
Hindawi Publishing Corporation
International Journal of Mathematics and Mathematical Sciences
Volume 2012, Article ID 986426, 16 pages
doi:10.1155/2012/986426

Research Article
Convergence Theorem for a Family of
Generalized Asymptotically Nonexpansive
Semigroup in Banach Spaces

Bashir Ali1 and G. C. Ugwunnadi2

1 Department of Mathematical Sciences, Bayero University, P.M.B. 3011 Kano, Nigeria
2 Department of Mathematics, University of Nigeria, Nsukka, Nigeria

Correspondence should be addressed to Bashir Ali, bashiralik@yahoo.com

Received 15 March 2012; Revised 8 June 2012; Accepted 8 June 2012

Academic Editor: Ram U. Verma

Copyright q 2012 B. Ali and G. C. Ugwunnadi. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

Let E be a real reflexive and strictly convex Banach space with a uniformly Gâteaux differentiable
norm. Let J = {T(t) : t ≥ 0} be a family of uniformly asymptotically regular generalized
asymptotically nonexpansive semigroup of E, with functions u, v : [0,∞) → [0,∞). Let F :=
F(J) = ∩t≥0F(T(t))/= ∅ and f : K → K be a weakly contractive map. For some positive real
numbers λ and δ satisfying δ + λ > 1, let G : E → E be a δ-strongly accretive and λ-strictly
pseudocontractive map. Let {tn} be an increasing sequence in [0,∞) with limn→∞tn = ∞, and
let {αn} and {βn} be sequences in (0, 1] satisfying some conditions. Strong convergence of a
viscosity iterative sequence to common fixed points of the family J of uniformly asymptotically
regular asymptotically nonexpansive semigroup, which also solves the variational inequality
〈(G − γf)p, j(p − x)〉 ≤ 0, for all x ∈ F, is proved in a framework of a real Banach space.

1. Introduction

Let E be a real Banach space. We denote by J the normalized duality map from E to 2E
∗
(E∗ is

the dual space of E), and it is defined by

J(x) =
{
f ∈ E∗ :

〈
x, f

〉
= ‖x‖2 = ∥∥f∥∥2

}
. (1.1)

A mapping T : E → E is said to be contractive if ‖Tx − Ty‖ ≤ α‖x − y‖, for x, y ∈ E,
and some constant α ∈ [0, 1). It is said to be weakly contractive if there exists a nondecreasing
function ψ : [0,∞) → [0,∞) satisfying ψ(t) = 0 if and only if t = 0 and ‖Tx − Ty‖ ≤
‖x − y‖ − ψ(‖x − y‖), for all x, y ∈ E. It is known that the class of weakly contractive maps



2 International Journal of Mathematics and Mathematical Sciences

contain properly the class of contractive ones, see [1, 2]. A mapping T : E → E is said to be
nonexpansive if ‖Tx−Ty‖ ≤ ‖x−y‖, for all x, y ∈ E and asymptotically nonexpansive if there
exists a sequence {kn} ⊂ [1,∞) with kn → 1 as n → ∞ and ‖Tnx − Tny‖ ≤ kn‖x − y‖, for all
x, y ∈ E. We denote by F(T) = {x ∈ K : Tx = x} the set of fixed points of a map T .

A mapping T : E → E is said to be total asymptotically nonexpansive (see [3]) if there
exist nonnegative real sequences {un} and {vn}, with un → 0 and vn → 0 as n → ∞ and
strictly increasing and continuous functions ψ : R

+ → R
+ with ψ(0) = 0 such that

∥∥Tnx − Tny∥∥ ≤ ∥∥x − y∥∥ + unψ
(∥∥x − y∥∥) + vn, ∀x, y ∈ K. (1.2)

Remark 1.1. If ψ(λ) = λ, the total asymptotically nonexpansive mapping coincides with
generalized asymptotically nonexpansive mapping. In addition, for all n ∈ N, if vn = 0,
then generalized asymptotically nonexpansive mapping coincides with asymptotically
nonexpansive mapping; if un = 0, vn = max{0, pn} where pn := supx,y∈K(‖Tnx − Tny‖ − ‖x −
y‖), then generalized asymptotically nonexpansive mapping coincide with asymptotically
nonexpansive mapping in the intermediate sense; if un = 0, and vn = 0 then we obtain from
(1.2) the class of nonexpansive mapping.

A one-parameter family of generalized asymptotically nonexpansive semigroup is a
family J = {T(t) : t ≥ 0} of self-mapping of E such that

(i) T(0)x = x for x ∈ E,
(ii) T(s + t)x = T(s)T(t)x for all t, s ≥ 0 and x ∈ E,
(iii) limt→ 0T(t)x = x for x ∈ E,
(iv) there exist functions u, v : [0,∞) → [0,∞) such that u(t) → 0, v(t) → 0 as t → ∞,

and

∥∥T(t)x − T(t)y∥∥ ≤ (1 + u(t))
∥∥x − y∥∥ + v(t) ∀x, y ∈ E. (1.3)

We will denote by F the common fixed-point set of J, that is,

F := Fix(J) = {x ∈ E : T(t)x = x, t ≥ 0} =
⋂
t≥0

Fix(T(t)). (1.4)

The family J = {T(t) : t ≥ 0} is said to be asymptotically regular if

lim
s→∞

‖T(s + t)x − T(s)x‖ = 0, (1.5)

for all t ∈ [0,∞) and x ∈ E. It is said to be uniformly asymptotically regular if, for any t ≥ 0
and for any bounded subset C of E,

lim
s→∞

sup
x∈C

‖T(s + t)x − T(s)x‖ = 0. (1.6)
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For some positive real numbers δ and λ, a mapping G : E → E is said to be δ-strongly
accretive if for any x, y ∈ E, there exists j(x − y) ∈ J(x − y) such that

〈
Gx −Gy, j(x − y)〉 ≥ δ∥∥x − y∥∥2

, (1.7)

and it is called λ-strictly pseudocontractive if

〈
Gx −Gy, j(x − y)〉 ≤ ∥∥x − y∥∥2 − λ∥∥(I −G)x − (I −G)y∥∥2

. (1.8)

Let E be a real Banach space, and let δ, λ, and τ be positive real numbers satisfying
δ + λ > 1 and τ ∈ (0, 1). Let G : E → E be a δ-strongly accretive and λ-strictly
pseudocontractive, then the following holds, see [4], for x, y ∈ E :

∥∥(I −G)x − (I −G)y∥∥ ≤
⎛
⎝
√

1 − δ
λ

⎞
⎠∥∥x − y∥∥,

∥∥(I − τG)x − (I − τG)y∥∥ ≤ 1 − τ
⎛
⎝1 −

√
1 − δ
λ

⎞
⎠∥∥x − y∥∥,

(1.9)

that is, (I −G) and (I − τG) are contractive mappings.
Let C be a nonempty closed-convex subset of E and T : E → E a map. Then,

a variational inequality problem with respect to C and T is found to be x∗ ∈ C such that

〈
Tx∗, j

(
y − x∗)〉 ≥ 0, ∀y ∈ C, j(y − x∗) ∈ J(y − x∗). (1.10)

Recently, convergence theorems for fixed points of nonexpansive mappings, common
fixed points of family of nonexpansive mappings, nonexpansive semigroup, and their
generalisation have been studied by numerous authors (see, e.g., [5–21]).

Acedo and Suzuki [22], recently, proved the strong convergence of the Browder’s
implicit scheme, x0, u ∈ C,

xn = αnu + (1 − αn)T(tn)xn, n ≥ 0, (1.11)

to a common fixed point of a uniformly asymptotically regular family {T(t) : t ≥ 0} of
nonexpansive semigroup in the framework of a real Hilbert space.

Li et al. [23] proved strong convergence theorems for implicit viscosity schemes for
common fixed points of family of generalized asymptotically nonexpansive semigroups in
Banach spaces.

Let S be a semigroup and B(S) the subspace of all bounded real-valued functions
defined on S with supremum norm. For each s ∈ S, the left translator operator l(s) on B(S)
is defined by (l(s)f)(t) = f(st) for each t ∈ S and f ∈ B(S). Let X be a subspace of B(S)
containing 1, and let X∗ be its topological dual. An element μ of X∗ is said to be a mean on X
if ‖μ‖ = μ(1) = 1. Let X be ls invariant, that is, ls(X) ⊂ X for each s ∈ S. A mean μ on X is said
to be left invariant if μ(lsf) = μ(f) for each s ∈ S and f ∈ X.
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Recently, Saeidi and Naseri [24] studied the problem of approximating common fixed
point of a family of nonexpansive semigroup and solution of some variational inequality
problem in a real Hilbert space. They proved the following theorem.

Theorem 1.2 (Saeidi and Naseri [24]). Let J = {T(t) : t ∈ S} be a nonexpansive semigroup in a
real Hilbert space H such that F(J)/= ∅. Let X be a left invariant subspace of B(S) such that 1 ∈ X,
and the function t → 〈T(t)x, y〉 is an element ofX for each x, y ∈ H. Let f : E → E be a contraction
with constant α, and let G : H → H be strongly positive map with constant γ > 0. Let {μn} be a
left regular sequence of means on X, and let {αn} be a sequence in (0, 1) such that limn→∞αn = 0 and∑∞

n=1 αn = ∞. Let γ ∈ (
0, γ/α

)
, and let {xn} be a sequence generated by x0 ∈ H,

xn+1 = (I − αnG)T
(
μn
)
xn + αnγf(xn), n ≥ 0. (1.12)

Then, {xn} converges strongly to a common fixed point of the family J which is the unique
solution of the variational inequality 〈(G − γf)x∗, j(x − x∗)〉 ≥ 0 for all x ∈ F(J). Equivalently one
has PF(J)(I −G + γf)x∗ = x∗.

More recently, as commented by Golkarmanesh and Naseri [25], Piri and Vaezi [4]
gave a minor variation of Theorem 1.2 as follows.

Theorem 1.3 (Piri and Vaezi [4]). Let J = {T(t) : t ∈ S} be a nonexpansive semigroup on a real
Hilbert space H such that F(J)/= ∅. Let X be a left invariant subspace of B(S) such that 1 ∈ X, and
the function t → 〈T(t)x, y〉 is an element of X for each x, y ∈ H. Let f : E → E be a contraction
with constant α, and let G : H → H be δ-strongly accretive and λ-strictly pseudocontractive with
δ + λ > 1. Let {μn} be a left regular sequence of means on X, and let {αn} be a sequence in (0, 1) such
that limn→∞αn = 0 and

∑∞
n=1 αn = ∞. Let {xn} be a sequence generated by x0 ∈ H,

xn+1 = (I − αnG)T
(
μn
)
xn + αnγf(xn), n ≥ 0, (1.13)

where 0 < γ < (1 −
√
(1 − δ/λ))/α, then, {xn} converges strongly to a common fixed point of the

family F(J) which is the unique solution of the variational inequality 〈(G− γf)x∗, j(x − x∗)〉 ≥ 0 for
all x ∈ F(J). Equivalently one has PF(J)(I −G + γf)x∗ = x∗.

Very recently, Ali [26] continued the study of the problem in [4, 24] and proved a
strong convergence theorem in a Banach space setting much more general than Hilbert space.
He actually proved the following theorem.

Theorem 1.4 (Ali [26]). Let E be a real Banach space with local uniform Opial’s property whose
duality mapping is sequentially continuous. Let J = {T(t) : t ≥ 0} be a uniformly asymptotically
regular family of asymptotically nonexpansive semigroup of E with function k : [0,∞) → [0,∞)
and F := F(J) = ∩t≥0F(T(t))/= ∅. Let f : E → E be weakly contractive, and let G : E → E be
δ-strongly accretive and λ-strictly pseudocontractive with δ + λ > 1. Let η := (1 −

√
(1 − δ)/λ) and

γ ∈ (0,min{η, δ/2}). Let {βn} and {αn} be sequences in (0, 1], and let {tn} be an increasing sequence
in [0,∞) satisfying the following conditions:

lim
n→∞

αn = 0, lim
n→∞

kn
αn

= 0,
∞∑
n=1

αn = ∞, 0 < lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 1. (1.14)
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Define a sequence {xn} by x0 ∈ E,

xn+1 = βnxn +
(
1 − βn

)
yn,

yn = (I − αnG)T(tn)xn + αnγnf(xn), n ≥ 0.
(1.15)

Then, the sequence {xn} converges strongly to a common fixed point of the family J which
solves the variational inequality

〈(
G − γf)q, j(x − q)〉 ≥ 0, ∀x ∈ F. (1.16)

Remark 1.5. It is well known that all lp (1 < p < ∞) spaces satisfy Opial’s condition and
possess a weakly sequentially continuous duality mapping. However, Lp (1 < p < ∞) spaces
and consequently all Sobolev spaces do not satisfy either of the properties.

It is our purpose in this paper to prove a strong convergence theorem for approx-
imating common fixed points of family of uniformly asymptotically regular generalized
asymptotically nonexpansive semigroup in a real reflexive and strictly convex Banach space
E with a uniformly Gâteaux differentiable norm. Our theorem is applicable in Lp(
p) spaces,
1 < p < ∞ (and consequently in sobolev spaces). Our theorem extends and improves some
recent important results. For instance, our theorem presents a convergence of an explicit
scheme that extends Theorem 1.4 to a more general setting of Banach spaces that includes
Lp (1 < p <∞) spaces on one hand and for more general class of maps on the other hand.

2. Preliminaries

Let S := {x ∈ E : ||x|| = 1} denote the unit sphere of a real Banach space E. E is said to have a
Gâteaux differentiable norm if the limit

lim
t→ 0

∥∥x + ty
∥∥ − ‖x‖
t

(2.1)

exists for each x, y ∈ S; E is said to have a uniformly Gâteaux differentiable norm if for each
y ∈ S, the limit is attained uniformly for x ∈ S. A Banach space E is said to be strictly convex
if ‖x + y‖/2 < 1 for x /=y and ‖x‖ = ‖y‖ = 1.

Let K be a nonempty, closed, convex, and bounded subset of a real Banach space
E, and let the diameter of K be defined by d(K) := sup{‖x − y‖ : x, y ∈ K}. For each
x ∈ K, let r(x,K) := sup{‖x − y‖ : y ∈ K} and r(K) := inf{r(x,K) : x ∈ K} denote the
Chebyshev radius ofK relative to itself. The normal structure coefficientN(E) of E (introduced
in 1980 by Bynum [27], see also Lim [28] and the references contained therein) is defined by
N(E) := inf{(d(K)/r(K)): K is a closed convex and bounded subset of E with d(K) > 0}.
A space E such that N(E) > 1 is said to have uniform normal structures . It is known that
every space with a uniform normal structure is reflexive, and that all uniformly convex and
uniformly smooth Banach spaces have uniform normal structure (see, e.g., [29]).

Let E be a real Banach space with uniformly Gâteaux differentiable norm, then the
normalized duality mapping J : E → 2E

∗
, defined by (1.1), is singled valued and uniformly

continuous from the norm topology of E to the weak∗ topology of E∗ on each bounded subset
of E, see, for example [30].
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Definition 2.1. Let μ be a continuous linear functional on l∞, and let (a0, a1, . . .) ∈ l∞. We
write μn(an) instead of μ(a0, a1, . . .). The function μ is called a Banach limit when μ satisfies
||μ|| = μn(1) = 1 and μn(an+1) = μn(an) for each (a0, a1, . . .) ∈ l∞.

For a Banach limit μ, it is known that lim infn→∞an ≤ μn(an) ≤ lim supn→∞an for
every a = (a0, a1, . . .) ∈ l∞. So if a = (a0, a1, . . .) ∈ l∞ and an − bn → 0 as n → ∞, we have
μn(an) = μn(bn).

We will make use of the following well-known result.

Lemma 2.2. Let E be a real-normed linear space. Then, the following inequality holds:

∥∥x + y
∥∥2 ≤ ‖x‖2 + 2

〈
y, j

(
x + y

)〉 ∀x, y ∈ E, j(x + y
) ∈ J(x + y

)
. (2.2)

In the sequel, we shall also make use of the following lemmas.

Lemma 2.3 (Suzuki [31]). Let {xn} and {yn} be bounded sequences in a real Banach space E, and
let {βn} be a sequence in [0, 1] with 0 < lim inf βn ≤ lim sup βn < 1. Suppose that xn+1 = βnyn+(1−
βn)xn for all integer n ≥ 1 and lim supn→∞(||yn+1−yn||−||xn+1−xn||) ≤ 0. Then, limn→∞||yn−xn|| =
0.

Lemma 2.4 (Shioji and Takahashi [32]). Let (a0, a1, a2, . . .) ∈ l∞ be such that μnan ≤ 0 for all
Banach limits μ. If lim supn→∞(an+1 − an) ≤ 0, then lim supn→∞an ≤ 0.

Lemma 2.5 (Xu [33]). Let {an} be a sequence of nonnegative real numbers satisfying the following
relation:

an+1 ≤ (1 − αn)an + αnσn + γn, n ≥ 0, (2.3)

where (i) {αn} ⊂ [0, 1],
∑∞

n=0 αn = ∞ (ii)lim supn→∞σn ≤ 0 (iii)γn ≥ 0 and (n ≥ 0),
∑∞

n=0 γn <
∞. Then, an → 0 as n → ∞.

3. Main Results

Theorem 3.1. Let E be a real reflexive and strictly convex Banach space with a uniformly Gâteaux
differentiable norm, and let J = {T(t) : t ≥ 0} be uniformly asymptotically regular family of
generalized asymptotically nonexpansive semigroup of E, with functions u, v : [0,∞) → [0,∞)
and F := F(J) = ∩t≥0F(T(t))/= ∅. Let f : E → E be weakly contractive, and let G : E → E be
δ-strongly accretive and λ-strictly pseudocontractive with δ + λ > 1. Let η := (1 −

√
(1 − δ)/λ) and

γ ∈ (0,min{δ, η/2}). Let {βn} and {αn} be sequences in (0, 1] and {tn} an increasing sequence in
[0,∞) satisfying the following conditions:

lim
n→∞

αn = 0, lim
n→∞

u(tn)
αn

= 0, lim
n→∞

v(tn)
αn

= 0,
∞∑
n=1

αn = ∞,

0 < lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 1, lim
n→∞

tn = ∞.

(3.1)
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Define a sequence {xn} by x0 ∈ E,

xn+1 = βnxn +
(
1 − βn

)
yn,

yn = (I − αnG)T(tn)xn + αnγf(xn), n ≥ 0.
(3.2)

Then, the sequence {xn} converges strongly to a common fixed point of the family J which
solves the variational inequality

〈(G − γf)q, j(x − q)〉 ≥ 0, ∀x ∈ F. (3.3)

Proof. We start by showing that solution of the variational inequality (3.3) in F is at most one.
Assume that q, p ∈ F are solutions of the variational inequality (3.3), then

〈(
G − γf)p, j(q − p)〉 ≥ 0,

〈(
G − γf)q, j(p − q)〉 ≥ 0. (3.4)

Adding these two inequalities, we get

〈(
G − γf)p − (G − γf)q, j(p − q)〉 ≤ 0. (3.5)

Therefore,

0 ≥ 〈(
G − γf)p − (G − γf)q, j(p − q)〉

=
〈
G
(
p
) −G(q), j(p − q)〉 − γ〈f(p) − f(q), j(p − q)〉

≥ δ∥∥p − q∥∥2 − γ∥∥f(p) − f(q)∥∥∥∥p − q∥∥

≥ δ∥∥p − q∥∥2 + γψ
(∥∥p − q∥∥)∥∥p − q∥∥ − γ∥∥p − q∥∥2

=
(
δ − γ)∥∥p − q∥∥2 + γψ

(∥∥p − q∥∥)∥∥p − q∥∥.

(3.6)

Since δ > γ , we obtain that p = q, and so the solution is unique in F.
Now, let p ∈ F, since (1−αnη)(u(tn)/αn) → 0 and (1−αnη)(v(tn)/αn) → 0 as n → ∞,

then there exists n0 ∈ N such that (1 − αnη)(u(tn)/αn) < (η − γ)/2 and (1 − αnη)(v(tn)/αn) <
(η − γ)/2 for all n ≥ n0. Hence, for n ≥ n0, we have the following:

∥∥yn − p
∥∥ ≤ ∥∥(I − αnG)

(
T(tn)xn − p

)∥∥ + αn
∥∥γf(xn) −G

(
p
)∥∥

≤ (
1 − αnη

)[
(1 + u(tn))

∥∥xn − p
∥∥ + v(tn)

]
+ αnγ

∥∥f(xn) − f
(
p
)∥∥ + αn

∥∥γf(p) −G(p)∥∥

≤ [
1 − αn

(
η − γ) + (1 − αnη

)
u(tn)

]∥∥xn − p
∥∥ +

(
1 − αnη

)
v(tn) + αn

∥∥γf(p) −G(p)∥∥,
(3.7)
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so that

∥∥xn+1 − p
∥∥ ≤ βn

∥∥xn − p
∥∥ +

(
1 − βn

)∥∥yn − p
∥∥

≤ [
βn +

(
1 − βn

)[
1 − αn

(
η − γ) + (1 − αnη

)
u(tn)

]]∥∥xn − p
∥∥

+
(
1 − αnη

)(
1 − βn

)
v(tn) + αn

(
1 − βn

)∥∥γf(p) −G(p)∥∥

≤
[
1 − αn

(
1 − βn

)((
η − γ) − (1 − αnη

)u(tn)
αn

)]∥∥xn − p
∥∥

+ αn
(
1 − βn

)[∥∥γf(p) −G(p)∥∥ +
(
1 − αnη

)v(tn)
αn

]

≤
[
1 − αn

(
1 − βn

)((
η − γ) − (1 − αnη

)u(tn)
αn

)]∥∥xn − p
∥∥

+ αn
(
1 − βn

)((
η − γ) − (1 − αnη

)u(tn)
αn

)

× 2
[∥∥γf(p) −G(p)∥∥ +

(
1 − αnη

)
(v(tn)/αn)

]

η − γ

≤ max

{∥∥xn − p
∥∥, 2

∥∥γf(p) −G(p)∥∥
η − γ + 1

}
.

(3.8)

By induction, we have

∥∥xn − p
∥∥ ≤ max

{∥∥xn0 − p
∥∥, 2

∥∥γf(p) −G(p)∥∥
η − γ + 1

}
, ∀n ≥ 0. (3.9)

Thus, {xn} is bounded and so are {T(tn)xn}, {GT(tn)xn}, {yn}, and {f(xn)}.
Observe that

yn+1 − yn = ((I − αn+1G)T(tn+1)xn+1 − (I − αn+1G)T(tn+1)xn)
+ ((I − αn+1G)T(tn+1)xn − (I − αnG)T(tn+1)xn)
+ ((I − αnG)T(tn+1)xn − (I − αnG)T(tn)xn)
+
(
αn+1γf(xn+1) − αn+1γf(xn)

)
+
(
αn+1γf(xn) − αnγf(xn)

)
,

(3.10)
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so that

∥∥yn+1 − yn
∥∥ ≤ (

1 − αn+1η
)
(1 + u(tn+1))‖xn+1 − xn‖ +

(
1 − αn+1η

)
v(tn+1)

+ |αn − αn+1|‖GT(tn+1)xn‖ +
(
1 − αnη

)‖T((tn+1 − tn) + tn)xn − T(tn)xn‖
+ αn+1γ

∥∥f(xn+1) − f(xn)
∥∥ + |αn+1 − αn|γ

∥∥f(xn)
∥∥

≤ (
1 − αn+1η

)
(1 + u(tn+1))‖xn+1 − xn‖ +

(
1 − αn+1η

)
v(tn+1)

+ |αn − αn+1|‖GT(tn+1)xn‖
+
(
1 − αnη

)
sup

z∈{xn},s∈R+
‖T(s + tn)z − T(tn)z‖

+ αn+1γ
∥∥f(xn+1) − f(xn)

∥∥ + |αn+1 − αn|γ
∥∥f(xn)

∥∥.

(3.11)

From this, we obtain that

∥∥yn+1 − yn
∥∥ − ‖xn+1 − xn‖ ≤ [(

1 − αn+1η
)
(1 + u(tn+1)) − 1

]‖xn+1 − xn‖
+
(
1 − αn+1η

)
v(tn+1) + |αn − αn+1|‖GT(tn+1)xn‖

+
(
1 − αnη

)
sup

z∈{xn},s∈R+
‖T(s + tn)z − T(tn)z‖

+ αn+1γ
∥∥f(xn+1) − f(xn)

∥∥ + |αn+1 − αn|γ
∥∥f(xn)

∥∥,

(3.12)

which implies that

lim sup
n→∞

(∥∥yn+1 − yn
∥∥ − ‖xn+1 − xn‖

) ≤ 0, (3.13)

and by Lemma 2.3,

lim
n→∞

∥∥yn − xn
∥∥ = 0. (3.14)

Thus,

‖xn+1 − xn‖ =
(
1 − βn

)∥∥yn − xn
∥∥ −→ 0 as n −→ ∞. (3.15)

Next, we show that limn→∞‖yn − T(t)yn‖ = 0, for all t ≥ 0.
Since

‖xn − T(tn)xn‖ ≤ ‖xn − xn+1‖ + ‖xn+1 − T(tn)xn‖
≤ ‖xn − xn+1‖ + βn‖xn − T(tn)xn‖ +

(
1 − βn

)∥∥yn − T(tn)xn
∥∥,

(3.16)
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we have

(
1 − βn

)‖xn − T(tn)xn‖ ≤ ‖xn − xn+1‖ +
(
1 − βn

)∥∥yn − T(tn)xn
∥∥

= ‖xn − xn+1‖ + αn
(
1 − βn

)∥∥γf(xn) −GT(tn)xn
∥∥.

(3.17)

From αn → 0 as n → ∞ and (3.15), we obtain

lim
n→∞

‖xn − T(tn)xn‖ = 0. (3.18)

Also,

∥∥yn − T(tn)yn
∥∥ ≤ ∥∥yn − xn

∥∥ + ‖xn − T(tn)xn‖ +
∥∥T(tn)xn − T(tn)yn

∥∥

≤ (2 + u(tn))
∥∥yn − xn

∥∥ + v(tn) + ‖xn − T(tn)xn‖ −→ 0 as n −→ ∞.
(3.19)

Since limn→∞tn = ∞ and {T(t) : t ≥ 0} is uniformly asymptotically regular,

limn→∞‖T(t)T(tn)xn − T(tn)xn‖ ≤ lim
n→∞

sup
x∈C

‖T(t)T(tn)x − T(tn)x‖ = 0,

limn→∞
∥∥T(t)T(tn)yn − T(tn)yn

∥∥ ≤ lim
n→∞

sup
y∈C

∥∥T(t)T(tn)y − T(tn)y
∥∥ = 0,

(3.20)

where C is any bounded subset of E containing {xn}. Since {T(t)} is continuous, we get that

∥∥yn − T(t)yn
∥∥ ≤ ∥∥yn − T(tn)yn

∥∥ +
∥∥T(tn)yn − T(t)

(
T(tn)yn

)∥∥

+
∥∥T(t)(T(tn)yn

) − T(t)yn
∥∥.

(3.21)

This implies that

lim
n→∞

∥∥yn − T(t)yn
∥∥ = 0, ∀t ≥ 0. (3.22)

Next, we show that

lim sup
n→∞

〈(
γf −G)p, j(yn − p

)〉 ≤ 0. (3.23)

Define a map φ : E → R by

φ
(
y
)
:= μn

∥∥yn − y
∥∥2
, ∀y ∈ E. (3.24)

Then, φ(y) → ∞ as ‖y‖ → ∞, φ is continuous and convex, so as E is reflexive, there
exists q ∈ E such that φ(q) = minu∈Eφ(u). Hence, the set

K∗ :=
{
y ∈ E : φ

(
y
)
= min

u∈E
φ(u)

}
/= ∅. (3.25)
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Since limn→∞‖yn − T(t)yn‖ = 0, limt→∞u(t) = 0, limt→∞v(t) = 0, and φ is continuous
for all z ∈ K∗, we have

φ

(
lim
t→∞

T(t)z
)

= lim
t→∞

φ(T(t)z) = lim
t→∞

μn
∥∥yn − T(t)z

∥∥2

≤ lim
t→∞

μn
(
(1 + u(t))

∥∥yn − z
∥∥ + (v(t))

)2 = μn
∥∥yn − z

∥∥2 = φ(z).
(3.26)

Hence, limt→∞T(t)z ∈ K∗.
Let p ∈ F. Since K∗ is a closed-convex set, there exists a unique q ∈ K∗ such that

∥∥p − q∥∥ = min
x∈K∗

∥∥p − x∥∥. (3.27)

Since p = limt→∞T(t)p and limt→∞T(t)q ∈ K∗,

∥∥∥∥p − lim
t→∞

T(t)q
∥∥∥∥ =

∥∥∥∥ limt→∞
T(t)p − lim

t→∞
T(t)q

∥∥∥∥

= lim
t→∞

∥∥T(t)p − T(t)q∥∥

≤ lim
t→∞

(
(1 + u(t))

∥∥p − q∥∥ + v(t)
)

≤ ∥∥p − q∥∥.

(3.28)

Therefore, limt→∞T(t)q = q. Since T(s + h)x = T(s)T(h)x for all x ∈ E and s ≥ 0, we
have

q = lim
t→∞

T(t)q = lim
t→∞

T(s + t)q = lim
t→∞

T(s)T(t)q

= T(s) lim
t→∞

T(t)q = T(s)q.
(3.29)

Therefore, q ∈ F and so K∗ ∩ F /= ∅.
Let p ∈ K∗ ∩ F(T) and τ ∈ (0, 1). Then, it follows that φ(p) ≤ φ(p − τ(G − γf)p), and

using Lemma 2.2, we obtain that

∥∥yn − p + τ(G − γf)p∥∥2 ≤ ∥∥yn − p
∥∥2 + 2τ

〈(
G − γf)p, j(yn − p + τ

(
G − γf)p)〉, (3.30)

which implies that

μn
〈(
γf −G)p, j(yn − p + τ

(
G − γf)p)〉 ≤ 0. (3.31)
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Moreover,

μn
〈(
γf −G)p, j(yn − p

)〉
= μn

〈(
γf −G)p, j(yn − p

) − j(yn − p + τ
(
G − γf)p)〉

+ μn
〈(
γf −G)p, j(yn − p + τ

(
G − γf)p)〉

≤ μn
〈(
γf −G)p, j(yn − p

) − j(yn − p + τ
(
G − γf)p)〉.

(3.32)

Since j is norm-to-weak∗ uniformly continuous on bounded subsets of E, we have that

μn
〈(
γf −G)p, j(yn − p

)〉 ≤ 0. (3.33)

Observe that from (3.14) and (3.15), we have

lim
n→∞

∥∥yn+1 − yn
∥∥ = 0. (3.34)

This implies that

lim sup
n→∞

[〈(γf −G)p, j(yn − p
)〉 − 〈(γf −G)p, j(yn+1 − p

)〉] ≤ 0, (3.35)

and so we obtain by Lemma 2.4 that

lim sup
n→∞

〈(
γf −G)p, j(yn − p

)〉 ≤ 0. (3.36)

Finally, we show that xn → p as n → ∞. Since limn→∞(u(tn)/αn) = 0, if we denote
by σ(tn) the value 2u(tn) + u(tn)

2, then we clearly have limn→∞(σ(tn)/αn) = 0. Let N0 ∈ N

be large enough such that (1 − αnη)(σ(tn)/αn) < (η − 2γ)/2, for all n ≥ N0, and let M be
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a positive real number such that ||xn−p|| ≤M for all n ≥ 0. Then, using the recursion formula
(3.2) and for n ≥N0, we have

∥∥yn − p
∥∥2 =

∥∥αn
(
γf(xn) −G

(
p
))

+ (I − αnG)
(
T(tn)xn − p

)∥∥2

≤ (
1 − αnη

)∥∥T(tn)xn − p
∥∥2 + 2αn

〈
γf(xn) −G

(
p
)
, j
(
yn − p

)〉

≤ (
1 − αnη

)[
(1 + u(tn))

∥∥xn − p
∥∥ + v(tn)

]2

+ 2αn
〈
γf(xn) − γf

(
p
)
+ γf

(
p
) −G(p), j(yn − p

)〉

≤ (
1 − αnη

)[
(1 + u(tn))2

∥∥xn − p
∥∥2 + 2(1 + u(tn))v(tn)

∥∥xn − p
∥∥2 + v(tn)2

]

+ 2αn
〈
γf
(
p
) −G(p), j(yn − p

)〉 − 2αnγ
∥∥yn − p

∥∥ψ(∥∥xn − p
∥∥)

+ 2αnγ
∥∥(yn − xn

)
+
(
xn − p

)∥∥∥∥xn − p
∥∥

≤ [(
1 − αnη

)
(1 + σ(tn)) + 2αnγ

]∥∥xn − p
∥∥2

+ αn
[
2
〈
γf
(
p
) −G(p), j(yn − p

)〉
+ 2

(
1 − αnη

)
(1 + u(tn))

v(tn)
αn

∥∥xn − p
∥∥2

+
(
1 − αnη

)v(tn)2
αn

+ 2γ
∥∥yn − xn

∥∥∥∥xn − p
∥∥
]

=
[
1 − αn

((
η − 2γ

) − (1 − αnη
)σn
αn

)]∥∥xn − p
∥∥2

+ αn

[
2
〈
γf
(
p
) −G(p), j(yn − p

)〉
+ 2

(
1 − αnη

)
(1 + u(tn))

v(tn)
αn

∥∥xn − p
∥∥2

+
(
1 − αnη

)v(tn)2
αn

+ 2γ
∥∥yn − xn

∥∥∥∥xn − p
∥∥
]
,

(3.37)

so that

∥∥xn+1 − p
∥∥2 ≤ βn

∥∥xn − p
∥∥2 +

(
1 − βn

)∥∥yn − p
∥∥2

≤
(
βn +

(
1 − βn

)[
1 − αn

((
η − 2γ

) − (1 − αnη
)σn
αn

)])∥∥xn − p
∥∥2

+ αn
(
1 − βn

)[
2
〈
γf
(
p
) −G(p), j(yn − p

)〉
+ 2

(
1 − αnη

)
(1 + u(tn))

×v(tn)
αn

∥∥xn − p
∥∥2 +

(
1 − αnη

)v(tn)2
αn

+ 2γ
∥∥yn − xn

∥∥∥∥xn − p
∥∥
]
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≤
[
1 − αn

(
1 − βn

)((
η − 2γ

) − (1 − αnη
)σn
αn

)]∥∥xn − p
∥∥2

+ αn
(
1 − βn

)[
2
〈
γf
(
p
) −G(p), j(yn − p

)〉
+ 2

(
1 − αnη

)
(1 + u(tn))

v(tn)
αn

M2

+
(
1 − αnη

)v(tn)2
αn

+ 2γ
∥∥yn − xn

∥∥M
]

=
[
1 − αn

(
1 − βn

)((
η − 2γ

) − (1 − αnη
)σn
αn

)]∥∥xn − p
∥∥2

+ αn
(
1 − βn

)((
η − 2γ

) − (1 − αnη
)σn
αn

)

×

[
2
〈
γf
(
p
) −G(p), j(yn − p

)〉
+ 2

(
1 − αnη

)
(1 + u(tn))

(
v(tn)
αn

)
M2 +An

]

((
η − 2γ

) − (1 − αnη
)(σn
αn

)) ,

(3.38)

where An denotes (1 − αnη)(v(tn)2/αn) + 2γ‖yn − xn‖M.
Observe that

∑∞
n=1 αn(1 − βn)((η − 2γ) − (1 − αnη)(σn/αn)) = ∞ and

lim sup
n→∞

(
2
〈
γf
(
p
) −G(p), j(yn − p

)〉
+ 2

(
1 − αnη

)
(1 + u(tn))(v(tn)/αn) M2 +An((

η − 2γ
) − (1 − αnη

)
(σn/αn)

)
)

≤ 0.

(3.39)

Applying Lemma 2.5, we obtain ‖xn−p‖ → 0 as n → ∞. This completes the proof.

The following corollaries follow from Theorem 3.1.

Corollary 3.2. Let E be a real uniformly convex and uniformly smooth Banach space, J = {T(t) : t ≥
0}, and let F,f,G, δ, λ, η, γ, {βn}, {αn}, {tn} and {xn} be as in Theorem 3.1. Then, the sequence {xn}
converges strongly to a common fixed point of the family J which solves the variational inequality
(3.3).

Corollary 3.3. Let E = H be a real Hilbert space, and let J = {T(t) : t ≥ 0},
F,f,G, δ, λ, η, γ, {βn}, {αn}, {tn} and {xn} be as in Theorem 3.1. Then, the sequence {xn} converges
strongly to a common fixed point of the family J which solves the variational inequality

〈(
G − γf)q, x − q〉 ≥ 0, ∀x ∈ F. (3.40)

Corollary 3.4. Let J = {T(t) : t ≥ 0} be a family of nonexpansive semigroup of a real
reflexive and strictly convex Banach space with a uniformly Gâteaux differentiable norm E, and let
F, f,G, δ, λ, η, γ, {βn}, {αn}, {tn}, and {xn} be as in Theorem 3.1. Then, the sequence {xn} converges
strongly to a common fixed point of the family J which solves the variational inequality (3.3).
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