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This paper characterizes bounded Fredholm, bounded invertible, and unitary weighted composi-
tion operators on Dirichlet space.

1. Introduction

Let H be a Hilbert space of analytic functions on the unit disk D. For an analytic function ψ
on D, we can define the multiplication operator Mψ : f → ψf, f ∈ H. For an analytic self-
mapping ϕ of D, the composition operator Cϕ defined on H as Cϕf = f ◦ ϕ, f ∈ H. These
operators are two classes of important operators in the study of operator theory in function
spaces [1–3]. Furthermore, for ψ and ϕ, we define the weighted composition operator Cψ,ϕ on
H as

Cψ,ϕ : f −→ ψ
(
f ◦ ϕ), f ∈ H. (1.1)

Recently, the boundedness, compactness, norm, and essential norm of weighted
composition operators on various spaces of analytic functions have been studied intensively,
see [4–9] and so on. In this paper, we characterize bounded Fredholm weighted composition
operators on Dirichlet space of the unit disk.
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Recall the Dirichlet space D that consists of analytic function f on D with finite
Dirichlet integral:

D
(
f
)
=
∫

D

∣
∣f ′∣∣2dA <∞, (1.2)

where dA is the normalized Lebesgue area measure on D. It is well known that D is the only
möbius invariant Hilbert space up to an isomorphism [10]. Endow D with norm

∥
∥f

∥
∥ =

(∣
∣f(0)

∣
∣2 +D

(
f
))1/2

, f ∈ D. (1.3)

D is a Hilbert space with inner product

〈
f, g

〉
= f(0)g(0) +

∫

D

f ′(z)g ′(z)dA(z), f, g ∈ D. (1.4)

Furthermore D is a reproducing function space with reproducing kernel

Kλ(z) = 1 + log
1

1 − λz
, λ, z ∈ D. (1.5)

Denote M = {ψ : ψ is analytic on D, ψf ∈ D for f ∈ D}. M is called the multiplier
space of D. By the closed graph theorem, the multiplication operator Mψ defined by ψ ∈ M
is bounded on D. For the characterization of the element in M, see [11].

For analytic function ψ on D and analytic self-mapping ϕ of D, the weighted
composition operator Cψ,ϕ on D is not necessarily bounded. Even the composition operator
Cϕ is not necessarily bounded on D, which is different from the cases in Hardy space and
Bergman space. See [12] for more information about the properties of composition operators
acting on the Dirichlet space.

The main result of the paper reads as the following.

Theorem 1.1. Let ψ and ϕ be analytic functions on D with ϕ(D) ⊂ D. Then Cψ,ϕ is a bounded
Fredholm operator on D if and only if ψ ∈ M, bounded away from zero near the unit circle, and ϕ is
an automorphism of D.

If ψ(z) = 1, then the result above gives the characterization of bounded Fredholm
composition operator Cϕ on D, which was obtained in [12].

As corollaries, in the end of this paper one gives the characterization of bounded
invertible and unitary weighted composition operator on D, respectively. Some idea of this
paper is derived from [4, 13], which characterize normal and bounded invertible weighted
composition operator on the Hardy space, respectively.

2. Proof of the Main Result

In the following, ψ and ϕ denote analytic functions on D with ϕ(D) ⊂ D. It is easy to verify
that ψ ∈ D if Cψ,ϕ is defined on D.
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Proposition 2.1. Let Cψ,ϕ be a bounded Fredholm operator on D. Then ψ has at most finite zeroes in
D and ϕ is an inner function.

Proof. If Cψ,ϕ is a bounded Fredholm operator, then there exist a bounded operator T and a
compact operator S on D such that

T
(
Cψ,ϕ

)∗ = I + S, (2.1)

where I is the identity operator.
Since

(
Cψ,ϕ

)∗
Kw(z) =

〈
C∗
ψ,ϕKw,Kz

〉
=
〈
Kw,Cψ,ϕKz

〉

=
〈
Kw, ψKz ◦ ϕ

〉
= ψ(w)Kz

(
ϕ(w)

)

= ψ(w)Kϕ(w)(z),

(2.2)

we have

‖T‖∣∣ψ(w)
∣∣
∥∥Kϕ(w)

∥∥

‖Kw‖ ≥ ∥∥T
(
Cψ,ϕ

)∗
kw

∥∥

≥ ‖kw‖ − ‖Skw‖
= 1 − ‖Skw‖,

(2.3)

where kw = Kw/‖Kw‖ is the normalization of reproducing kernel function Kw.
Since S is compact and kw weakly converges to 0 as |w| → 1, ‖Skw‖ → 0 as |w| → 1. It

follows that there exists constant r, 0 < r < 1, such that ‖Skw‖ < 1/2 for allwwith r < |w| < 1.
Inequality (2.3) shows that

∣∣ψ(w)
∣∣

‖Kw‖ ≥ 1
2‖T‖∥∥Kϕ(w)

∥∥ , r < |w| < 1, (2.4)

which implies that ψ has no zeroes in {w ∈ D, r < |w| < 1}, and, hence, ψ has at most finite
zeroes in {w ∈ D, |w| ≤ r}.

Since kw weakly converges to 0 as |w| → 1, 〈ψ, kw〉 → 0 as |w| → 1, that is,

ψ(w)
‖Kw‖ −→ 0, |w| −→ 1. (2.5)

It follows from (2.4) that ‖Kϕ(w)‖ = (1 + log(1/(1 − |ϕ(w)|2)))1/2 → ∞ and hence |ϕ(w)| → 1
as |w| → 1, that is, ϕ is an inner function.

For the proof of the following lemma, we cite Carleson’s formula for the Dirichlet
integral [14].
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Let f ∈ D, f = BSF be the canonical factorization of f as a function in the Hardy space,
where B =

∏∞
j=1(aj/|aj |)((aj − z)/(1 − ajz)), is a Blaschke product, S is the singular part of f

and F is the outer part of f . Then

D
(
f
)
=
∫

T

∞∑

n=1

Pαn(ξ)
∣
∣f(ξ)

∣
∣2 |dξ|

2π
+
∫∫

T

2

|ζ − ξ|2
∣
∣f(ξ)

∣
∣2dμ(ζ)

|dξ|
2π

+
∫∫

T

(
e2u(ζ) − e2u(ξ))(u(ζ) − u(ξ))

|ζ − ξ|2
|dζ|
2π

|dξ|
2π

,

(2.6)

where T is the unit circle, u(ξ) = log |f(ξ)|, Pα(ξ) is the Poisson kernel, and μ is the singular
measure corresponding to S.

Lemma 2.2. Let Cψ,ϕ be a bounded operator on D, ψ = BF with B a finite Blaschke product. Then
CF,ϕ is bounded.

Proof. Let MB be the multiplication operator on D. Then Cψ,ϕ = MBCF,ϕ. Since B is a finite
Blaschke product, by the Carleson’s formula, we have

D
(
ψ
(
f ◦ ϕ)) = D

(
BF

(
f ◦ ϕ)) ≥ D(

F
(
f ◦ ϕ)), f ∈ D. (2.7)

Since ‖f‖2 = |f(0)|2 +D(f), f ∈ D, by the inequality above it is easy to verify that CF,ϕ

is bounded on D if Cψ,ϕ is bounded.

Lemma 2.3. Let F be an analytic function onD with zero-free. IfCF,ϕ is a bounded Fredholm operator
on D, then ϕ is univalent.

Proof. If ϕ(a) = ϕ(b) for a, b ∈ D with a/= b, by a similar reasoning as [1, Lemma 3.26], there
exist infinite sets {an} and {bn} in D which is disjoint such that ϕ(an) = ϕ(bn). Hence,

(
CF,ϕ

)∗
(

Kan

F(an)
− Kbn

F(bn)

)

= 0, (2.8)

which contradicts to that kernel of (CF,ϕ)
∗ is finite dimensional.

Corollary 2.4. If Cψ,ϕ is a bounded Fredholm operator on D, then ϕ is an automorphism of D and
ψ ∈ M.

Proof. By Proposition 2.1, ψ has the factorization of BF with B a finite Blaschke product and F
zero free in D. By Lemma 2.2, CF,ϕ is a bounded operator on D. Since Cψ,ϕ =MBCF,ϕ andMB

is a Fredholm operator, CF,ϕ is a Fredholm operator also. By Proposition 2.1 and Lemma 2.3,
ϕ is an univalent inner function, it follows from [1, Corollary 3.28] that ϕ is an automorphism
of D.

Since Cψ,ϕCϕ−1 = Mψ , Mψ is a bounded multiplication operator on D, which implies
that ψ ∈ M.

The following lemmas is well-known. It is easy to verify by the factM∗
ψKw = ψ(w)Kw

also.
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Lemma 2.5. Let ψ ∈ M. ThenMψ is an invertible operator on D if and only if ψ is invertible inM.

Lemma 2.6. Let ψ ∈ M. Then Mψ is a Fredholm operator on D if and only if ψ is bounded away
from the unit circle.

Now we give the proof of Theorem 1.1.

Proof of Theorem 1.1. If Cψ,ϕ is a bounded Fredholm operator on D, by Corollary 2.4, ψ ∈ M
and ϕ is an automorphism of D. Since Cϕ is invertible, Mψ is a Fredholm operator. So ψ is
bounded away form the unit circle follows from Lemma 2.6.

On the other hand, if ψ ∈ M and bounded away from the unit circle, then Mψ is a
bounded Fredholm operator onD. If ϕ is an automorphism ofD, then Cϕ is invertible. Hence
Cψ,ϕ =MψCϕ is a bounded Fredholm operator on D.

As corollaries, in the following, we characterize bounded invertible and unitary
weighted composition operators on D.

Corollary 2.7. Let ψ and ϕ be analytic functions on D with ϕ(D) ⊂ D. Then Cψ,ϕ is a bounded
invertible operator on D if and only if ψ ∈ M, invertible inM, and ϕ is an automorphism of D.

Proof. Since a bounded invertible operator is a bounded Fredholm operator, the proof is
similar to the proof of Theorem 1.1.

Corollary 2.8. Let ψ and ϕ be analytic functions on D with ϕ(D) ⊂ D. Cψ,ϕ is a bounded operator
on D. Then Cψ,ϕ is a unitary operator if and only if ψ is a constant with |ψ| = 1 and ϕ is a rotation of
D.

Proof. If Cψ,ϕ is a unitary operator, then it must be an invertible operator. By Corollary 2.7, ϕ
is an automorphism of D and ψ is invertible inM.

Let n be nonnegative integer, en(z) = zn, z ∈ D. A unitary is also an isometry, so we
have

∥∥ψ
∥∥ =

∥∥Cψ,ϕe0
∥∥ = ‖e0‖ = 1, (2.9)

∥∥ψϕn
∥
∥ =

∥∥Cψ,ϕen
∥
∥ = ‖en‖ =

√
n, n ≥ 1. (2.10)

Let α ∈ D such that ϕ(α) = 0. Since ϕ is an automorphism of D, ϕn is a finite Blaschke
product with zero α of order n. By Carleson’s formula for Dirichlet integral, we have

D
(
ψϕn

)
= n

∫

T
Pα(ξ)

∣∣ψ(ξ)
∣∣2 |dξ|

2π
+D

(
ψ
)
. (2.11)

Hence,

n =
∥∥ψϕn

∥∥2 =
∣∣ψ(0)ϕ(0)n

∣∣2 +D
(
ψϕn

)

=
∣∣ψ(0)ϕ(0)n

∣∣2 + n
∫

T
Pα(ξ)

∣∣ψ(ξ)
∣∣2 |dξ|

2π
+D

(
ψ
)
, n ≥ 1.

(2.12)
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That is,

1 =

∣
∣ψ(0)ϕ(0)n

∣
∣2

n
+
∫

T
Pα(ξ)

∣
∣ψ(ξ)

∣
∣2 |dξ|

2π
+
D
(
ψ
)

n
, n ≥ 1. (2.13)

Let n → ∞, then 1 =
∫
T Pα(ξ)|ψ(ξ)|2(|dξ|/2π).

By (2.12), we have D(ψ) = 0 and |ψ(0)ϕ(0)| = 0. By (2.9), we obtain ψ is a constant
with |ψ| = 1, which implies that ϕ(0) = 0, that is, ϕ is a rotation of D.

The sufficiency is easy to verify.

Remark 2.9. The key step in the proof of the main result is to analyze zeros of the symbol
ψ and univalency of ϕ. The following result pointed out by the referee gives a simple
characterization of the symbols ψ and ϕ for the bounded Fredholm operator Cψ,ϕ on D.

Proposition 2.10. Let ψ and ϕ be analytic functions on D with ϕ(D) ⊂ D. Cψ,ϕ is a bounded
Fredholm operator on D. Then ψ has only finitely many zeros in D and ϕ is univalent.

Proof. If ψ(a) = 0 for a ∈ D, then C∗
ψ,ϕKa = ψ(a)Kϕ(a) = 0, which implies that Ka is in

the kernel of C∗
ψ,ϕ. Thus if ψ had infinitely many zeros, the kernel of C∗

ψ,ϕ would be infinite
dimensional and hence this operator would not be Fredholm.

If ϕ(a) = ϕ(b) for a, b ∈ D with a/= b, by a similar reasoning as [1, Lemma 3.26], there
exist infinite sets {an} and {bn} in D which is disjoint such that ϕ(an) = ϕ(bn). Since ψ has
only finitely many zeros in D, we can choose infinitely many an and bn such that ψ(an)/= 0,
ψ(bn)/= 0. Hence,

(
Cψ,ϕ

)∗
(

Kan

ψ(an)
− Kbn

ψ(bn)

)

= 0. (2.14)

Since Cψ,ϕ is a Fredholm operator, ϕmust be univalent.
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