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We prove some further properties of the operator T ∈ [nQN] (n-power quasinormal, defined in
Sid Ahmed, 2011). In particular we show that the operator T ∈ [nQN] satisfying the translation
invariant property is normal and that the operator T ∈ [nQN] is not supercyclic provided that it is
not invertible. Also, we study some cases in which an operator T ∈ [2QN] is subscalar of order m;
that is, it is similar to the restriction of a scalar operator of order m to an invariant subspace.

1. Introduction

Although normality of operators (T ∗T = TT ∗) makes things easier, it rarely occurs and
relaxing the normality condition is essential in the theory of operators on Hilbert spaces.
One of the most important subclasses of the algebra of all bounded linear operators acting on
a Hilbert space, the class of hyponormal operators, has been studied by many authors (see
[1]). In recent years this class has been generalized, in some sense, to larger classes of the so-
called p-hyponormal, log-hyponormal, posinormal, k-quasihyponormal classes, and so forth
(see [2–6]).

In [7], Putinar showed that hyponormal operators are subscalar. This fact has led to
far-reaching results, discovering deep properties of these operators. In this paper we extend
that result to other generalized classes of operators.

Let H be an infinite dimensional separable complex Hilbert space, let K be a complex
Hilbert space, and let L(H,K) be the algebra of all bounded linear operators from H to K.
We write L(H) for L(H,H). If T ∈ L(H,K), we will write N(T) and R(T) for the null space
(also referred to as the reducing subspace) and the range of T , respectively. The spectrum,
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the point spectrum, and the approximate point spectrum of an operator T are denoted by
σ(T), σp(T), σap(T), respectively. T ∗ means the adjoint of T .

An operator T ∈ L(H) is

(1) hyponormal if and only if TT ∗ ≤ T ∗T ⇔ ‖T ∗x‖ ≤ ‖Tx‖, for all x ∈ H,

(2) posinormal if and only if R(T) ⊂ R(T ∗), or equivalently TT ∗ ≤ λ2T ∗T for some λ > 0,

(3) p-hyponormal if and only if (TT ∗)p ≤ (T ∗T)p, 0 < p ≤ 1,

(4) p-quasihyponormal if and only if T ∗[(TT ∗)p − (T ∗T)p]T ≤ 0, 0 < p < 1,

(5) log-hyponormal if T is invertible and log(TT ∗) ≤ log(T ∗T),

(6) 2-isometry if and only if T ∗2T2−2T ∗T +I = 0 (see [8]), where I indicates the identity
operator that is, if and only if

T ∗2T2 = 2T ∗T − I. (1.1)

An operator T ∈ L(H) is said to be n-power quasinormal (abbreviated as nQN), n = 1, 2, . . .,
if

TnT ∗T = T ∗TTn = T ∗Tn+1. (1.2)

If n = 1, T is called quasinormal. This class of operators being denoted by [nQN], that is,

[nQN] := {T ∈ L(H) : TnT ∗T − T ∗TTn = 0} (1.3)

was studied by the author [9].
T is called an m-partial isometry if T satisfies

TBm(T) = T
m∑

k=0

(
m

k

)
(−1)kT ∗m−kTm−k = 0, (1.4)

where Bm(T) is obtained formally from the binomial expansion of Bm(T) = (T ∗T − I)m by
understanding (T ∗T)m−k = T ∗m−kTm−k. The case when m = 1 is called the partial isometries
class. The class ofm-partial isometries was defined by Saddi and Sid Ahmed [10]who proved
some properties of the class. See Proposition 5.4.

This paper is divided into five sections. Section 2 deals with some preliminary facts
concerning function spaces. Section 3 includes our main results. There we study some
properties of [nQN]. In particular we show that an operator T ∈ [nQN] satisfying the
translation invariant property is normal, and an invertible operator T ∈ [nQN] and its
inverse T−1 have a common nontrivial invariant closed set provided that T ∗ ∈ [nQN]. Also
we show that some of class [2QN] satisfy an analogue of the single-valued extension for
Wm

2 (D,H) and have scalar extension. In Section 4, we give some results about the Berberian
extension. In Section 5, we shall use some properties of the approximate spectrum to obtain
some results on single-valued extension (SVEP) (see Section 2) property for the m-partial
isometries operators.
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2. Spaces of Vector-Valued Functions

We will need the following function spaces.
Let λ be the coordinate in C and let dμ(λ) denote the planar Lebesgue measure. Let

D be a bounded open subset of C. We will denote by L2(D,H) the Hilbert space of square
measurable (or summable) functions f : D → H such that

∥∥f
∥∥
2,D =

{∫

D

∥∥f(λ)
∥∥2dμ(λ)

}1/2

< ∞. (2.1)

Let O(D,H) denote the space of H-valued functions analytic on D, that is, ∂f =
∂f/∂z = 0. Equipped with the topology of uniform convergence on compact subsets of D,
O(D,H) is a Frechet space. Let

A2(D,H) = L2(D,H) ∩O(D,H) (2.2)

denote the Bergman space forD consisting of square measurable functions f that are analytic
on D.

We denote by P the orthogonal projection of L2(D,H) onto A2(D,H).
Let us define now a special Sobolev type space. Let m be a fixed nonnegative integer.

The Sobolev space Wm
2 (D,H) of order m of vector-valued functions with respect to ∂ will

be the space of those functions f ∈ L2(D,H) whose derivatives ∂f, . . . , ∂
m
f in the sense of

distributions also belong to L2(D,H), that is,

Wm
2 (D,H) =

{
f ∈ L2(D,H) : ∂

k
f ∈ L2(D,H), for k = 0, 1, . . . , m

}
. (2.3)

Endowed with the norm

∥∥f
∥∥2
Wm

2
=

m∑

k=0

∥∥∥∥∂
k
f

∥∥∥∥
2

2,D
. (2.4)

Wm
2 (D,H) becomes a Hilbert space contained continuously in L2(D,H); that is, there is a

constant 0 < C < ∞ such that ‖f‖L2(D,H) ≤ C‖f‖Wm
2 (D,H) for all f ∈ Wm

2 (D,H).
Let

Tλ = T − λ = T − λI (2.5)

for λ ∈ C once and for all, whenever the definition is meaningful. We say that T has the single-
valued extension property at λ0 ∈ C (abbreviated SVEP at λ0) if, for every open neighborhood
U of λ0, the only analytic solution f to the equation

(
Tλf
)
(λ) = (T − λ)f(λ) = 0 (2.6)
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for all λ in U is the constant function f ≡ 0. We say that T has SVEP if T has a SVEP at every
λ ∈ C.

It is easily seen that an operator T ∈ L(H) has SVEP if and only if, for each open
D ⊆ C.

The operator TD : O(D,H) → O(D,H) defined by

TD
(
f
)
(λ) = Tλf(λ) ∀f ∈ O(D,H), λ ∈ D. (2.7)

is one to one.
Recall that, for a bounded operator T on H, the local resolvent set ρT (x) of T at the

point x ∈ H is defined as the union of all open subsets D of C such that there exists an
analytic function f : D → H which satisfies

(Tλ)f(λ) = x ∀λ ∈ D. (2.8)

The local spectrum σT (x) of T at x ∈ H is the set defined by σT (x) := C \ ρT (x) and obviously
σT (x) ⊂ σ(T). It is clear from the definition that, T has SVEP if and only if zero is the unique
vector x ∈ H such that σT (x) = ∅ (see for more details [11]).

Recall that a bounded operator T ∈ L(H) is said to have the Bishop’s property (β)
if for every open subset D of the complex plane C and every sequence of analytic functions
fn : D → H with the property that

Tλfn(λ) −→ 0 as n −→ ∞, (2.9)

uniformly on all compact subsets of D, fn(λ) → 0 as n → ∞ locally uniformly on D or
equivalently, for every open subset D of C, the operator TD defined in (2.7) is one to one and
has the closed range [11, Proposition 3.3.5]. It is a very important notion in spectral theory. It
is wellknown that every normal operator has Bishop’s property (β).

A bounded operator T on H is called scalar of order m if it possesses a spectral
distribution of order m, that is, if there is a continuous unital morphism,

Φ : Cm
0 (C) −→ L(H), (2.10)

such that Φ(z) = T , where z stands for the identity function on C and Cm
0 (C) for the space

of compactly supported functions on C, continuously differentiable of order m, 0 ≤ m ≤ ∞.
An operator is subscalar if it is similar to the restriction of a scalar operator to an invariant
subspace.

Let Mz be the operator on Wm
2 (D;H) such that (Mzf)(z) = zf(z) for f ∈ Wm

2 (D;H).
This has a spectral distribution of orderm, defined by the functional calculus ΦM : Cm

0 (C) →
L(Wm

2 (D,H)); ΦM(f) = Mf . Therefore Mz is a scalar operator of order m. Consider a
bounded open disk D which contains σ(T) and the quotient space

H(D) =
Wm

2 (D,H)

TzW
m
2 (D,H)

(2.11)
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endowed with the Hilbert space norm. We denote the class containing a vector f or an
operator A on H(D) by f̂ or Â, respectively. Let Mz be the operator of multiplication by
z on Wm

2 (D;H). As noted above, Mz is a scalar of order m and has a spectral distribution Φ.
Let S ≡ M̂z. Since TzW

m
2 (D,H) is invariant under every operator Mf ; f ∈ Cm

0 (C), we infer
that S is a scalar operator of order m with spectral distribution Φ̂. Consider the natural map
V : H → H(D) defined by Vh = [̂1 ⊗ h], for h ∈ H, where 1⊗h denotes the constant function
identically equal to h. In [7], Putinar showed that if T ∈ L(H) is a hyponormal operator then
V is one to one and has closed range such that VT = SV , and so T is subscalar of order m.

3. Further Properties of the Class [nQN]

We start this section with some properties of n-power quasinormal operators.

Theorem 3.1. The class [nQN] has the following properties.

(1) The class [nQN] is closed under unitary equivalence and scalar multiplication.

(2) If T is of class [nQN] and M is a closed subspace of H that reduces T , then T | M (the
restriction of T toM) is of class [nQN].

Proof. (1) Let S ∈ L(H) be unitary equivalent to T . Then there is a unitary operator V ∈ L(H)
such that T = V ∗SV which implies that T ∗ = V ∗S∗V . Noting that Tn = V ∗SnV and inserting
I = VV ∗ suitably, we deduce from (1.2) that

V ∗SnS∗SV = TnT ∗T = T ∗Tn+1 = V ∗S∗Sn+1V, (3.1)

and (1.2) follows for S. Since

(T | M)Δ =
(
TΔ | M

)
(3.2)

for Δ as the n-th power or the adjoint, it follows that the left-hand side of (1.2) for (T | M)
reads

(TnT ∗T | M), (3.3)

which is (T ∗Tn+1 | M) = (T | M)∗(T | M)n+1, which is the right-hand side of (1.2). Thus,
T | M is of class [nQN].

Next we characterize a matrix on a 2-dimensional complex Hilbert space which is
in [nQN]. Since every matrix on a finite dimensional complex Hilbert space is unitarily
equivalent to an upper triangular matrix and an n-power quasinormal operator is unitarily
invariant, it suffices to characterize an upper triangular matrix T . From the direct calculation,
we get the following characterization.
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Proposition 3.2. For n ≥ 2 one has

T =

(
x y

0 z

)
∈ [nQN] ⇐⇒

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

yx
(
xn−1 + zxn−2 + · · · + zn−1

)
= 0,

xy(zn − xn) = 0,

xy(zn − xn)−(xn−1 + zxn−2 + · · · + zn−1
)(∣∣y

∣∣2 + |z|2 − |x|2
)
=0.

(3.4)

We remark here that Proposition 3.2 offers the convenient criterion to find some
examples of operators in [nQN]. Also we observe that [nQN] is not necessarily normal on a
finite dimensional space.

Next couple of results show that [nQN] does not have a translation invariant property.

Theorem 3.3 (see [9]). If T and T − I are of class [2QN], then T is normal.

Theorem 3.4 (see [9]). If T is of class [2QN] ∩ [3QN] such that T − I is of class [nQN], then T is
normal.

It is natural to ask the following question: what is the operators in [nQN] satisfying
the translation invariant property? The answer to this question is provided by the following
theorem.

Theorem 3.5. Tλ is of class [nQN] for every λ ∈ C if and only if T is a normal operator.

Proof. Assume that (Tλ) is of class [nQN] for every λ ∈ C. Then (1.2) reads (T −λ)n(T −λ)∗(T −
λ) = (T − λ)∗(T − λ)(T − λ)n, which reduces on eliminating the common factor −λ(T − λ)n+1 to

(T − λ)n(T ∗T − λT ∗) = (T ∗T − λT ∗)(T − λ)n. (3.5)

By the binomial expansion,

n∑

k=0

(−1)k
(
n

k

)
λkTn−k(T ∗T − λT ∗) = (T ∗T − λT∗)

n∑

k=0

(−1)k
(
n

k

)
λkTn−k, (3.6)

whence by arranging terms suitably, the extremal terms vanishing in view of (1.2),

n−1∑

k=1

(−1)k
(
n

k

)
λk
(
Tn−kT ∗T − T ∗TTn−k

)
−

n−1∑

k=1

(−1)k
(
n

k

)
λk+1
(
Tn−kT ∗ − T ∗Tn−k

)
= 0. (3.7)

Now note that from the second summand in (3.7), we may extract the extremal term
(−1)nnλn(T ∗T − TT ∗) and express it in terms of the remaining terms which contain λ to the
power < n. Hence dividing (3.7) by λn and letting λ → ∞, we conclude that T ∗T − TT ∗ → 0,
whence the normality of T follows.

Conversely it is known that normality is a translation invariant property; that is, if T
is normal, then (Tλ) is normal for every λ ∈ C, and hence (Tλ) is of class [nQN].
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The following proposition gives a characterization of an n-power quasinormal
operator.

Proposition 3.6. Let T ∈ L(H), A = Tn + T ∗T , and B = Tn − T ∗T . Then T is of class [nQN] if and
only if A commutes with B.

Proof. Commutativity of A and B is equivalent to (1.2).

Proposition 3.7. Let T,A, B be as in Proposition 3.6. Then if T is of class [nQN], then TnT ∗T
commutes with A and B.

Proof. By (1.2),

TnT ∗T(Tn ± T ∗T) = (Tn ± T ∗T)TnT ∗T. (3.8)

In general, the two classes [nQN] and [(n + 1)QN] are not the same (see [9]).

Proposition 3.8. If T is both of class [nQN] and [(n + 1)QN], then it is of class [(n + 2)QN], that
is, [nQN] ∩ [(n + 1)QN] ⊂ [(n + 2)QN].

Proof. By (1.2),

Tn+1T ∗T = TnT ∗T2 (3.9)

so that Tn+2T ∗T may be transformed into T ∗TTn+2.
It is known that if T belongs to [nQN] some n > 0, T2 does not necessarily belong to

the same class.

Theorem 3.9 (see [9]). If T and T ∗ are of class [nQN], then Tn is normal.

Proposition 3.10. If an operator T of class [2QN] is a 2-isometry, then T2 is of class [nQN] for all
integers n ≥ 2.

Proof. From Proposition 3.8 it suffices to prove that T2 is of class [2QN] and of class [3QN]
because we may then proceed inductively.

Since T is a 2-isometry, we have T4(T ∗2T2) = T4(2T ∗T−I). Using T2T ∗T = T ∗T3, wemay
shift the power of T2 to the left, arriving at T4(T ∗2T2) = T ∗2T6; that is, T2 is of class [2QN].

In the same way, we may deduce that T6(T ∗2T2) = T ∗2T8 whence T2 is of class [3QN].

Lemma 3.11 (see [9]). If T is of class [nQN], thenN(Tn) ⊂ N(T ∗n).

Proposition 3.12. If T is both of class [nQN] and [(n + 1)QN] such that T is injective or T ∗ is
injective, then T is quasinormal.

Proof. Since T is of class [nQN]∩[(n+1)QN], we have (3.9), which reads Tn(TT ∗T −T ∗T2) = 0.
If T is injective, then so is Tn and we have TT ∗T − T ∗T2 = 0, whence T is quasi-normal. If T ∗ is
injective, we may appeal to Lemma 3.11.
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In the following theorem we prove some topological properties of the class [nQN].

Theorem 3.13. The class [nQN] is an arcwise-connected, closed subset of L(H) equipped with the
uniform operator (norm) topology.

Proof. By Theorem 3.1, (1), we see that the ray aT in L(H) through T is contained in [nQN]
for every complex number a, and therefore [nQN] is arcwise-connected.

To see that [nQN] is closed, we prove that any strong limit T ∈ L(H) of a sequence
(Tp) in [nQN] also belongs to [nQN]; that is, we let (Tp) be a sequence of operators in [nQN]
converging to T ∈ L(H) in norm:

∥∥Tpx − Tx
∥∥ −→ 0 as p −→ ∞, for each x ∈ H. (3.10)

Hence it follows that
∥∥∥T ∗

px − T ∗x
∥∥∥=
∥∥(Tp − T

)∗
x
∥∥ ≤ ∥∥(Tp − T

)∗∥∥‖x‖ =
∥∥Tp − T

∥∥‖x‖ −→ 0, (3.11)

whence (T ∗
p) converges strongly to T ∗.

Since the product of operators is sequentially continuous in the strong topology (see
[12, page 62]), one concludes that Tn

p T
∗
pTp converge strongly to TnT ∗T . Similarly T ∗

pT
n+1
p

converges strongly to T ∗Tn+1. Hence the limiting case of (1.2) shows that T belongs to [nQN],
completing the proof.

Proposition 3.14. If T1, T2, . . . , Tp are of class [nQN], then both the direct sum T1 ⊕T2 ⊕ · · · ⊕Tp and
the tensor product T1 ⊗ T2 ⊗ · · · ⊗ Tp are of class [nQN].

Proof. By the compatibility principle similar to (3.2),

(T1 ⊕ T2)Δ =
(
TΔ
1 ⊕ TΔ

2

)
, (T1 ⊗ T2)Δ =

(
TΔ
1 ⊗ TΔ

2

)
, (3.12)

where Δ indicates either the nth power or adjoint, the proof follows.

A linear operator T on H is hypercyclic if there is a vector with dense orbit; that is, if
there exists an x ∈ H such that orbit Orb(T, x) := {x, Tx, T2x, . . .} is dense in H, and in this
case x is called a hypercyclic vector for T .

An operator T on H is supercyclic if there exists a vector whose scaled orbit is dense;
that is, if there exists an x ∈ H such that {λTnx, n ≥ 0, λ ∈ C } is dense in H and in this case
x is called a supercyclic vector for T .

Kitai [13] showed that hyponormal operators are not hypercyclic. We generalize
Kitai’s theorem to the class [nQN].

Proposition 3.15. If T is of class [nQN] with σp(Tn)/= ∅, then T is not hypercyclic.

Proof. If T is hypercyclic, Tn is hypercyclic, and hence σp(T ∗n) = ∅ by [13, corollary 2.4]. From
Lemma 3.11 we have σp(Tn) ⊂ σp(T ∗n) and, hence, σp(Tn) = ∅, a contradiction.

Theorem 3.16 (see [14, Theorem 2]). If T is not hypercyclic, then T and T−1 have a common non-
trivial invariant closed subset.
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Proposition 3.17. If T is of class [nQN] and 0 /∈ σ(T), then T and T−1 have a common nontrivial
closed invariant subset.

Proof . Since T is of class [nQN] and 0 /∈ σ(T), it follows that Tn is normal, and hence (T−1)n is
normal. By [13, Corollary 4.5] Tn and (T−1)n have no hypercyclic vector. Thus by [15], neither
T or T−1 has a hypercyclic vector. Therefore by [15] T and T−1 have a common nontrivial
closed invariant subset. Hence Theorem 3.16 completes the proof.

Proposition 3.18. Operators T that are of class [nQN] such that T is not invertible are not
supercyclic.

Proof. Assume that T is of class [nQN] and supercyclic. Considering the class [nQN] being
closed under multiplication by nonzero scalars, we may assume that ‖T‖ = 1. Since the
supercyclic contraction T satisfies property (β), σ(T) is contained in the boundary ∂D of the
unit disk D [11, Proposition 3.3.18]. Thus T is invertible, and we have a contradiction.

Definition 3.19. An operator T ∈ L(H) is algebraic if there is non-zero-polynomial p such that
p(T) = 0.

The following proposition shows that some quasinilpotent n-power quasi-normal
operators are subscalar.

Proposition 3.20. If both T and T ∗ are of class [nQN] such that T is quasinilpotent, then T is
nilpotent, and hence T is subscalar.

Proof. Since T is quasinilpotent, σ(T) = {0}. Hence by the spectral mapping theorem we get
σ(Tn) = σ(T)n = {0}. Thus Tn is quasinilpotent and normal. So Tn = 0; that is, T is nilpotent,
and T is algebraic operator, and hence T is subscalar.

Proposition 3.21 (see [7, Proposition 2.1]). For every bounded diskD in C, there is a constant CD

such that for an arbitrary operator T ∈ L(H) and f ∈ Wm
2 (D,H) we have

∥∥∥∥(I − P)∂
j
f

∥∥∥∥
2,D

≤ CD

(∥∥∥∥(Tλ)
∗∂

j+1
f

∥∥∥∥
2, D

+
∥∥∥∥(Tλ)

∗∂
j+2

f

∥∥∥∥
2,D

)
, j = 0, 1, . . . , m − 2,

(3.13)

where P is the orthogonal projection of L2(D,H) onto A2(D,H).

The next theorem is important for the proof of our main theorem, Theorem 3.27.

Theorem 3.22. LetD be an arbitrary bounded disk in C. If T is of class [2QN] and σ(T)∩(−σ(T)) =
∅, then the operator

Tλ : Wm
2 (D,H) −→ Wm

2 (D,H) (3.14)

is one to one.
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Proof. Let g ∈ Wm
2 (D,H) such that Tλg = 0, that is,

∥∥Tλg
∥∥
Wm

2
= 0. (3.15)

Then for j = 0, 1, . . . , m we have

∥∥∥∥Tλ∂
j
g

∥∥∥∥
2,D

= 0. (3.16)

Hence for j = 1, . . . , mwe get ‖T2
λ2
∂
j
g‖2,D = 0. Since σ(T)∩ (−σ(T)) is empty then T2 is normal

[9, Theorem 2.2]. Hence,

∥∥∥(T2
λ2
)∗∂jg

∥∥∥
2,D

= 0. (3.17)

Now we claim that
∥∥∥(Tλ)∗∂jg

∥∥∥
2,D

= 0. (3.18)

Indeed, since Tλ is invertible for λ ∈ D \ σ(T), (3.16) implies that

∥∥∥∂jg
∥∥∥
2,D\σ(T)

= 0. (3.19)

Therefore

∥∥∥(Tλ)∗∂jg
∥∥∥
2,D\σ(T)

= 0. (3.20)

Since σ(T)∩ (−σ(T)) = ∅ and σ(T ∗) = σ(T)∗, (T−λ)
∗ is invertible for λ ∈ σ(T), therefore;

from (3.17) we have

∥∥∥∥(Tλ)
∗∂

j
g

∥∥∥∥
2,σ(T)

= 0. (3.21)

It is clear form (3.20); and (3.21) that

∥∥∥(Tλ)∗∂jg
∥∥∥
2,D

= 0, for j = 0, 1, . . . , m. (3.22)

Thus Proposition 3.21 and (3.21) imply

∥∥∥∥(I − P)∂
j
g

∥∥∥∥
2,D

= 0 for j = 0, 1, . . . , m − 2, (3.23)

where P denotes the orthogonal projection of L2(D,H) onto A2(D,H).
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Hence (T2
λ2
)Pg = T2

λ2
g = 0. Since T2 has SVEP, T has SVEP. Also g = Pg is analytic and

(T − λ)g(λ) = 0 for λ ∈ D. Hence g = 0. Thus, Tλ is one to one.

Corollary 3.23. If T1 and T2 are of class [2QN] with σ(Ti) ∩ (−σ(Ti)) = ∅, for i = 1, 2 and T2T1 = 0.
Then

(T1 + T2)λ : Wm
2 (D,H) −→ Wm

2 (D,H) (3.24)

is one to one.

Proof. If f ∈ Wm
2 (D,H) is such that (T1 + T2)λf = 0. Since T2T1 = 0, we get (T2 − λ)T2f = 0.

Since (T2)λ is one to one, T2f = 0. Hence, (T1)λf = 0. Since (T1)λ is one to one, f = 0.

The following corollary shows that the nilpotent perturbation of operators in [2QN]
satisfying SVEP satisfies SVEP.

Corollary 3.24. If an operator T ∈ L(H) is a nilpotent perturbation of a 2-power quasi-normal
operator S, that is, T = S + N, where S is of class [2QN], S and N commute, and Nm = 0. If
σ(S) ∩ (−σ(S)) = ∅, then Tλ is one-to-one.

Proof. If g ∈ Wm
2 (D,H) is such that Tλg = 0, then

Sλg = −Ng. (3.25)

Hence SλN
j−1g = −Njg for j = 1, 2, . . . , m. We prove that Njg = 0 for j = 0, 1, . . . , m −

1 by indication. Since Nm = 0, SλN
m−1g = −Nmg = 0. Since Sλ is one-to-one by

Theorem 3.22 Nm−1g = 0. Assume it is true when j = k, that is, Nkg = 0. From (3.25), we
get

SλN
k−1g = −Nkg = 0. (3.26)

Since Sλ is one-to-one from Theorem 3.22, Nk−1g = 0. By indication we have g = 0. Hence Tλ
is one-to-one.

An operator T ∈ L(H) is said to be the following.

(1) It is left invertible if there is an operator S ∈ L(H) such that ST = I, where I denotes
the identity operator. The operator S is called a left inverse of T .

(2) It is right invertible if there is an operator R ∈ L(X) such that TR = I. The operator
R is called a right inverse of T (see [16]).

Corollary 3.25. If T is of class [2QN] with the property σ(T) ∩ (−σ(T)) = ∅, and if S is a left
invertible operator with the left inverse R, then the operator (STR)λ : Wm

2 (D,H) → Wm
2 (D,H) is

one-to-one.

Proof. If g ∈ Wm
2 (D,H) is such that (STR)λg = 0, then

TλRg = 0. (3.27)
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Hence for j = 0, 1, . . . , m we have TλR∂
j
g = 0. From Theorem 3.22, we get R∂

j
g = 0 for

j = 0, 1, . . . , m.

Thus, STR∂
j
g = 0 for j = 0, 1, . . . , m. It follows that λ∂

j
g = 0 for j = 0, 1, . . . , m. By

application of [7, Proposition 2.1] with T = (0), we have

∥∥(I − P)g
∥∥
2,D = 0, (3.28)

where P denotes the orthogonal projection of L2(D,H) onto the Bergman space A2(D,H).
Hence λg = λPg = 0. From [17, Corollary 10.7], there exists a constant c > 0 such that

c
∥∥Pg

∥∥
2,D ≤ ∥∥λPg∥∥2,D. (3.29)

So g = Pg = 0. Thus, (STR)λ is one-to-one.

Corollary 3.26. If T is of class [2QN] with the property σ(T) ∩ (−σ(T)) = ∅, and if S is a right
invertible operator with the right inverse R then the operator (RTS)λ : Wm

2 (D,H) → Wm
2 (D,H),

is one-to-one.

Now we are ready to prove our main theorem.

Theorem 3.27. If T is of class [2QN] with the property that σ(T) ∩ (−σ(T)) = ∅ and let D be a
bounded disk which contains σ(T), then the operator V : H → H(D), defined by

Vg = 1 ⊗ g + TλW
m
2 (D,H) = [̂1 ⊗ g], (3.30)

is one to one and has closed range, whereH(D) is as in (2.11).

Proof. First, we will prove that if {gk}∞1 ⊂ H and {fk}∞1 ⊂ Wm
2 (D,H) are sequences such that

lim
k→∞

∥∥1 ⊗ gk + Tλfk
∥∥
Wm

2
= 0, (3.31)

then limk→∞gk = 0.
By the definition of the norm of a Sobolev space, (3.31) implies that

lim
k→∞

∥∥∥∥Tλ∂
j
fk

∥∥∥∥
2,D

= 0 for j = 1, . . . , m. (3.32)

From (3.32) we get

lim
k→∞

∥∥∥∥T
2
λ2
∂
j
fk

∥∥∥∥
2,D

= 0 for j = 1, . . . , m. (3.33)
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Since T2 is normal,

lim
k→∞

∥∥∥∥(T
2
λ2)

∗∂
j
fk

∥∥∥∥
2,D

= 0 for j = 1, . . . , m. (3.34)

Since Tλ is invertible for λ ∈ D \ σ(T), (3.32) implies that

lim
k→∞

∥∥∥∥∂
j
fk

∥∥∥∥
2,D\σ(T)

= 0. (3.35)

Therefore

lim
k→∞

∥∥∥∥(Tλ)
∗∂

j
fk

∥∥∥∥
2,D\σ(T)

= 0 for j = 1, . . . , m. (3.36)

Since σ(T) ∩ (−σ(T)) = ∅ and σ(T ∗) = σ(T)∗, it is clear that (T−λ)
∗ is invertible for

λ ∈ σ(T). Therefore from (3.34), we have

lim
k→∞

∥∥∥∥(Tλ)
∗∂

j
fk

∥∥∥∥
2,σ(T)

= 0. (3.37)

Hence, from (3.36) and (3.37) we get

lim
k→∞

∥∥∥∥(Tλ)
∗∂

j
fk

∥∥∥∥
2,D

= 0, j = 1, . . . , m. (3.38)

Then by Proposition 3.21, we have

lim
k→∞

∥∥∥∥(I − P)∂
j
fk

∥∥∥∥
2,D

= 0, j = 1, . . . , m − 2. (3.39)

By (3.31) and (3.39), we have

lim
k→∞

∥∥1 ⊗ gk + TλPfk
∥∥
2,D = 0. (3.40)

Let Γ be a curve in D surrounding σ(T). Then

lim
k→∞

∥∥∥Pfk + (Tλ)−1
(
1 ⊗ gk

)∥∥∥ = 0 (3.41)

uniformly for λ ∈ Γ by (3.40). Hence by Riesz-Dunford functional calculus

lim
k→∞

∥∥∥∥
1

2πi

∫

Γ
Pfk(z)dz + gk

∥∥∥∥ = 0. (3.42)
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But by Cauchy’s theorem

∫

Γ
Pfk(z)dz = 0. (3.43)

Hence limk→∞gk = 0. Thus the map V is one-to-one and has closed range.

Corollary 3.28. If T is of class [2QN] with the property that σ(T)∩ (−σ(T)) = ∅, then T is subscalar
of orderm ≥ 2.

Proof. Consider an arbitrary bounded open disk D in C that contains σ(T) and the quotient
space given in (2.11).

LetMλ be the multiplication operator by λ onWm
2 (D,H). ThenMλ is a scalar operator

of order m, and its spectral distribution is

ΦM : Cm
0 (C) −→ L(Wm

2 (D;H)
)
, ΦM

(
f
)
= Mf, (3.44)

where Mf is the multiplication operator by f ∈ Cm
0 (C). Let S ≡ M̂λ. Since TλW

m
2 (D;H)

is invariant under every operator Mf , we infer that S is a scalar operator of order m with
spectral distribution Φ̂.

Let V be the operator

Vg = 1 ⊗ g + TλW
m
2 (D,H) (3.45)

from H into H(D). Then we have the following commutative diagram

H

T

V H(D)

S V T = SV.

H
V

H(D)

(3.46)

By the previous theorem the operator V is a topological isomorphism of H into R(V ). The
relation VT = SV shows that R(V ) is S-invariant. Hence S is an extension of the operator V ,
so this operator is subscalar. Since V is invertible on R(V ), then the operator T is subscalar of
order m. On the other hand from [18, Theorem 4.3] we deduce that m ≥ 2 and the theorem is
proved.

Corollary 3.29. If T is of class [2QN]with the property that σ(T)∩(−σ(T)) = ∅, then T has Bishop’s
property (β).

Proof. It follows from Corollary 3.28 and [18, Lemma 2.1].

In [19] the authors study some operators with the single-valued extension property.
In the following propositions we extend some of these results to operators with the Bishop’s
property (β).
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Proposition 3.30. Let T ∈ L(⊕k
i=1H) be the following k × k triangular operator matrix

T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

T11 T12 T13 . . . . . . T1k

0 T22 T23 . . . . . . T2k

0 0 T33 . . . . . . T3k

0 0 0 . . . . . . . . .

0 . . . . . . . . . . . . Tkk

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3.47)

Assume that Tii is of class [2QN] and satisfies σ(Tii) ∩ (−σ(Tii)) = ∅ for i = 1, 2, . . . , k − 1 and Tkk is
nilpotent. Then T has Bishop’s property (β).

Proof. Let fp = ⊕k
i=1f

i
p : D → ⊕k

i=1H be a sequence of analytic functions such that Tλfp(λ) → 0
uniformly on every compact subset K of an open set D of C; then we have

(T11)λf
1
p(λ) + T12f

2
p (λ) + T13f

3
p (λ) · · · + T1kf

k
p (λ) −→ 0,

(T22)λf
2
p (λ) + T23f

3
p (λ) + · · · + T2kf

k
p −→ 0,

(T33)λf
3
p (λ) + · · · + T3kf

k
p (λ) −→ 0,

...
...

...
...

(Tk−1k−1)λf
k−1
p (λ) + Tk−1kfk

p (λ) −→ 0,

(Tkk)λf
k
p (λ) −→ 0.

(3.48)

Since Tm
kk

= 0, λTm−1
kk

fk
p (λ) → 0 and hence Tm−1

kk
fk
p (λ) → 0 if λ/= 0. Since (Tkk)λf

k
p (λ) → 0

from (3.48) λTm−2
kk fk

p (λ) → 0. By the same reason, Tm−3
kk fk

p (λ) → 0. By repeating this
procedure, we finally achieve

fk
p (λ) −→ 0, (3.49)

uniformly on K. Then we obtain the following equation: (Tk−1k−1)λf
k−1
p → 0 uniformly on

every compact K. Since Tk−1k−1 has Bishop’s property (β) from Corollary 3.29, fk−1
p (λ) → 0

uniformly on K. By repeating this process we prove that f1
p (λ) → 0 uniformly on K.

Hence {fp = f1
p ⊕ f2

p ⊕ · · · ⊕ fk
p } converge uniformly to 0 on any compact subsetK ofD,

and so T has the Bishop’s property (β).

Proposition 3.31. Let T be as in Proposition 3.30. Then if Tii has Bishop’s property (β) for i =
1, . . . , k, then T has Bishop’s property (β).

Proof. The proof is identical to the proof of Proposition 3.30.
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Proposition 3.32. Let T ∈ L(⊕k
i=1H) be the following k × k triangular operator matrix:

T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

T11 T12 T13 . . . . . . T1k

0 T22 T23 . . . . . . T2k

0 0 T33 . . . . . . T3k

0 0 0 . . . . . . . . .

0 . . . . . . . . . . . . Tkk

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3.50)

Assume that T is of class [2QN] and σ(T) ∩ (−σ(T)) = ∅. If T11Tij = TijTjj for i = 1, . . . j and
j = 1, 2, . . . , k, then Tjj has Bishop’s property (β) for j = 1, 2, . . . , k.

Proof. Let fj
p : D → H be a sequence of analytic functions such that (Tjj)λf

j
p → 0 uniformly

on every compact subset K of D, then we have for j = 1, 2, . . . , k

Tλ
(
Tijf

j
p(λ) ⊕ · · · ⊕ 0

)
= (T11)λ

(
Tijf

j
p(λ)
)
⊕ 0 ⊕ · · · ⊕ 0

= Tij
(
Tjj
)
λ
f
j
p(λ) ⊕ · · · ⊕ 0

−→ 0,

(3.51)

for i = 1, 2, . . . , j. Since T has Bishop’s property (β), we get that Tijf
j
p(λ) → 0 uniformly on K

for j = 1, 2, . . . , k. We have

Tλ
(
f1
p ⊕ · · · ⊕ 0

)
= (T11)λf

1
p (λ) ⊕ · · · ⊕ 0 −→ 0, (3.52)

and for j = 2, 3, . . . , k,

Tλ
(
0 ⊕ · · · ⊕ f

j
p ⊕ · · · ⊕ 0

)
=
(
−T1jf j

p(λ)
)
⊕ · · · ⊕

(
−Tj−1jf j

p(λ)
)
⊕ (Tjj

)
λ

(
f
j
p(λ)
)
⊕ 0 ⊕ · · · ⊕ 0

−→ 0.
(3.53)

Since T has Bishop’s property (β), fj
p(λ) → 0 uniformly on K for j = 1, 2, . . . , k. Thus, Tjj has

Bishop’s property (β).

Proposition 3.33. Let T be as in Proposition 3.31. Then if T has Bishop’s property (β) and T11Tij =
TijTjj for j = 1, 2, . . . , k and j = 1, 2, . . . , k, then Tjj has Bishop’s property (β) for j = 1, 2, . . . , k.

Proof. The proof is identical to the proof of Proposition 3.32.
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4. Berberian Extension

Denote by l∞(H) the space of all sequences (xn)n, with xn ∈ H, n = 1, 2, 3, . . . such that ‖xn‖
is bounded. Let c0(H) denote the subspace of all null sequences ofH (those such that ‖xn‖ →
0). If we set ‖(xn)‖ = sup ‖xn‖ for every sequence (xn), this defines a seminorm on l∞(H),
which is zero exactly on the elements of c0(H). By means of the space l∞(H) and the Banach
limits, Berberian [20] constructed an extension H◦ of H and obtained a homomorphism
form operators T ∈ L(H) to operators T◦ ∈ L(H◦) such that T◦ is an extension
of T .

Theorem 4.1 (Berberian extention [20]). Let H be a complex Hilbert space. Then there exists a
Hilbert spaceH◦ ⊃ H and a map

Φ : L(H) −→ L(H◦) : T �−→ T◦, (4.1)

satisfying: Φ which is an ∗-isometric isomorphism preserving the order such that

(1) (T ∗)◦ = (T◦)∗,

(2) (λT + μS)◦ = λT◦ + μS0,

(3) (IH)◦ = IH◦ ,

(4) (TS)◦ = T◦S◦,

(5) ‖T◦‖ = ‖T‖,
(6) T◦ ≤ S◦ if T ≤ S,

(7) σ(T◦) = σ(T), σap(T) = σap(T◦) = σp(T◦),

(8) if T is a positive operator, then (Tα)◦ = |T◦|α for all α > 0.

An operator is said to be reducible if it has a nontrivial reducing subspace. If an operator is
not reducible, then it is called irreducible.

Proposition 4.2 (see [21]). If T is an irreducible operator, then T◦ is an irreducible operator.

Lemma 4.3. Let D be a subset of C, z0, R > 0, such that B(z0, R) = {z ∈ C; |z − z0| ≤ R} ⊂
D, let gn : D → H be a sequence of analytic functions, and let the Taylor expansion of gn
be

gn(z) =
∞∑

k=0

ank(z − z0)k, |z − z0| < R. (4.2)

If gn is uniformly bounded on B(z0, R) (i.e., M = supn≥1‖gn(z)‖B(z0,R) < ∞), then

∥∥gn(z) − gn(z0)
∥∥ ≤ Mr

R − r
, z ∈ B(z0, r), 0 < r < R. (4.3)
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Proof. For all n and z ∈ B(z0, r) with 0 < r < R, by Cauchy’s integral formula, we get the
following inequality:

∥∥gn(z) − gn(z0)
∥∥ =

∥∥∥∥∥
1

2iπ

∫

|u−z0|=R

gn(u)
u − z

du − 1
2iπ

∫

|u−z0|=R

gn(u)
u − z0

du

∥∥∥∥∥

≤ 1
2π

∫

|u−z0|=R

|z − z0|
∥∥gn(u)

∥∥

|u − z‖u − z0| |du|

≤ Mr

R − r
.

(4.4)

Remark 4.4. Let D be an open subset of C. A sequence of analytic functions gn : D → H
converges uniformly to 0 on every compact subsetK ofD if and only if for any ε > 0 and any
z0 ∈ D there exists r > 0 and n0 ∈ N such that B(z0; r) ⊂ D and ‖gn‖B(z0,r) < ε for all n > n0.

5. Single-valued Extension Property for m-Partial Isometries

In this section we examine the properties of SVEP and Bishop’s property (β) for some
m-partial isometries operators by using an approach which is different from that used in
Section 3. We recall the definition of an m-partial isometry given by (1.4) and the operator
Bm(T).

Definition 5.1 (see [8]). An operator T ∈ L(H) is called an m-isometry if

Bm(T) =
m∑

k=0

(−1)k
(
m

k

)
T ∗m−kTm−k = 0. (5.1)

Remark 5.2. It is easy to see that T ∈ L(H) is an m-partial isometry if and only if

Bm(T)x =
m∑

k=0

(−1)k
(
m

k

)
T ∗m−kTm−k(x) = 0, ∀x ∈ N(T)⊥, (5.2)

which shows that the class of m-partial isometries generalizes those of m-isometries and
partial isometries.

Theorem 5.3 (see [10]). If T ∈ L(H) is reducible, that is, if it has a nontrivial reducing subspace
N(T), then the following properties are equivalent.

(1) T is anm-partial isometry.

(2) T |N(T)⊥ is an m-isometry.

Proposition 5.4 (see [10]). Let T be a reduciblem-partial isometry. Then

(1) λ ∈ σap(T) \ {0} implies λ ∈ σap(T ∗), that is, if Tλxn → 0 for some sequence of bounded
vectors {xn} ⊂ H, then (Tλ)

∗xn → 0,
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(2) λ ∈ σp(T) \ {0} implies λ ∈ σp(T ∗),

(3) eigenvectors of T corresponding to distinct eigenvalues are orthogonal, that is, N(Tλ) ⊥
N(Tμ) if λ, μ ∈ σp(T), λ /=μ.

Lemma 5.5. Let T be a reduciblem-partial isometry and let λ, μ ∈ σap(T) and (xn), (yn) be sequences
of bounded vectors inH such that λ/=μ and

‖Tλxn‖ −→ 0,
∥∥Tμyn

∥∥ −→ 0 (as n −→ ∞). (5.3)

Then we have

〈xn | yn〉 −→ 0 (as n −→ ∞). (5.4)

Proof. We may assume that μ/= 0. Then from Proposition 5.4(1) we have ‖(Tμ)∗yn‖ → 0 as
n → ∞. Hence,

(
λ − μ

)〈xn | yn〉 = −〈Tλxn | yn〉 + 〈xn | (Tμ
)∗
yn〉 −→ 0, n −→ ∞, (5.5)

which implies (5.4) in view of λ/=μ and the proof is complete.

Theorem 5.6. Any reduciblem-partial isometry has SVEP.

Proof. Let U be a bounded subset of C and let f : U → H be an analytic function such that

Tλf(λ) = 0 for λ ∈ U. (5.6)

Since N(Tλ) ⊥ N(Tμ), λ /=μ (Proposition 5.4(3)), we have

∥∥f(λ)
∥∥2 = lim

μ→λ

〈
f(λ) | f

(
μ
)〉

= 0. (5.7)

This shows that f(λ) = 0.

Lemma 5.7. If T is anm-partial isometry, then To is also an m-partial isometry.

Proof. It is a consequence of the properties of To (see Theorem 4.1).

Theorem 5.8. If T is an m-partial isometry with a nontrivial reducing space N(T), then To has the
single-valued extension property (SVEP).

Proof. To prove that T◦ has SVEP, let λ ∈ σap(T◦)−{0}. Since σap(T◦) = σap(T) by Theorem 4.1,
λ ∈ σap(T ∗) = σap((T◦)∗). In particular if λ ∈ σp(T◦), then λ ∈ σp((T◦)∗). Hence, N((Tλ)

◦) ⊥
N((Tμ)

◦) for λ and μ ∈ σp(T◦) with λ/=μ. In a similar way as in the proof of Theorem 5.6, we
can see that T◦ has SVEP.
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