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A one-parameter 4-point sixteenth-order King-type family of iterative methods which satisfy
the famous Kung-Traub conjecture is proposed. The convergence of the family is proved, and
numerical experiments are carried out to find the best member of the family. In most experiments,
the best member was found to be a sixteenth-order Ostrowski-type method.

1. Introduction

Solutions of nonlinear equations by iterative methods have been of great interest to numerical
analysts. One of the popular methods is the classic Newton method (Newton Raphson
method). It has quadratic convergence close to the root, that is the number of good digits is
roughly doubled at each iteration. Higher order methods which require the second or higher
order derivatives can be costly and thus time consuming. Also, the Newtonmethod can suffer
from numerical instabilities. It is consequently important to study higher order variants of
Newton’s method, which require only function and first derivative calculation and are more
robust as compared to Newton’s method. Such methods are known as multipoint Newton-
Like methods in the Traub sense [1]. Multipoint methods without memory are methods that
use new information at a number of points. It is an efficient way of generating higher order
methods free from second and higher order derivatives. For a survey of thesemethods, please
refer to [2–4]. In this work, we develop a one-parameter 4-point sixteenth-order King-type
family of iterative methods, which satisfy the famous Kung-Traub conjecture. We prove the
local convergence of the methods and its asymptotic error constant. We test our methods by
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varying the parameter of the family in a suitable interval and obtain the best value of the
parameter for the methods with the highest computational order of convergence. We also
compare our methods with other optimal sixteenth order methods. Furthermore, we test the
family with two more nonlinear functions and find the best member based on the highest
number of successful converging points and lowest mean iteration number.

2. Preliminaries

Let xn+1 = ψ(xn) define an iterative function (IF).

Definition 2.1 (see [6]). If the sequence {xn} tends to a limit x∗ in such a way that

lim
n→∞

xn+1 − x∗

(xn − x∗)p
= C (2.1)

for p ≥ 1, then the order of convergence of the sequence is said to be p, and C is known as
the asymptotic error constant. If p = 1, p = 2, or p = 3, the convergence is said to be linear,
quadratic, or cubic, respectively.

Letting en = xn − x∗, then the relation

en+1 = C e
p
n +O

(
e
p+1
n

)
= O

(
e
p
n

)
(2.2)

is called the error equation. The value of p is called the order of convergence of the method.

Definition 2.2 (see [6]). The efficiency index is given by

IE = p1/d, (2.3)

where d is the total number of new function evaluations (the values of f and its derivatives)
per iteration.

Kung-Traub Conjecture (see [7])

Let ψ be an IF without memory with d evaluations. Then

p
(
ψ
) ≤ popt = 2d−1, (2.4)

where popt is the maximum order.
We use the approximate computational-order of convergence, COC [8] given by

COC ≈ log{|xn+1 − x∗|/|xn − x∗|}
log{|xn − x∗|/|xn−1 − x∗|} . (2.5)
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3. Developments of the Methods

The second-order Newton-Raphson method is given by

ψ2ndNR(x) = x − f(x)
f ′(x)

. (3.1)

It is an optimal 1-point IF with efficiency index of 1.414.
A one-parameter King family of fourth-order IF [9] is given by

ψ4th FK(x) = ψ2ndNR(x) −
f
(
ψ2ndNR(x)

)

f ′(x)
1 + βt1

1 +
(
β − 2

)
t1
. (3.2)

The members of the family are 2-point I.F.s with efficiency index of 1.587. The case
β = 0 corresponds to the famous Ostrowski method [6].

Several optimal eight-order methods are developed in [10–12]. Recently, Thukral and
Petković [13] developed a family of optimal eighth-order King-type IF given by

ψ8th FTPK(x) = ψ4th FK(x) −
(
φ(t1) + 4t2 + t3

)f(ψ4th FK(x)
)

f ′(x)
, (3.3)

where

t1 =
f
(
ψ2ndNR(x)

)

f(x)
, t2 =

f
(
ψ4th FK(x)

)

f(x)
, t3 =

f
(
ψ4th FK(x)

)

f
(
ψ2ndNR(x)

) , (3.4)

and φ is a weight function satisfying

φ(0) = 1, φ′(0) = 2, φ′′(0) = 10 − 4β, φ′′′(0) = 12β2 − 72β + 72. (3.5)

If we choose

φ(t1) =
1 + βt1 + (3/2)βt21

1 +
(
β − 2

)
t1 +

(
(3/2)β − 1

)
t21

(3.6)

satisfying (3.5), we get a family of optimal eighth-order IF given by

ψ8th FK(x) = ψ4th FK(x) −
(

3∑
i=0

θi

)
f
(
ψ4th FK(x)

)

f ′(x)
, (3.7)
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where

θ0 = 1,

θ1 =
1 + βt1 + (3/2)βt21

1 +
(
β − 2

)
t1 +

(
(3/2)β − 1

)
t21

− 1,

θ2 = t3,

θ3 = 4t2.

(3.8)

The members of the family are 3-point eighth-order I.F.s with efficiency index of 1.682.
Geum and Kim [14] developed a biparametric family of optimally convergent

sixteenth-order 4-point I.F. with their fourth-step weighting function as a sum of a rational
and a generic two-variable function:

y = x − f(x)
f ′(x)

,

z = y −K1(u1)
f
(
y
)

f ′(x)
,

s = z −K2(u1, u2, u3)
f(s)
f ′(x)

,

ψ16th FGK1(x) = s −K3(u1, u2, u3, u4)
f(s)
f ′(x)

,

(3.9)

where

K1(u1) =
1 + βu1 +

(−9 + 5β/2
)
u21

1 +
(
β − 2

)
u1 +

(−4 + β/2) ,

K2(u1, u2, u3) =
1 + 2u1 + (2 + σ)u3

1 − u2 + σu3 ,

K3(u1, u2, u3, u4) =
1 + 2u1 + (2 + σ)u2u3

1 − u2 − 2u3 − u4 + 2(1 + σ)u2u3
+K4(u1, u3)

(3.10)

are weighting functions,K4 : C
2 → C is an analytic function in a region containing the region

(0, 0), β, σ are to be chosen freely, and

u1 =
f
(
y
)

f(x)
, u2 =

f(z)
f
(
y
) , u3 =

f(z)
f(x)

, u4 =
f(s)
f(z)

. (3.11)
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We consider the case (β, σ) = (2,−2) and

K4(u1, u3) = 1 − 6 u1 − u21 − 24 u31 −
1
2
(−2 u1 + 2)u32 (3.12)

for numerical experiments and term the I.F. as 16th GK1.
Geum and Kim [15] proposed another family of optimal sixteenth-order 4-point I.F.s

with a linear fraction plus a trivariate polynomial as the fourth-step weighting function. Their
family is given by

ψ16th FGK2(x) = s − 1 + 2u1
1 − u2 − 2u3 − u4

f(s)
f ′(x)

+K5(u1, u2, u3), (3.13)

where K5 : C
3 → C is an analytic function in a region containing the region (0, 0, 0) and β, σ

are to be chosen freely.
We consider the case (β, σ) = (24/11,−2) and

K5(u1, u2, u3) = −6u31u2 −
244
11

u41u3 + 6u23 + u1
(
2u22 + 4u32 + u3 − 2u22

)
(3.14)

for numerical experiments and term the I.F. as 16thGK2.
We observe that the 16th FGK1 and 16th FGK2 family of IFs require two parameters

and an analytic function. Therefore, we develop a simplified one-parameter optimal 4-point
sixteenth-order King-type family of IFs based on 4th FK and 8th FK families. We propose the
following family:

ψ16th FK(x) = ψ8th FK(x) −
(

7∑
i=0

θi

)
f
(
ψ8th FK(x)

)

f ′(x)
, (3.15)

where

θ4 = t5 + t1t2,

θ5 = 2t1t5 + 4
(
1 − β)t31t3 + 2t2t3,

θ6 = 2 t6 +
(
7 β2 − 47

2
β + 14

)
t3t

4
1 +

(
2 β − 3

)
t22 +

(
5 − 2 β

)
t5t

2
1 − t33,

θ7 = 8 t4 +
(
−12 β + 12 + 2 β2

)
t5t

3
1 − 4t33 t1

+
(
−2 β2 − 22 + 12 β

)
t23t

3
1 +

(
46 +

127
2

β2 − 105 β − 10 β3
)
t2t

4
1,

(3.16)

t4 =
f
(
ψ8thFK(x)

)

f(x)
, t5 =

f
(
ψ8thFK(x)

)

f
(
ψ4thFK(x)

) , t6 =
f
(
ψ8thFK(x)

)

f
(
ψ2ndNR(x)

) . (3.17)
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4. Convergence Analysis of the 16th FK Family of IFs

In this section, we prove the local and sixteenth-order of the 16th FK family of I.F.s using
classical Taylor expansion.

Theorem 4.1. Let a sufficiently smooth function f : D ⊂ R → R have a simple root x∗ in the open
interval D. Then the class of methods without memory (3.15) is of local sixteenth-order convergence.

Proof. Let

cj =
f (j)(x∗)

j!f ′(x∗)
, j = 2, 3, 4, . . . . (4.1)

Using the Taylor series and the symbolic software such as Maple we have

f(x) = f ′(x∗)
[
en + c2e2n + c3e

3
n + c4e

4
n + · · ·

]
, (4.2)

f ′(x) = f ′(x∗)
[
1 + 2c2en + 3c3e2n + 4c4e3n + · · ·

]
, (4.3)

so that

u(x) = en − c2e2n + 2
(
c22 − c3

)
e3n +

(
7c2c3 − 4c32 − 3c4

)
e4n + · · · , (4.4)

ψ2ndNR(x) − x∗ = c2e2n − 2
(
c22 − c3

)
e3n −

(
7c2c3 − 4c32 − 3c4

)
e4n + · · · . (4.5)

Now, the Taylor expansion of f(y) about x∗ gives

f
(
y
)
= f ′(x∗)

[(
y − x∗) + c2

(
y − x∗)2 + c3

(
y − x∗)3 + c4

(
y − x∗)4 + · · ·

]
. (4.6)

Using (4.2), (4.6), and (4.5), we have

t1 = c2en +
(
2 c3 − 3 c22

)
e2n +

(
3 c4 − 10 c2c3 + 8 c32

)
e3n

+
(
−14 c2c4 + 37 c3c22 − 20 c42 − 8 c23 + 4 c5

)
e4n + · · · ,

(4.7)

so that

ψ4th FK(x) − x∗ =
((

1 + 2 β
)
c32 − c2c3

)
e4n + · · · . (4.8)
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Similarly, we have

t2 =
((

1 + 2 β
)
c32 − c2c3

)
e3n

+
(
−2 c23 +

(
9 + 12 β

)
c22c3 +

(
−5 − 14 β − 2 β2

)
c42 − 2 c2c4

)
e4n + · · · ,

(4.9)

t3 =
((

1 + 2 β
)
c32 − c2c3

)
e2n +

((
4 + 8 β

)
c2c3 +

(
−2 − 8 β − 2 β2

)
c32 − 2 c4

)
e3n + · · · (4.10)

so that

θ0 = 1,

θ1 =
((

4 β + 2
)
c22 − 2 c3

)
e2n

+
((

16 β + 8
)
c2c3 +

(
−16 β − 4 β2 − 4

)
c32 − 4 c4

)
e3n + · · · ,

θ2 =
((

1 + 2 β
)
c32 − c2c3

)
e2n

+
((

4 + 8 β
)
c2c3 +

(
−2 − 8 β − 2 β2

)
c32 − 2 c4

)
e3n + · · · ,

θ3 =
((

4 + 8 β
)
c32 − 4 c2c3

)
e3n + · · · ,

(4.11)

and finally we get

ψ8th FK(x) − x∗ =
((

−c3c22 +
(
1 + 2 β

)
c42

)
c4 − c2c33 +

(
16 + 4 β

)
c2

3c3
2

+
(
−27 − 111

2
β − β2

)
c52c3

+
(
12 +

95
2
β + 44 β2 − 6 β3

)
c72

)
e8n + . . . .

(4.12)

By a similar argument, we have

t4 =
((

−c3c22 +
(
1 + 2 β

)
c42

)
c4 − c2c33 +

(
16 + 4 β

)
c32c

2
3

+
(
−27 − 111

2
β − β2

)
c52c3 +

(
12 +

95
2
β + 44 β2 − 6 β3

)
c72

)
e7n + · · · ,

t5 =
(
c23 +

(−15 − 2 β
)
c22c3 +

(
12 − 3 β2 +

47
2
β

)
c42 + c2c4

)
e4n + · · · ,
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t6 =
((

−c2c3 +
(
1 + 2 β

)
c32

)
c4 − c33

+
(
16 + 4 β

)
c22c

2
3 +

(
−27 − 111

2
β − β2

)
c2

4c3

+
(
12 +

95
2
β + 44 β2 − 6 β3

)
c62

)
e6n + · · · ,

(4.13)

so that

θ4 =
(
c3

2 +
(−16 − 2 β

)
c22c3 +

(
13 − 3 β2 +

51
2
β

)
c42 + c2c4

)
e4n + · · · ,

θ5 =
(
4 c2c23 +

(−38 − 8 β
)
c32c3 +

(
30 − 6 β2 + 59 β

)
c52 + 2 c22c4

)
e5n + · · · ,

θ6 =
((

−2 c2c3 +
(
7 + 2 β

)
c32

)
c4 − c33 +

(
31 + 2 β

)
c22c

2
3

+
(
−134 − β2 − 95

2
β

)
c42c3 +

(
−30 β2 + 94 + 8 β3 + 177 β

)
c62

)
e6n + · · · ,

θ7 =
((

−8 c3c22 +
(
20 + 4 β + 2 β2

)
c42

)
c4 − 4 c2c33 +

(
8 β + 106

)
c32c

2
3

+
(
−147

2
β2 + 14 β3 − 386 − 71 β

)
c52c3

+
(
−357

2
β2 − 34 β4 + 260 + 405 β + 160 β3

)
c72

)
e7n + · · · ,

(4.14)

and finally we get

ψ16th FK(x) − x∗

=
((

− c32c43 +
(
−c23c42 +

(
4 β + 2

)
c62c3 +

(
−1 − 4 β − 4 β2

)
c82

)
c4

+
(
6 β + 17

)
c52c

3
3 +

(
−12 − 82 β3 − 139 β2 + 12 β4 − 143

2
β

)
c112

+
(
−9 β2 − 43 − 183

2
β

)
c72c

2
3 +

(
39 + 156 β2 + 157 β − 4 β3

)
c92c3

)
c5

+
(
−c42c3 +

(
1 + 2 β

)
c62

)
c34

+
((

16 β + 66
)
c52c

2
3 +

(
−4 β4 + 81 + 219 β + 124 β2 + 18 β3

)
c92

+
(
−189 β + 2 β3 − 26 β2 − 143

)
c72c3 − 4 c32c

3
3

)
c24
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+
((

22 β + 140
)
c42c

4
3 +

(
9 β4 − 210 β3 +

6805
4

β2 + 3933 + 4784 β
)
c82c

2
3

+
(
2 β3 − 699 β − 1349 − 34 β2

)
c62c

3
3

− 4 c22c
5
3 +

(
−19539

4
β2 + 891 β4 − 4255 − 10278 β − 2682 β3 − 72 β5

)
c102 c3

+
(
1535 + 92 β6 +

11823
2

β2 + 5963 β +
2829
2

β3 + 1863 β4 − 882 β5
)
c122

)
c4

+
(
−20627 β6 + 4028 β7 − 240 β8 +

88033
2

β +
260321

4
β2 +

134363
8

β3 +
40171

4
β4

+
58839
2

β5 + 8484
)
c152 − c73c2 +

(
6 β + 60

)
c32c

6
3 +

(
β2 − 777

2
β − 1134

)
c52c

5
3

+
(
−3778 β6 − 32541 − 234997

2
β +

60929
2

β5

−60462 β4 + 62 β7 − 95165 β2 − 75499
4

β3
)
c132 c3

+
(
12567
2

β − 242 β3 +
4585
4

β2 + 17 β4 + 8769
)
c72c

4
3

+
(
177 β6 − 133

2
β5 − 52923

4
β4 + 46415 +

354947
8

β3 + 103054 β +
167505

4
β2
)
c112 c

2
3

+
(
−35257 β − 30052 − 108 β5 − 74875

4
β2 +

725
2

β3 + 920 β4
)
c92c

3
3

)
e16n + . . . .

(4.15)

In the next section, we carry out numerical experiments to find the best member of the
family and compare it to the Geum and Kim sixteenth-order IFs

5. Numerical Experiments

The test functions and their exact root x∗ are displayed in Table 1. The approximation xn
is calculated by using the same total number of function evaluations (TNFE) for all I.F.s
considered. In the calculations, 15 TNFE are used by each I.F. For the 16th FK family, we
choose a suitable range of values of β, which are based on the initial approximation of the root.
a indicates the values of β excluded in the range because of invalid estimate. The best value
of β is chosen based on the smallest value of |x3 − x∗| and the highest computational-order of
convergence (COC). The range and best value of β are given in Table 2 for each function with
its starting point. For most functions, the best value of β = 0, which corresponds to optimal
4-point sixteenth-order Ostrowski-type I.F. Furthermore, the approximation x3 − x∗ and the
computational order of convergence (COC) for the best member of the 16th FK family and the
16thGK1 and 16thGK2 IFs are displayed in Table 3. The results show that the best member of
the 16th FK family gives the smallest value of |x3 −x∗| for f4, f6, f7 when compared to Geum
and Kim sixteenth order IF.
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Table 1: Test functions and their roots.

f1(x) = exp(x) sin(x) + ln(1 + x2) x∗ = 0
f2(x) = x15 + x4 + 4x2 − 15 x∗ = 1.148538 . . .
f3(x) = (x − 2)(x10 + x + 1) exp(−x − 1) x∗ = 2
f4(x) = (x + 1) exp(sin(x)) − x2 exp(cos(x)) − 1 x∗ = 0
f5(x) = sin2(x) − x2 + 1 x∗ = 1.40449165 . . .
f6(x) = exp(−x) − cos(x) x∗ = 0
f7(x) = ln(x2 + x + 2) − x + 1 x∗ = 4.15259074 . . .

Table 2: Range and the best value of β for the 16th FK family.

Function Range Best value of β
f1, x0 = 1 [−5, 5]a, a = −3,−2 0
f2, x0 = 1.3 [−5, 5]b, b = −3,−2,−1 0
f3, x0 = 2.5 [−5, 5]c, c = −1 0
f4, x0 = 0.25 [−5, 5] 1
f5, x0 = 2.5 [−2, 5] 0
f6, x0 = 1/6 [−5, 4] 0
f7, x0 = 3.5 [−5, 5] −1

Table 3: Comparison of optimal 4-point sixteenth-order I.F.s.

function 16th FK 16th GK1 16th GK2
|x3 − x∗| COC |x3 − x∗| COC |x3 − x∗| COC

f 1, x 0 = 1 0.137e-362 15.989 0.353e-581 15.981 0.103e-522 15.998
f 2, x 0 = 1.3 0.898e-670 16.000 0.994e-782 16.000 0.723e-811 15.987
f 3, x 0 = 2.5 0.479e-200 15.928 fail fail 0.819e-316 15.978
f 4, x 0 = 0.25 0.492e-3155 16.000 0.241e-2455 16.000 0.516e-2071 16.000
f 5, x 0 = 2.5 0.142e-810 16.000 0.164e-1147 15.993 0.452e-1020 16.000
f 6, x 0 = 1/6 0.224e-1702 16.000 0.172e-1004 15.992 0.782e-892 16.000
f 7, x 0 = 3.5 0.927e-4464 16.000 0.241e-4144 16.000 0.136e-3763 16.000

We next test the 16th FK family by varying the starting points. Let us consider the
functions f2 and f7. We focus on the behaviour of the IFs with the starting points, which are
equally spaced with Δx = 0.1 in the intervals (−3.9, 6.1] for f2 and (−0.9, 9.1] for f7 to check
the robustness of the IFs. A starting point was considered as divergent if it does not satisfy the
condition |xn+1 − xn| < 10−13 in at most 100 iterations. We denote the quantity ωc as the mean
number of iterations from a successful starting point until convergence with |xn+1−xn| < 10−13.
LetNs denote the number of successful points of 100 starting points. We test for 101 β of the
family with Δβ = 0.1 in the interval [−5, 5]. Figure 1 shows the variation of the converging
points and mean iteration number with respect to β for the function f2. We can observe the
family is globally convergent for the values of β ∈ [−1.2,−0.7] and β = −0.3, 0.1, 0.5, 0.9. It
is the member β = −0.8 that has the smallest mean iteration number and is the most efficient
member for f2. In Figure 2, we observe that the family is globally convergent for the function
f7 for all given values of β. It is the member β = 0.2 which has the lowest mean iteration
number. Figure 3 shows the number of iterations needed to achieve convergence is 2 for
any starting point in the interval [2,8.3] enclosing the root. This illustrates the high speed of
convergence of the method. That is, higher order I.F. can converge in few iterations even if
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Figure 1: Behaviour of 16th FK family for the function f2.
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Figure 3: Behaviour of the number of iterations for convergence with the starting point x0 of the member
β = 0.2 of the 16th FK family for the function f7.

the starting point is not very close to the root. We consider two more test functions, one of
which is of simple cubic type [16, 17]

f8(x) = x3 + lnx, x > 0, x ∈ R (5.1)

for which the logarithm restricts the function to be positive and its convex properties of
the function are favorable for global convergence [16, 17]. We test for 100 starting points
in the interval (0, 10]. The root x∗ = 0.704709490254913 correct to 14 digits. A starting point
was considered as divergent if it does not satisfy the convergence condition in at most 100
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Figure 4: Behaviour of 16th FK family for the Cubic function.
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Figure 5: Behaviour of 16th FK family for the Oscillatory Cubic function.

iterations together with x ≤ 0 at any iterates. A similar analysis is performed for another test
function, the Oscillatory Cubic [16, 17]:

f9(x) = x3 + lnx + 0.15 cos(50x) (5.2)

in which the single root has been moved marginally to x∗ = 0.717519716444759 but many
local extrema have been introduced on a small scale [17]. This means that when the iterates
of the I.F.s fall in the region where f ′(x) = 0, they become zero or negative, causing them to
diverge.

Figure 4 shows the variation of the converging points and mean iteration number with
respect to β for the Cubic function. It can be observed that the 16th FK family is globally
convergent for β = −5, −0.1, 0, 0.1, and β ≥ 0.4. This is the member β = 0, which is the most
efficient I.F. since it is globally convergent with the smallest mean iteration number of 3.25.
We note that the family has many diverging points for negative values of β.

Figure 5 shows the variation of the converging points and mean iteration number with
respect to β for the Oscillatory Cubic function. It can be observed that due to the perturbations
the 16th FK family has difficulty with this function because its members have less than 40% of
starting points successfully converging. The mean of the IFs has also risen. The most efficient
member of the family with the highest number of converging points (38) is the member β = 3
with mean 17.

6. Conclusion

We develop a 4-point sixteenth order King family of iterative methods. We prove the local
convergence of the methods. We test the family via some numerical experiments to find the
best member, which corresponds to a sixteenth-order Ostrowski method for most cases.
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