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We discuss the subspaces of an almost ¢-Lagrange space (APL space in short). We obtain the
induced nonlinear connection, coefficients of coupling, coefficients of induced tangent and induced
normal connections, the Gauss-Weingarten formulae, and the Gauss-Codazzi equations for a
subspace of an APL-space. Some consequences of the Gauss-Weingarten formulae have also been
discussed.

1. Introduction

The credit for introducing the geometry of Lagrange spaces and their subspaces goes to the
famous Romanian geometer Miron [1]. He developed the theory of subspaces of a Lagrange
space together with Bejancu [2]. Miron and Anastasiei [3] and Sakaguchi [4] studied the
subspaces of generalized Lagrange spaces (GL spaces in short). Antonelli and Hrimiuc [5, 6]
introduced the concept of ¢p-Lagrangians and studied ¢-Lagrange manifolds. Generalizing
the notion of a ¢-Lagrange manifold, the present authors recently studied the geometry of an
almost p-Lagrange space (APL space briefly) and obtained the fundamental entities related
to such space [7]. This paper is devoted to the subspaces of an APL space.

Let F" = (M, F(x,y)) be an n-dimensional Finsler space and ¢ : R* — R a smooth
function. If the function ¢ has the following properties:

(a) ¢'(t) #0,
(b) ¢'(t) +¢"(t) #0, for every t € Im(F?),

then the Lagrangian given by

L(x,y) = ¢(F?) + Ax)y' + U ), (L1)
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where A;(x) is a covector and U (x) is a smooth function, is a regular Lagrangian [7]. The
space L" = (M, L(x,y)) is a Lagrange space. The present authors [7] called such space as
an almost ¢-Lagrange space (shortly APL space) associated to the Finsler space F". An APL
space reduces to a ¢-Lagrange space if and only if A;(x) = 0 and U (x) = 0. We take

gij = %61-6,-1—“2, ai,- = %61-6,-L, where 81- = aiyl (1.2)

7Nz

We indicate all the geometrical objects related to F” by putting a small circle “°” over them.
Equations (1.2), in view of (1.1), provide the following expressions for a;; and its inverse (cf.

[71):

' 29" o o T 2¢" i
aij = - <8ij + 7%’%’)1 a’ = —<g’ T2 y]>, (1.3)

where gijy/ = i.

Let M be a smooth manifold of dimension m, 1 < m < n, immersed in M by immersion
i: M — M. The immersion i induces an immersion T; : TM — TM making the following
diagram commutative:

™M 25 TM
#l (1.4)

v

M i M.

Let (u®, v*) (throughout the paper, the Greek indices &, 8, y, . . . run from 1 to m) be local
coordinates on T M. The restriction of the Lagrangian L on TM is L(u,v) = L(x(u), y(u,v)).

Let aqp = (1/2)(0*°L/0u*duf). Then, we have (cf. [8]) aup = B,’;B;;aij where Bi (1) = 0x'/ou”

are the projection factors. The pair L™ = (M, L(u,v)) is also a Lagrange space, called the
subspace of L". For the natural bases (3/0x',0/dy') on TM and (3/0u*,8/9v") on TM, we
have [8]

T o .0
e Ba@ + Boaa—yi, 3o = Ba ayi’ (15)

where B) | = B;avﬂ, B;a = 0%x' /du*oub.
For the bases (dx',dy') and (du®, dv*), we have

dx' = Bl du®, dy' = BLdv® + B} ,du". (1.6)

Since (B,) are m linearly independent vector fields tangent to M, a vector field ¢ (x,y) is
normal to M along TM if on TM, we have

aij(x(u),y(u,v))Bi¢ =0, VYa=12,...,m. (1.7)
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There are, at least locally, (n — m) unit vector fields B,(u,v) (a = m+1,m +2,...,n) normal
to M and mutually orthonormal, that is,

a;BiB, =0, a;B.B) =64, (a,b=m+1,m+2,. .. ,n). (1.8)

Thus, at every point (u,v) € TM, we have a moving frame R = ((u,v), B, (u,v), B, (u,v)).
Using (1.3) in the first expression of (1.8) and keeping yoiBfl = 0 (this fact is clear from

gijy'B, = 0) in view, we observe that B!’s are normal to M with respect to L" if and only if
they are so with respect to F". The dual frame of R is R* = ((u, v), Bf (u, v), B{ (u, v)) with the
following duality conditions:

BB =6, BiB{=0, BiB'=0, BiB'=6), B,B*+B.B’=6. (19

We will make use of the following results due to the present authors [7], during further
discussion.

Theorem 1.1 (cf. [7]). The canonical nonlinear connection of an APL space L™ has the local
coefficients given by

N;i =N,.-V! (1.10)
where Vji = (1/2)1—"]‘: - S;r (2Fxy* +0,U),

o L& g 19 e o' (57" +6ly") L 00y =29 P - 4yl vy
P28 T Y Sy nary) T g grargy Y g

1 ) .
Fr(x) = E(arAk - OkAy), F. = a’*Fy;.

Theorem 1.2 (cf. [7]). The coefficients of the canonical metrical d-connection CI'(N) of an APL
space L™ are given by

- ol (Pu ;o i (Pu o 2((10”,()0, _Z(Puz) io o
Cjk = ka + a<6]yk + 6ky]> + (P/ + 2F2(P//g]ky + WJ/ YiYk, (1.12)
L;’k = i;‘k + V;:C;r + V].’C}'cr + V) a?Cpyj. (1.13)

For basic notations related to a Finsler space, a Lagrange space, and their subspaces,
we refer to the books [8, 9].
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2. Induced Nonlinear Connection

Let N = (N %(1,7)) be a nonlinear connection for L™ = (M, L(u,v)). The adapted basis of
T, D)TM 1nduced by N is (6/6u® = 6,,0/00% = Ox), Where

6a = 00 — NhOy. (2.1)

The dual basis (cobasis) of the adapted basis (,, 0,) is (du®, 5v* = do® + Ngduﬂ ).

Definition 2.1 (cf. [8]). A nonlinear connection N = (Ng(u, v)) of L™ is said to be induced by
the canonical nonlinear connection N if the following equation holds good:

5v" = BY6y'. (2.2)

The local coefficients of the induced nonlinear connection N = (Ng (u,v)) for the subspace
L™ = (M, L(u,v)) of a Lagrange space L" = (M, L(x, y)) are given by (cf. [8])
T _ ipl i
“ = B! <N]Bﬂ +B) ) (2.3)

N; being the local coefficients of canonical nonlinear connection N of the Lagrange space
L" = (M, L(x,y)). Now using (1.10) in (2.3), we get

\ ;=B <NJB; + Bgﬁ> - B;‘V;B;. (2.4)
If we take N (N B] +B ﬂ) it follows from (2.4) that
o« X
% = N, — ig/ 25
5 =Ny - BV/By. (2.5)

Thus, we have the following.

Theorem 2.2. The local coefficients of the induced nonlinear connection N of the subspace L™ of an
APL space L™ are given by (2.5).

In view of (2.5), (2.1) takes the following form, for the subspace L™ of an APL space
L™

&5 = 5 + BIVI'Blds, (2.6)

o oa
where 65 = 0 — Nﬂaa.
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We can put (dx', 6y') as (cf. [8])
dx' = Bidu®,  6y' = BL6y* + BLH du", (2.7)
where

Hg = B(N!B, + B}, ). (2.8)
Using (1.10) in (2.8) and simplifying, we get

oi . . s
HZ = B? <N].Bg - B6u> ~ B{V;B,. (2.9)

oa ol . X
Taking H, = B{(N,B}, + B,), in (2.9), it follows that

o a

H? = H, - B'V!B]. (2.10)

Now, dx' = Bidu®, 6y’ = Bi,6y* if and only if HZ? = 0, that is, if and only if ISI“ = BI“V;BfX
Thus, we have the following.

Theorem 2.3. The adapted cobasis (dx',5y) of the basis (0/0x',0/dy") induced by the nonlinear
connection N of an APL space L" is of the form dx' = Bjdu®,6y' = B,6y" if and only if IZI,X =
B{V/B.

Definition 2.4 (cf. [8]). Let D = DI'(N) be the canonical metrical d-connection of L". An
operator D is said to be a coupling of D with N if

DX' = X| du" + X'|,60°%, (2.11)

where X|ia =5, X + XU:;W Xi|a = 0.X" + X]'C;a'
The coefficients (L

ja

C;a) of coupling D of D with N are given by

L, =L}, By + Cj By HY, (2.12)

i, = ClyBs. (2.13)
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Using (1.12) and (1.13) in (2.12), we have

i
Lfﬂ

oi , _ .
= <ij + Vk’C}r + V;C;(r + Vpra”’Crkj> B’E

"

o ‘P" 4 i
+ [C] (I) <6 yk + 6ky7> mg]ky (214)

2(‘/),"()0, _ 2(/)//2) : k
_——C B;H
+(PI((P!+21:'2 ”)yy]yk ﬂ

In view of (2.10) and ;B = 0, (2.14) becomes

v

oi ol o0 a ) ) ) o
L= <L].kB;; + c,.kB’,;Hﬂ> + <V,jc;., +V/Cy, + VyaPCpj — cjrB;BgV,f>B’<

P B
(2.15)
(P” ° ; (P” "
(Gt g ) BLH,
that is,
yi Si i i T i o r Rb
Liy= L+ <Vk Ci, +V/C}, +Vya"Cpj — erBbeV,f>B’ﬂ‘
(2.16)
(P/I ° ; (pl/ ; 3 i
—vy; —g; B:H
+ <(pr y]6k + ‘Pl +2F2q)"g]ky> a-p’
Where L]ﬂ = ]kB + C]kBkHﬂ
Using (1.12) in (2.13), we find that
i p " i
C]ﬂ = C kB + <‘P <6 Yk + 6ky]> T +2F2(P,,g]k]/
(2.17)
2(‘/’”/(/)/ _ 2()0"2) . >
+ /! ! 1 y y yk
¢/ (¢ +2F%")" 7
that is,
i ! ﬂ i " i
C].ﬂ =Cjs < v (6 Yk + 6ky,> J 2y Siky

(2.18)

2 //11_2//2 ;
20"y —29"%) >

(P’(‘P, +2F2(P//) ]/ y]]/k
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ol °

where C ip=C jkB’ﬁ‘. Thus, we have the following.

Theorem 2.5. The coefficients of coupling for the subspace L™ of an APL space L" are given by (2.16)
and (2.18).

Definition 2.6 (cf. [8]). An operator DT given by

D'X" = XiduP + X607, (2.19)

o a _ A o . . .
where X = OpX* + XVLEs X% =0pX* + XVClg, is called the induced tangent connection by

D. This defines an N-linear connection for L™,
The coefficients (L, Cyy) of DT are given by

YB’
a _ pa i j¥i
L: =B (Bﬁy + BﬁLiY>, (2.20)
_ papl =i
Cj, = Bf‘BﬂC}Y. (2.21)

Using (2.16) in (2.20), we get

. oi ) . , oi
L§ = BB} + B;B;‘ [11” + (kac;.r +V/Cp, + Vya?Cryj - C]-rB;BzVIf> By
., , (2.22)
¢ o ¢ i\ ok
(it mgfky’>BﬂHY“]’
that is,
L . ) _ , oi
LS = Bf <B;,Y + L].YB;,> + B;'B;, [(V,{C}, +V/C,, +Vya"Cpj — C]-rB;B;’V,f> By
(2.23)
lp” ° . (pll ; BkHa
+ 2y + —L——g; .
<(P; ]/] k (P/+2F2(Pl;g]ky) atly
o oi .
If we take Ly = Bf‘(BEY + I:]-YB;), the last expression gives
ok . ol
j i i i bysP \ pk
Lgy = LﬁY + Bi”‘Bﬂ [<V,:C}r + V]TC;(T + VpralPCrkj - erBZBka )BY
(2.24)

‘Pl"_i " i\ pkrya
+<(P/ y]6k + (PI+2F2(P”g]ky >BaHY]'
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Next, using (2.18) in (2.21), we obtain

A A ¢ 200" =20") o o\ ik pani
Cﬁ}’ - Bi BﬂC]Y + <a<6]yk + 6ky]> + ‘Pl + 2F2(,0”g]ky + (Pl<(PI + 21:'2(/;1/) YYiYk BYBi Bﬂ
(2.25)
Tf we take C by = Bf‘B;C iys (2.25) becomes

. o ‘P// ;o io (P" o 2((P//1(P1_2(P//2) io o o
CﬂY = CﬂY + <a (6]yk + 6ky]> + mg]ky + Wy YiYk ByBi Bﬂ (226)
Thus, we have the following.

Theorem 2.7. The coefficients of the induced tangent connection DT for the subspace L™ of an APL
space are given by (2.24) and (2.26).

Remarks. The torsion T[‘;‘Y = L% - L%, does not vanish, in general, while SEY = CZY - C;’ﬂ =0.
These facts may be observed from (2.24) and (2.26).

Definition 2.8 (cf. [8]). An operator D* given by

D*X® = X[ du® + X°|,607, (2.27)

where Xi? = 6,X° + XPLY , X9y = 8,X% + XPCY , is called the induced normal connection by
D.
The coefficients (L , Cj ) of D* are given by

Ly, = B!(8,B, + BJLi ), (2.28)
Cg, = B (8,B} + BCS)). (2.29)

Using (2.6) and (2.16) in (2.28), we find

Ly = Bi6,B} + B'BSV!BJd,B;

ol

. ol
] Y i i i P k
+ B, Bf [Liy + <Vkr Clr + Vi Chp +V,a"Crij = C;, BB, Vi > By (2.30)

‘:’iéi " AT T
+<(P, y]6k+ (P/+2F2(P//g1ky>BCHY:|'
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od o .ol o _:
Taking Ly, = B}(6,B,, + B]bLjr) and using y;B, = 0, (2.30) reduces to

od i - . . . . o i .
Ly = Ly + Bi“B;V].PB]Ya,,,B; + (vkrc;., +V/Cl, + VyaPCryj — C]-TBngVIf> BfB{)Bf
1

i pk j
+ (‘0/ +2F2(P/I gfkleC H;BlaBb

Next, using (2.18) in (2.29), we have

!

a al A ni 2 (P" i © i 9 b4 i
Cp. = B; (aYBb + B{,C].Y> + [? <6]'yk + 5kyi> + @ + 2F2 SIY

2<(PW()0,_2(P”2) io o ani
+ / ’ 2F2 " yy]]/k BI;BI B]b
¢ (¢ +2F%¢")

ol

Taking (ofby = B#(0,B + B{JC’ jy) and using (1.9) and yo]-B{; = 0, the last equation yields

U

4 i pk j
FZ(PI/gjkleYBiaBb'

of g ok
Cly = Cor + (1B +

Thus, we have the following.

(2.31)

(2.32)

(2.33)

Theorem 2.9. The coefficients of induced normal connection D* for the subspace L™ of an APL space

L™ are given by (2.31) and (2.33).

Definition 2.10 (cf. [8]). The (mixed) derivative of a mixed d-tensor field T?"'“"'Z is given by

VTt = (8, T8 + TRl et T T LS 4o TE0CLE

STEELE < = TEERLL < TEE L Y dun
+ (BT + TR Cly o+ TGy + o+ THRECE,

The connection 1-forms,
vi . fi a i a
w; = L].adu + C].a6v ,
a_.ya y o Y
wg .Lﬂydu +Cﬂrév ,

a_.ga Y a Y
wy =: Lbydu + beév ,

(2.34)

(2.35)
(2.36)

(2.37)
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are called the connection 1-forms of V. We have the following structure equations of V.

Theorem 2.11 (cf. [8]). The structure equations of V are as follows:

d(du®) - duf A w® = -Q°,

d(6u®) — 5uP A wh = Q%

- w;’ A = -Q (2.38)

dwp, —w, ANwg = -Qp,
where the 2-forms of torsions Q*, Q% are given by

1
a a p Y a p Y
Qf = —Tﬂydu Adu’ + Cﬁ},du A 6v ,

. (2.39)
% = ZR* duPf Y 4 P duf ¥
Q% = 2Rﬁydu Adu +Pﬂydu A6,
with Py = 6YNZ’ — L§, and the 2-forms of curvature Q;, Qf and Qp, are given by
O = LR du® pduP + P jdu® A 650 + 13 50% A GoP
i = 5 Riapdu® ndul + Pipydu® £ 60F + 555,,60% 1 607,
1 6 5, 1 6
Qg = ERgrﬁqu Adu® + Pgrﬁduy A 60° + ESgyﬁ&JY A 67°, (2.40)
1 1
Qf = 5 Rygpdu A duf + Py sdu® A 50P + 5 Shap®0" A 6vF.
We will use the following notations in Section 4:
(a) Qij = Qf’zahjr (b) Qaﬁ = Qzayﬂ/ (c) Qap = Qlc,dzc- (241)

3. The Gauss-Weingarten Formulae

The Gauss-Weingarten formulae for the subspace L™ = (M, L(u,v)) of a Lagrange space L"
are given by (cf. [8])

VB, =Bill%,  VBi=-Bill, (3.1)
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where

I = Hyzdu + K3,607,

(3.2)
Hg = gﬂy6abnb/
(a) H, = BY (5[,19; + Bg,tj.ﬂ>, (b) K&y = BIBLCY. (3.3)
Using (2.6) and (2.16) in (3.3)(a), we have
ol )
Hj, = Bf <6ﬂBl +B] L]ﬂ> - B“BYV”B;,BIY
. . . ol :
+ <kac;.r +V/Cp, +Vya?Cpyj — Cj,BZBr’jVIf)BfBﬁ,B’ﬂ‘ (3.4)
¢ o ¢’ ) kprbpap/
—j — g B, H;B;'B,.
+ <(P/ ]6k + (p/ +2F2(png]ky p-i
. ol
If we take H ap = B“(6ﬂB’ + B} L]ﬂ) the last expression provides
oa . X ) X ol .
H{; = H,s+B{B,V/ BB + <v,;c;.r +V/Cp, +Vya?Cpyj - cjngBgv,f>BfBng
3.5
¢ o ' k7b >
apl
<(p Yibi + mg]ky)B HyB;'By.
Next, using (2.18) in (3.3)(b) and keeping (1.9) in view, we find
a " m,or 1/2
a _ 0 p . i 2(()0 ) a k
Ko Ko (s iy o0, a0

ol

where K ap = = B*B,C; jp- Thus, we have the following.

Theorem 3.1. The following Gauss-Weingarten formulae for the subspace L™ of an APL space hold:

VB, =BillS,  VBi=-Bill, (3.7)
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where

M8 = Hidu + K&60f, T = gP61Te,

oa H . . . . oi H
H; = H,s+B{B,V/ BB, + <Vk’C}r +V/C,, +Vya"Cpj — cjrB;Bf;V;’) B{B;Bj

i

o " , (3.8)
Y osi+ % o i \B*H"B B
+ <(P/ y]ék + (P1+2F2(P;;g]ky )Bb ﬁBl B'X’

. oa (PI/ o 2((;)///(‘01_90//2) io o T
Kaﬁ - K“ﬂ + <(PI +2F2(Pug]ky + (P,((PI +2F2(Pn)yy]yk Bi B”‘Bﬂ'

Remark 3.2. Hj, and K74 given, respectively, by (3.5) and (3.6) are called the second
fundamental d-tensor fields of immersion i.
The following consequences of Theorem 3.1 are straightforward.

Corollary 3.3. In a subspace L™ of an APL space, we have the following:

(ﬂ) Vaaﬂ =0,
, (3.9)
(b) VB, =0,
if and only if
Hgy= - [BfB;V]PB;B;Y + <Vk’c;i, +V/Cl, + VyaPCryj — c].,B;B;;v;’) B?BLB}
9" o " . i\pkrybpapi
+< ¢ Yio) + ¢+ 2F2(p”g]ky )BbHﬂBi B“]' (3.10)
m,r . on2
B 2O e N
S T e N TR D Ma A

4. The Gauss-Codazzi Equations

The Gauss-Codazzi Equations for the subspace L™ = (M, L(u,v)) of a Lagrange space L" are
given by (cf. [8])

B;,B;Q,,- — Qup = Ty ATIY, (4.1)
BiBJGj — Qg = Ty, ATTS, (42)
~ByBICYj = 6, (AT + 11

bnwh -TIg Awh), (4.3)
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where
(@) Maa = gaplTa, (b)) Ty, = GpTLE. (4.4)
Using (1.3) in (2.41)(a), we find that
ij = ¢/ gy + 20" Qyny;. (4.5)

Applying a3 = B;Béaij in (2.41)(b), we have Qup = B;Bé@gaij, which in view of (1.3)
becomes

Qup = ¢/ B, BJQL + 2011/ B BjQL, (4.6)
that is,

Qup = ¢/ gypQ + 29" By BJQL. (47)

For the subspace L™ of an APL space, (4.4)(a) is of the form I1,, = aaﬁl_[Z, which in view of

Aap = Bleéai]- and (1.3) becomes I',, = (p’Bleéa,-ng + 2(p”§i§iB;B£H§, that is,

Tea = ¢/ gupTTa + 2"y BL BT (4.8)

Thus, we have the following.

Theorem 4.1. The Gauss-Codazzi equations for a Lagrange subspace L™ of an APL space are given
by (4.1)—(4.3) with Iy, Iy, Qij, Qup, and w?, respectively, given by (4.8), (4.4)(b), (4.5), (4.7),
and (2.37).
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