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Various investigators such as Khan (1974), Chandra (2002), and Liendler (2005) have determined
the degree of approximation of 2π-periodic signals (functions) belonging to Lip(α, r) class of
functions through trigonometric Fourier approximation using different summability matrices with
monotone rows. Recently, Mittal et al. (2007 and 2011) have obtained the degree of approximation
of signals belonging to Lip(α, r)- class by general summability matrix, which generalize some
of the results of Chandra (2002) and results of Leindler (2005), respectively. In this paper, we
determine the degree of approximation of functions belonging to Lipα and W(Lr , ξ(t)) classes
by using Cesáro-Nörlund (C1 · Np) summability without monotonicity condition on {pn}, which
in turn generalizes the results of Lal (2009). We also note some errors appearing in the paper of Lal
(2009) and rectify them in the light of observations of Rhoades et al. (2011).

1. Introduction

For a given signal (function) f ∈ Lr := Lr[0, 2π], r ≥ 1, let

sn
(
f
)
= sn

(
f ;x
)
=
(a0

2

)
+

n∑

k=1

(ak cos kx + bk sin kx) =
n∑

k=0

uk

(
f ;x
)

(1.1)

denote the partial sum, called trigonometric polynomial of degree (or order) n, of the first
(n + 1) terms of the Fourier series of f . Let {pn} be a nonnegative sequence of real numbers
such that Pn(=

∑n
k=0 pk /= 0) → ∞ as n → ∞ and P−1 = 0 = p−1.
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Define

Nn

(
f
)
= Nn

(
f ;x
)
= Pn

−1
n∑

k=0

pn−ksk
(
f ;x
)
, ∀n ≥ 0, (1.2)

the Nörlund (Np) means of the sequence sn(f) or Fourier series of f . The Fourier series of
f is said to be Nörlund (Np) summable to s(x) if Nn(f ;x) → s(x) as n → ∞. The Fourier
series of f is called Cesáro-Nörlund (C1 ·Np) summable to S(x) if

tCNn
(
f
)
= (n + 1)−1

n∑

k=0

Pk
−1

k∑

i=0

pk−isi
(
f ;x
) −→ S(x) as n −→ ∞. (1.3)

We note that Nn(f) and tCNn (f) are also trigonometric polynomials of degree (or order) n.
Some interesting applications of the Cesáro summability can be seen in [1, 2].
The Lr-norm of signal f is defined by

∥∥f
∥∥
r =

(
1
2π

∫2π

0

∣∣f(x)
∣∣rdx

)1/r

(1 ≤ r < ∞),
∥∥f
∥∥
∞ = sup

x∈[0,2π]

∣∣f(x)
∣∣. (1.4)

A signal (function) f is approximated by trigonometric polynomials Tn(f) of degree n, and
the degree of approximation En(f) is given by

En

(
f
)
= Min

n

∥∥f(x) − Tn
(
f
)∥∥

r . (1.5)

This method of approximation is called trigonometric Fourier approximation.
A signal (function) f is said to belong to the class Lipα if |f(x+ t)− f(x)| = O(|t|α), 0 <

α ≤ 1, and f ∈ Lip(α, r) if ‖f(x + t) − f(x)‖r = O(|t|α), 0 < α ≤ 1, r ≥ 1.
For a positive increasing function ξ(t) and r ≥ 1, f ∈ Lip(ξ(t), r) if ‖f(x + t) − f(x)‖r =

O(ξ(t)), and f ∈ W(Lr, ξ(t)) if ‖[f(x + t) − f(x)]sinβ(x/2)‖r = O(ξ(t)), β ≥ 0.
If β = 0, then W(Lr, ξ(t)) reduces to Lip(ξ(t), r), and if ξ(t) = tα (0 < α ≤ 1), then

Lip(ξ(t), r) class coincides with the class Lip(α, r). Lip(α, r) → Lipα for r → ∞.
We also write

φ(x, t) = φ(t) = f(x + t) + f(x − t) − 2f(x),

K(n, t) =
1

2π(n + 1)

n∑

k=0

Pk
−1

k∑

i=0

pi
sin(k − i + 1/2)t

sin(t/2)
,

(1.6)

τ = [1/t], the greatest integer contained in 1/t, Pτ = P[1/t], Δpk ≡ pk − pk+1.

2. Known Results

Chandra [3] and Khan [4] have obtained the error estimates ‖Nn(f ;x) − f(x)‖r = O(n−α) in
Lip(α, r) class using monotonicity conditions on the means generating sequence {pn}, which
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was generalized by Leindler [5] to almost monotone weights {pn} and by Mittal et al. [6] to
general summability matrix. Further, Mittal et al. [7] have extended the results of Leindler
[5] to general summability matrix, which in turn generalizes some results of Chandra [3] and
Mittal et al. [6]. Recently, Lal [8] has determined the degree of approximation of the functions
belonging to Lipα andW(Lr, ξ(t)) classes using Cesáro-Nörlund (C1 ·Np) summability with
nonincreasing weights {pn}. He proved the following theorem.

Theorem 2.1. LetNp be a regular Nörlund method defined by a sequence {pn} such that

Pτ

n∑

k=τ

Pk
−1 = O(n + 1). (2.1)

Let f ∈ L1[0, 2π] be a 2π-periodic function belonging to Lipα (0 < α ≤ 1), then the
degree of approximation of f by C1 ·Np means of its Fourier series is given by

sup
x∈[0,2π]

∣∣∣tCNn (x) − f(x)
∣∣∣ =
∥∥∥tCNn − f

∥∥∥
∞
=

⎧
⎪⎨

⎪⎩

O
(
(n + 1)−α

)
, 0 < α < 1,

O

(
log(n + 1)πe

(n + 1)

)
, α = 1.

(2.2)

Theorem 2.2. If f is a 2π-periodic function and Lebesgue integrable on [0, 2π] and is belonging to
W(Lr, ξ(t)) class, then its degree of approximation by C1 ·Np means of its Fourier series is given by

∥∥∥tCNn − f
∥∥∥
r
= O
(
(n + 1)β+1/rξ

(
(n + 1)−1

))
, (2.3)

provided ξ(t) satisfies the following conditions:

{
ξ(t)
t

}
be a decreasing sequence, (2.4)

{∫1/(n+1)

0

(
t
∣∣φ(t)

∣∣sinβt

ξ(t)

)r

dt

}1/r

= O
(
(n + 1)−1

)
, (2.5)

{∫π

1/(n+1)

(
t−δ
∣∣φ(t)

∣∣

ξ(t)

)r

dt

}1/r

= O
(
(n + 1)δ

)
, (2.6)

where δ is an arbitrary number such that s(1 − δ) − 1 > 0, r−1 + s−1 = 1, 1 ≤ r ≤ ∞, conditions (2.5)
and (2.6) hold uniformly in x.

Remark 2.3. In the proof of Theorem 2.1 of Lal [8, page 349], the estimate for α = 1 is obtained
as

O

(
1

n + 1

)
+O

(
log(n + 1)π

n + 1

)
= O

(
log e
n + 1

)
+O

(
log(n + 1)π

n + 1

)
= O

(
log(n + 1)πe

n + 1

)
.

(2.7)
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Since 1/(n + 1) ≤ log(n + 1)π/(n + 1), the e is not needed in (2.2) for the case α = 1 (cf. [9,
page 6870]).

Remark 2.4. (i) The author has used monotonicity condition on sequence {pn} in the proof of
Theorem 2.1 and Theorem 2.2, but not mentioned it in the statements. Further in condition
(2.4), {ξ(t)/t} is a function of t not a sequence.

(ii) The condition (2.5) of Theorem 2.2 leads to the divergent integral
∫1/(n+1)
ε t−(β+1)sdt

as ε → 0 and β ≥ 0 [8, page 349]. Also in [8, pages 349-350], the author while writing the
proof of Theorem 2.2 has used sin t ≥ 2t/π in the interval [1/(n + 1), π], which is not valid
for t = π .

3. Main Results

The observations of Remarks 2.3 and 2.4 motivated us to determine a proper set of conditions
to prove Theorems 2.1 and 2.2 without monotonocity on {pn}. More precisely, we prove the
following theorem.

Theorem 3.1. Let Np be the Nörlund summability matrix generated by the nonnegative sequence
{pn}, which satisfies

(n + 1)pn = O(Pn), ∀n ≥ 0. (3.1)

Then the degree of approximation of a 2π-periodic signal (function) f ∈ Lipα by C1 ·Np means of its
Fourier series is given by

∥∥∥tCNn
(
f
) − f(x)

∥∥∥
∞
=

⎧
⎪⎨

⎪⎩

O(n−α), 0 < α < 1,

O

(
logn
n

)
, α = 1.

(3.2)

Theorem 3.2. Let the condition (3.1) be satisfied. Then the degree of approximation of a 2π-periodic
signal (function) f ∈ W(Lr, ξ(t)) with 0 ≤ β ≤ 1− 1/r by C1 ·Np means of its Fourier series is given
by

∥∥∥tCNn
(
f
) − f(x)

∥∥∥
r
= O

(
nβ+1/rξ

(
1
n

))
, (3.3)

provided positive increasing function ξ(t) satisfies the condition (2.4) and

{∫π/n

0

(∣∣φ(t)
∣∣sinβ(t/2)
ξ(t)

)r

dt

}1/r

= O(1), (3.4)

{∫π

π/n

(
t−δ
∣∣φ(t)

∣∣

ξ(t)

)r

dt

}1/r

= O
(
nδ
)
, (3.5)
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where δ is an arbitrary number such that s(β − δ) − 1 > 0, r−1 + s−1 = 1, r ≥ 1, conditions (3.4) and
(3.5) hold uniformly in x.

Remark 3.3. For nonincreasing sequence {pn}, we have

Pn =
n∑

k=0

pk ≥ pn
n∑

k=0

1 = (n + 1)pn, that is, (n + 1)pn = O(Pn). (3.6)

Thus condition (3.1) holds for nonincreasing sequence {pn}; hence our Theorems 3.1 and 3.2
generalize Theorems 2.1 and 2.2, respectively.

Note 1. Using condition (2.4), we get(n/π)ξ(π/n) ≤ nξ(1/n).

4. Lemmas

For the proof of our Theorems, we need the following lemmas.

Lemma 4.1 (see [10, 5.11]). If {pn} is nonnegative and nonincreasing sequence, then for 0 ≤ a <
b ≤ ∞, 0 ≤ t ≤ π and for any n

∣∣∣∣∣

b∑

k=a

pke
i(n−k)t

∣∣∣∣∣
=

{
O
(
P
(
t−1
))
, for any a,

O
(
t−1pa

)
, for a ≥ t−1.

(4.1)

Lemma 4.2 (see [8, page 348]). For 0 < t ≤ π/n, K(n, t) = O(n).

Lemma 4.3. If {pn} is nonnegative sequence satisfying (3.1), then for πn−1 < t ≤ π ,

K(n, t) = O

(
t−2

(n + 1)

)

+O
(
t−1
)
. (4.2)

Proof. We have

K(n, t) =
1

2π(n + 1) sin(t/2)

n∑

k=0

Pk
−1

k∑

r=0

pr sin
(
k − r +

1
2

)
t

=
1

2π(n + 1) sin(t/2)

(
τ∑

k=0

+
n∑

k=τ+1

)(

Pk
−1

k∑

r=0

pr sin
(
k − r +

1
2

)
t

)

= K1(n, t) +K2(n, t), say.

(4.3)

Now, using (sin t/2)−1 ≤ π/t, for 0 < t ≤ π , we get

|K1(n, t)| = O
(
(n + 1)−1t−1

) τ∑

k=0

(

Pk
−1

k∑

r=0

pr

)

= O

(
τt−1

(n + 1)

)

= O

(
t−2

(n + 1)

)

. (4.4)
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Using (sin t/2)−1 ≤ π/t, for 0 < t ≤ π and changing the order of summation, we have

|K2(n, t)| = O
(
t−1(n + 1)−1

)
∣
∣
∣
∣
∣

n∑

k=τ+1

Pk
−1

k∑

r=0

pr sin
(
k − r +

1
2

)
t

∣
∣
∣
∣
∣

= O
(
t−1(n + 1)−1

)
∣
∣
∣
∣
∣

τ+1∑

r=0

pr
n∑

k=τ+1

Pk
−1 sin

(
k − r +

1
2

)
t

+
n∑

r=τ+1

pr
n∑

k=r

Pk
−1 sin

(
k − r +

1
2

)
t

∣
∣
∣
∣
∣
.

(4.5)

Again using (sin t/2)−1 ≤ π/t, for 0 < t ≤ π , Lemma 4.1, (in view of Pn being positive and
Pn+1

−1 ≤ Pn
−1 for all n ≥ 0) and t−1 < τ + 1, we get

∣∣∣∣∣

τ+1∑

r=0

pr
n∑

k=τ+1

Pk
−1 sin

(
k − r +

1
2

)
t

∣∣∣∣∣
≤
(

τ+1∑

r=0

pr

∣∣∣∣∣

n∑

k=τ+1

Pk
−1ei(k−r)t

∣∣∣∣∣

)

= O
(
t−1Pτ+1

−1
)τ+1∑

r=0

pr = O

(
1
t

)
.

(4.6)

Using Abel’s transformation, we get

n∑

k=r

Pk
−1 sin

(
k − r +

1
2

)
t =

n−1∑

k=r

(
ΔPk

−1
) k∑

j=0

sin
(
k − j +

1
2

)
t

+ Pn
−1

n∑

j=0

sin
(
k − j +

1
2

)
t − Pr

−1
r−1∑

j=0

sin
(
k − j +

1
2

)
t

= O

(
1
t

)(n−1∑

k=r

∣∣∣ΔPk
−1
∣∣∣ + Pn

−1 + Pr
−1
)

= O

(
1
t

)(
Pn

−1 + Pr
−1
)
,

(4.7)

in view of (sin t/2)−1 ≤ π/t, for 0 < t ≤ π and Pn ≥ Pn−1 for all n ≥ 0.
Combining (4.5)–(4.7), we get

|K2(n, t)| = O
(
t−2(n + 1)−1

)(

1 +
n∑

r=τ+1

pr
(
Pn

−1 + Pr
−1
))

= O
(
t−2(n + 1)−1

)(

1 + Pn
−1

n∑

r=0

pr +
n∑

r=τ+1

(
pr
Pr

))

= O
(
t−2(n + 1)−1

)(

1 +
n∑

r=τ+1

(r + 1)−1
)

= O

(
t−2

n + 1

)(
1 +O

(
n − τ

τ + 1

))
= O
(
t−2(n + 1)−1

)
+O
(
t−1
)
,

(4.8)

in view of (3.1) and τ ≤ 1/t < (τ + 1).
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Finally collecting (4.3), (4.4) and (4.8), we get Lemma 4.3.

Proof of Theorem 3.1. We have

sn
(
f
) − f(x) =

1
2π

∫π

0

(
sin(n + 1/2)t

sin(t/2)

)
φ(t)dt. (4.9)

Denoting C1 ·Np means of {sn(f)} by tCNn (f), we write

∣
∣
∣tCNn

(
f
) − f(x)

∣
∣
∣ =
(

1
2π(n + 1)

)∣∣
∣
∣
∣

∫π

0
φ(t)

n∑

k=0

Pk
−1

k∑

i=0

pi

(
sin(k − i + 1/2)t

sin(t/2)

)
dt

∣
∣
∣
∣
∣

≤
∫π/n

0

∣∣φ(t)K(n, t)
∣∣dt +

∫π

π/n

∣∣φ(t)K(n, t)
∣∣dt = I1 + I2, say.

(4.10)

Now, using Lemma 4.2 and the fact that f ∈ Lipα ⇒ φ(t) ∈ Lipα [10], we have

I1 = O(n)
∫π/n

0
tαdt = O

(
n−α). (4.11)

Using Lemma 4.3, we get

I2 = O

{∫π

π/n

tα
(

t−2

(n + 1)
+ t−1

)

dt

}

= O(I21) +O(I22), say, (4.12)

where

I21 = (n + 1)−1
∫π

π/n

tα−2dt =

⎧
⎪⎨

⎪⎩

O(n−α), 0 < α < 1,

O

(
logn
n

)
, α = 1,

I22 =
∫π

π/n

tα−1dt = O

(∫π

π/n

π

nt
tα−1dt

)
=

⎧
⎪⎨

⎪⎩

O(n−α), 0 < α < 1,

O

(
logn
n

)
, α = 1,

.

(4.13)

Collecting (4.10)–(4.13) and writing 1/n ≤ (logn)/n, for large values of n, we get

∣∣∣tCNn
(
f
) − f(x)

∣∣∣ =

⎧
⎪⎨

⎪⎩

O(n−α), 0 < α < 1,

O

(
logn
n

)
, α = 1.

(4.14)
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Hence,

∥
∥
∥tCNn

(
f
) − f(x)

∥
∥
∥
∞
= sup

x∈[0,2π]

∣
∣
∣tCNn

(
f
) − f(x)

∣
∣
∣ =

⎧
⎪⎨

⎪⎩

O(n−α), 0 < α < 1,

O

(
logn
n

)
, α = 1.

(4.15)

This completes the proof of Theorem 3.1.

Proof of Theorem 3.2. Following the proof of Theorem 3.1, we have

tCNn
(
f
) − f(x) =

∫π/n

0
φ(t)K(n, t)dt +

∫π

π/n

φ(t)K(n, t)dt = I3 + I4, say. (4.16)

Using Hölder’s inequality, φ(t) ∈ W(Lr, ξ(t)), condition (3.4), Lemma 4.2, and (sin t/2)−1 ≤
π/t, for 0 < t ≤ π , we have

|I3| =
∣∣∣∣∣

∫π/n

0

φ(t)sinβ(t/2)
ξ(t)

· ξ(t)K(n, t)
sinβ(t/2)

dt

∣∣∣∣∣

≤
(∫π/n

0

∣∣∣∣∣
φ(t)sinβ(t/2)

ξ(t)

∣∣∣∣∣

r

dt

)1/r(

lim
ε→ 0

∫π/n

ε

∣∣∣∣
ξ(t)K(n, t)
sinβ(t/2)

∣∣∣∣

s

dt

)1/s

= O(1)

(

lim
ε→ 0

∫π/n

ε

(
ξ(t)n

sinβ(t/2)

)s

dt

)1/s

= O

(
nξ

(
π

n

))(

lim
ε→ 0

∫π/n

ε

t−βsdt

)1/s

= O

(
ξ

(
1
n

)
nβ+1−1/s

)
= O

(
nβ+1/rξ

(
1
n

))
,

(4.17)

in view of the mean value theorem for integrals, r−1 + s−1 = 1 and Note 1.
Similarly, using Hölder’s inequality, Lemma 4.3, | sin(t/2)| ≤ 1, (sin(t/2))−1 ≤ π/t,

condition (3.5), and the mean value theorem for integrals, we have

|I4| = O

(∫π

π/n

φ(t)
(
t−2(n + 1)−1 + t−1

)
dt

)
= O(I41) +O(I42), say, (4.18)
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where

I41 =
(∫π

π/n

φ(t)t−2(n + 1)−1dt
)

= O
(
(n + 1)−1

)(∫π

π/n

t−δφ(t)sinβ(t/2)
ξ(t)

ξ(t)
t2−δsinβ(t/2)

dt

)

= O
(
n−1
)(∫π

π/n

(
t−δ
∣
∣φ(t)

∣
∣

ξ(t)

)r

dt

)1/r(∫π

π/n

(
ξ(t)
t2−δ+β

)s

dt

)1/s

= O
(
nδ−1

)(∫n/π

1/π

(
ξ
(
1/y
)

yδ−2−β

)s

y−2dy

)1/s

= O

(
nδ−1

(
n

π

)
ξ

(
π

n

))(∫n/π

ε1

y(1−δ+β)s−2dy

)1/s

= O

(
nδξ

(
1
n

)
n1−δ+β−1/s

)
= O

(
ξ

(
1
n

)
nβ+1/r

)
,

I42 =
∫π

π/n

φ(t)t−1dt =
∫π

π/n

t−δφ(t)sinβ(t/2)
ξ(t)

ξ(t)
t1−δsinβ(t/2)

dt

= O

(∫π

π/n

∣∣∣∣∣
t−δφ(t)sinβ(t/2)

ξ(t)

∣∣∣∣∣

r

dt

)1/r(∫π

π/n

∣∣∣∣
ξ(t)

t1−δsinβ(t/2)

∣∣∣∣

s

dt

)1/s

= O

(∫π

π/n

∣∣∣∣∣
t−δφ(t)
ξ(t)

∣∣∣∣∣

r

dt

)1/r(∫π

π/n

∣∣∣∣
ξ(t)
t1−δ+β

∣∣∣∣

s

dt

)1/s

= O
(
nδ
)(∫n/π

1/π

(
ξ
(
1/y
)

yδ−1−β

)s

y−2dy

)1/s

= O

((
nδ+1

π

)

ξ

(
π

n

))(∫n/π

ε2

y(β−δ)s−2dy

)1/s

= O

(
nδ+1ξ

(
1
n

)
n−δ+β−1/s

)
= O

(
ξ

(
1
n

)
nβ+1/r

)
,

(4.19)

in view of increasing nature of yξ(1/y), r−1 + s−1 = 1, where ε1, ε2 lie in [π−1, nπ−1], and Note
1.

Collecting (4.16)–(4.19), we get

∣∣∣tCNn
(
f
) − f(x)

∣∣∣ = O

(
nβ+1/rξ

(
1
n

))
. (4.20)
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Hence,

∥
∥∥tCNn

(
f
) − f(x)

∥
∥∥
r
=

(
1
2π

∫2π

0

∣
∣∣tCNn

(
f
) − f(x)

∣
∣∣
r
dx

)1/r

= O

(
nβ+1/rξ

(
1
n

))
. (4.21)

This completes the proof of Theorem 3.2.

5. Corollaries

The following corollaries can be derived from Theorem 3.2.

Corollary 5.1. If β = 0, then for f ∈ Lip(ξ(t), r), ‖tCNn (f) − f(x)‖r = O(n1/rξ(1/n)).

Corollary 5.2. If β = 0, ξ(t) = tα (0 < α ≤ 1), then for f ∈ Lip(α, r) (α > 1/r),

∥∥∥tCNn (f) − f(x)
∥∥∥
r
= O
(
n1/r−α

)
. (5.1)

Corollary 5.3. If r → ∞ in Corollary 5.2, then for f ∈ Lipα(0 < α < 1), (5.1) gives

∥∥∥tCNn
(
f
) − f(x)

∥∥∥
∞
= O
(
n−α). (5.2)

6. Conclusion

Various results pertaining to the degree of approximation of periodic functions (signals)
belonging to the Lipchitz classes have been reviewed and the condition of monotonocity
on the means generating sequence {pn} has been relaxed. Further, a proper set of conditions
have been discussed to rectify the errors pointed out in Remarks 2.3 and 2.4.
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