 𝑈 be a non-
zero semigroup ideal of 𝑁. Let 𝑓 be a nonzero generalized
derivation on 𝑁 with associated derivation 𝑑. If 𝑓 acts as a
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homomorphism on 𝑈, then 𝑓 is the identity map on 𝑁 and
𝑑 = 0.

Proof. By the hypothesis

𝑓 (𝑥𝑦) = 𝑑 (𝑥) 𝑦 + 𝑥𝑓 (𝑦) = 𝑓 (𝑥) 𝑓 (𝑦) ∀𝑥, 𝑦 ∈ 𝑈.

(4)

Replacing 𝑦 by 𝑦𝑧 in the above relation, we get

𝑓 (𝑥𝑦𝑧) = 𝑑 (𝑥) 𝑦𝑧 + 𝑥𝑓 (𝑦𝑧) ∀𝑥, 𝑦, 𝑧 ∈ 𝑈, (5)

or

𝑓 (𝑥𝑦) 𝑓 (𝑧) = 𝑑 (𝑥) 𝑦𝑧 + 𝑥 (𝑑 (𝑦) 𝑧 + 𝑦𝑓 (𝑧))

∀𝑥, 𝑦, 𝑧 ∈ 𝑈.

(6)

This implies that

(𝑑 (𝑥) 𝑦 + 𝑥𝑓 (𝑦)) 𝑓 (𝑧) = 𝑑 (𝑥) 𝑦𝑧 + 𝑥𝑑 (𝑦) 𝑧 + 𝑥𝑦𝑓 (𝑧)

∀𝑥, 𝑦, 𝑧 ∈ 𝑈.

(7)

Using Lemma 5(ii), we get

𝑑 (𝑥) 𝑦𝑓 (𝑧) + 𝑥𝑓 (𝑦) 𝑓 (𝑧)

= 𝑑 (𝑥) 𝑦𝑧 + 𝑥𝑑 (𝑦) 𝑧 + 𝑥𝑦𝑓 (𝑧) ∀𝑥, 𝑦, 𝑧 ∈ 𝑈,

(8)

or

𝑑 (𝑥) 𝑦𝑓 (𝑧) + 𝑥𝑓 (𝑦𝑧)

= 𝑑 (𝑥) 𝑦𝑧 + 𝑥𝑑 (𝑦) 𝑧 + 𝑥𝑦𝑓 (𝑧) ∀𝑥, 𝑦, 𝑧 ∈ 𝑈.

(9)

This implies that

𝑑 (𝑥) 𝑦𝑓 (𝑧) + 𝑥𝑑 (𝑦) 𝑧 + 𝑥𝑦𝑓 (𝑧)

= 𝑑 (𝑥) 𝑦𝑧 + 𝑥𝑑 (𝑦) 𝑧 + 𝑥𝑦𝑓 (𝑧) ∀𝑥, 𝑦, 𝑧 ∈ 𝑈.

(10)

That is,

𝑑 (𝑥) 𝑦𝑓 (𝑧) = 𝑑 (𝑥) 𝑦𝑧 ∀𝑥, 𝑦, 𝑧 ∈ 𝑈. (11)

Therefore

𝑑 (𝑥) 𝑦 (𝑓 (𝑧) − 𝑧) = 0 ∀𝑥, 𝑦, 𝑧 ∈ 𝑈, (12)

which implies that

𝑑 (𝑥)𝑈 (𝑓 (𝑧) − 𝑧) = {0} ∀𝑥, 𝑧 ∈ 𝑈. (13)

It follows by Lemma 3(i) that either 𝑑(𝑈) = 0 or 𝑓(𝑧) = 𝑧 for
all 𝑧 ∈ 𝑈.

In fact, as we now show, both of these conditions hold.
Suppose that 𝑓(𝑢) = 𝑢 for all 𝑢 ∈ 𝑈. Then for all 𝑢 ∈ 𝑈

and 𝑥 ∈ 𝑁, 𝑓(𝑥𝑢) = 𝑥𝑢 = 𝑑(𝑥)𝑢 + 𝑥𝑓(𝑢) = 𝑑(𝑥)𝑢 + 𝑥𝑢;
hence 𝑑(𝑥)𝑈 = {0} for all 𝑥 ∈ 𝑁, and thus 𝑑 = 0.

On the other hand, suppose that𝑑(𝑈) = {0}, so that𝑑 = 0.
Then for all 𝑥, 𝑦 ∈ 𝑈, 𝑓(𝑥𝑦) = 𝑓(𝑥)𝑦 = 𝑓(𝑥)𝑓(𝑦), so that
𝑓(𝑥)(𝑦 − 𝑓(𝑦)) = 0. Replacing 𝑦 by 𝑧𝑦, 𝑧 ∈ 𝑁, and noting

that 𝑓(𝑧𝑦) = 𝑧𝑓(𝑦), we see that 𝑓(𝑥)𝑁(𝑦−𝑓(𝑦)) = {0} for all
𝑥, 𝑦 ∈ 𝑈. Therefore, 𝑓(𝑈) = {0} or 𝑓 is the identity on𝑈. But
𝑓(𝑈) = {0} contradicts Lemma 8, so 𝑓 is the identity on 𝑈.

We now know that 𝑓 is the identity on 𝑈 and 𝑓(𝑥𝑦) =
𝑥𝑓(𝑦) for all 𝑥, 𝑦 ∈ 𝑁. Consequently, 𝑓(𝑢𝑥) = 𝑢𝑥 = 𝑢𝑓(𝑥)
for all 𝑢 ∈ 𝑈 and 𝑥 ∈ 𝑁, so that 𝑈(𝑥 − 𝑓(𝑥)) = {0} for all
𝑥 ∈ 𝑁. It follows that 𝑓 is the identity on𝑁.

Theorem 16. Let 𝑁 be a 3-prime near ring and 𝑈 be a
nonzero semigroup ideal of 𝑁. If 𝑓 is a nonzero generalized
derivation on 𝑁 with associated derivation 𝑑. If 𝑓 acts as an
antihomomorphism on𝑈, then 𝑑 = 0, 𝑓 is the identity map on
𝑁, and𝑁 is a commutative ring.

Proof. We begin by showing that 𝑑 = 0 if and only if 𝑓 is the
identity map on𝑁.

Clearly if 𝑓 is the identity map on 𝑁, 𝑥𝑑(𝑦) = 0 for all
𝑥, 𝑦 ∈ 𝑁, and hence 𝑑 = 0.

Conversely, assume that 𝑑 = 0, in which case 𝑓(𝑥𝑦) =
𝑓(𝑥)𝑦 = 𝑥𝑓(𝑦) for all𝑥, 𝑦 ∈ 𝑁. It follows that for any𝑥, 𝑦, 𝑧 ∈
𝑈,

𝑓 (𝑦𝑥𝑧) = 𝑓 (𝑧) 𝑓 (𝑦𝑥) = 𝑓 (𝑧) 𝑦𝑓 (𝑥)

= 𝑓 (𝑧𝑦) 𝑓 (𝑥) = 𝑧𝑓 (𝑦) 𝑓 (𝑥) = 𝑧𝑓 (𝑥𝑦) .

(14)

On the other hand,

𝑓 (𝑦𝑥𝑧) = 𝑓 (𝑥𝑧) 𝑓 (𝑦) = 𝑓 (𝑥) 𝑧𝑓 (𝑦) = 𝑓 (𝑥) 𝑓 (𝑧𝑦)

= 𝑓 (𝑥) 𝑓 (𝑦) 𝑓 (𝑧) = 𝑓 (𝑦𝑥) 𝑓 (𝑧) = 𝑓 (𝑦) 𝑥𝑓 (𝑧)

= 𝑓 (𝑦) 𝑓 (𝑥𝑧) = 𝑓 (𝑦) 𝑓 (𝑥) 𝑧 = 𝑓 (𝑥𝑦) 𝑧.

(15)

Comparing (14) and (15) shows that 𝑓(𝑈2) centralizes 𝑈, so
that 𝑓(𝑈2) ⊆ 𝑍 by Lemma 1(ii).

Now 𝑈2 is a nonzero semigroup ideal by Lemma 3(ii);
hence 𝑓(𝑈2) ̸= 0 by Lemma 8. Choosing 𝑥, 𝑦 ∈ 𝑈 such that
𝑓(𝑥𝑦) ̸= 0, we see that for any 𝑧 ∈ 𝑈, 𝑓(𝑥𝑦)𝑧 = 𝑓(𝑥𝑦𝑧) =
𝑓(𝑦𝑧)𝑓(𝑥) = 𝑓(𝑦)𝑧𝑓(𝑥) = 𝑓(𝑦)𝑓(𝑧𝑥) = 𝑓(𝑦)𝑓(𝑥)𝑓(𝑧) =

𝑓(𝑥𝑦)𝑓(𝑧), and hence 𝑓(𝑥𝑦)(𝑧 − 𝑓(𝑧)) = 0. Since 𝑓(𝑥𝑦) ∈
𝑍\ {0}, we conclude that 𝑓(𝑧) = 𝑧 for all 𝑧 ∈ 𝑈, and it follows
easily that 𝑓 is the identity map on𝑁.

We note now that if the identity map on 𝑁 acts as an
antihomomorphism on 𝑈, then 𝑈 is commutative, so that by
Lemmas 1(ii) and 4 𝑁 is a commutative ring.

To complete the proof of our theorem, we need only to
argue that 𝑑 = 0. By our antihomomorphism hypothesis

𝑓 (𝑥𝑦) = 𝑑 (𝑥) 𝑦 + 𝑥𝑓 (𝑦) = 𝑓 (𝑦) 𝑓 (𝑥) ∀𝑥, 𝑦 ∈ 𝑈. (16)

Replacing 𝑦 by 𝑥𝑦 in the above relation, we get

𝑓 (𝑥𝑦)𝑓 (𝑥) = 𝑓 (𝑥𝑥𝑦) = 𝑑 (𝑥) 𝑥𝑦 + 𝑥𝑓 (𝑥𝑦) ∀𝑥, 𝑦 ∈ 𝑈.

(17)

This implies that

(𝑑 (𝑥) 𝑦 + 𝑥𝑓 (𝑦)) 𝑓 (𝑥)

= 𝑑 (𝑥) 𝑥𝑦 + 𝑥𝑓 (𝑦) 𝑓 (𝑥) ∀𝑥, 𝑦 ∈ 𝑈.

(18)
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Using Lemma 5(ii), we get

𝑑 (𝑥) 𝑦𝑓 (𝑥) + 𝑥𝑓 (𝑦) 𝑓 (𝑥)

= 𝑑 (𝑥) 𝑥𝑦 + 𝑥𝑓 (𝑦) 𝑓 (𝑥) ∀𝑥, 𝑦 ∈ 𝑈.

(19)

Thus

𝑑 (𝑥) 𝑦𝑓 (𝑥) = 𝑑 (𝑥) 𝑥𝑦 ∀𝑥, 𝑦 ∈ 𝑈. (20)

Replacing 𝑦 by 𝑦𝑟 in (20) and using (20), we get

𝑑 (𝑥) 𝑦𝑟𝑓 (𝑥) = 𝑑 (𝑥) 𝑥𝑦𝑟, and so 𝑑 (𝑥) 𝑦 [𝑟, 𝑓 (𝑥)] = 0

∀𝑥, 𝑦 ∈ 𝑈, 𝑟 ∈ 𝑁.

(21)

Application of Lemma 3(i) yields that for each 𝑥 ∈ 𝑈 either
𝑑(𝑥) = 0 or [𝑟, 𝑓(𝑥)] = 0; that is 𝑑(𝑥) = 0 or 𝑓(𝑥) ∈ 𝑍.

Suppose that there exists 𝑤 ∈ 𝑈 such that 𝑓(𝑤) ∈ 𝑍 \ {0}.
Then for all 𝑣 ∈ 𝑈 such that 𝑑(𝑣) = 0, 𝑓(𝑤𝑣) = 𝑓(𝑤)𝑣 =
𝑓(𝑣)𝑓(𝑤) = 𝑓(𝑤)𝑓(𝑣), and hence 𝑓(𝑤)(𝑣 − 𝑓(𝑣)) = 0 =
𝑣−𝑓(𝑣). Now consider arbitrary 𝑥, 𝑦 ∈ 𝑈. If one of𝑓(𝑥), 𝑓(𝑦)
is in 𝑍, then 𝑓(𝑥𝑦) = 𝑓(𝑥)𝑓(𝑦). If 𝑑(𝑥) = 0 = 𝑑(𝑦), then
𝑑(𝑥𝑦) = 𝑑(𝑥)𝑦 + 𝑥𝑑(𝑦) = 0, so 𝑓(𝑥𝑦) = 𝑥𝑦 = 𝑓(𝑥)𝑓(𝑦).
Therefore 𝑓(𝑥𝑦) = 𝑓(𝑥)𝑓(𝑦) for all 𝑥, 𝑦 ∈ 𝑈, and by
Theorem 15, 𝑓 is the identity map on𝑁, and therefore 𝑑 = 0.

The remaining possibility is that for each 𝑥 ∈ 𝑈, either
𝑑(𝑥) = 0 or 𝑓(𝑥) = 0. Let 𝑢 ∈ 𝑈 \ {0}, and let 𝑈

1
= 𝑢𝑁. Then

𝑈
1
is a nonzero semigroup right ideal contained in 𝑈 and 𝑈

1

is an additive subgroup of𝑁. The sets {𝑥 ∈ 𝑈
1
|𝑑(𝑥) = 0} and

{𝑥 ∈ 𝑈
1
|𝑓(𝑥) = 0} are additive subgroups of 𝑈

1
with union

equal to 𝑈
1
, so 𝑑(𝑈

1
) = {0} or 𝑓(𝑈

1
) = {0}. If 𝑑(𝑈

1
) = {0},

then 𝑑 = 0 by Lemma 1(i). Suppose, then, that 𝑓(𝑈
1
) = {0}.

Then for arbitrary𝑥, 𝑦 ∈ 𝑁 𝑓(𝑢𝑥𝑦) = 𝑓(𝑢𝑥)𝑦+𝑢𝑥𝑑(𝑦) = 0 =
𝑢𝑥𝑑(𝑦), so 𝑢𝑁𝑑(𝑦) = {0}, and again𝑑 = 0.This completes the
proof.
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