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Classical wavelet thresholding methods suffer from boundary problems caused by the application
of the wavelet transformations to a finite signal. As a result, large bias at the edges and artificial
wiggles occur when the classical boundary assumptions are not satisfied. Although polynomial
wavelet regression and local polynomial wavelet regression effectively reduce the risk of this
problem, the estimates from these two methods can be easily affected by the presence of correlated
noise and outliers, giving inaccurate estimates. This paper introduces two robust methods inwhich
the effects of boundary problems, outliers, and correlated noise are simultaneously taken into
account. The proposed methods combine thresholding estimator with either a local polynomial
model or a polynomial model using the generalized least squares method instead of the ordinary
one. A primary step that involves removing the outlying observations through a statistical function
is considered as well. The practical performance of the proposed methods has been evaluated
through simulation experiments and real data examples. The results are strong evidence that the
proposed method is extremely effective in terms of correcting the boundary bias and eliminating
the effects of outliers and correlated noise.

1. Introduction

Suppose a noisy data set y1, y2, . . . , yn lives on the fixed design model

yi = f

(
i

n

)
+ εi; i = 1, 2, . . . ; n = 2j ; j = 1, 2, . . . . (1.1)

The classical model (1.1) assumes that the unknown function, f , is square integrable on the
interval [0, 1]. The sequence {εi}ni=1 is independent and distributed normally with identical
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means zero and identical variances σ2. Wavelet methods have been intensively used over
the last two decades for estimating an unknown function observed in the presence of noise,
following the pioneering work presented in the seminal papers of Donoho and Johnstone
[1, 2], where the concept of wavelet thresholding was introduced to the statistical literature.
Researchers have begun looking at the situation where the usual assumptions are no longer
satisfied. When the noise contains a certain amount of structure in the form of a correlation,
the variances of the wavelet coefficients will depend on the resolution level of the wavelet
decomposition but will be constant at each level. As a result, the global thresholding breaks
down because of its great difficulty in providing a global threshold value to thresholdwavelet
coefficients at all the desired levels. In order to overcome this limitation, Johnstone and
Silverman [3] recommended using level by level thresholding, that is, not to use only one
thresholding value for all coefficients at all resolution levels, but instead, one depending
on the levels. Different thresholding methods have been considered, such as Universal of
Donoho and Johnstone [1], SURE of Donoho and Johnstone [2], and the translation-invariant
denoising algorithm of Coifman and Donoho [4]. Details can be found in Johnstone and
Silverman [3]. The level-dependent thresholdingmethod proposed by [3] considered the case
where the noise is correlated but stationary. If the noise is correlated but not stationary, the
DWT coefficients will be heteroscedastic and correlated. Kovac and Silverman [5] have taken
these circumstances into consideration and proposed more general thresholding method,
which can be used for both stationary and nonstationary noise. Another method was
proposed byWang andWood [6], in which the covariance structure of the data has been taken
into account. This method is based on estimating the correlation structure of the noise in two
different domains, namely, the time domain and the wavelet domain. As to the presence of
outliers, a lot of research has been carried out to eliminate the effects of outliers. Outliers in the
data typically lead to large coefficients in the wavelet decomposition. These large coefficients
will not be removed by the usual thresholding approaches. One of the early robust wavelet
thresholding estimators dates back to Kovac [7], where thresholding was applied to the
output of a median filter. Additionally, Kovac and Sliverman [5] proposed a robust procedure
involving the following steps. First, the problematic outliers are identified using a statistical
test. Then, these outliers are removed from the data. The final step is to apply wavelet
thresholding to the remaining irregularly spaced data to estimate the underlying function.
Sardy et al. [8] proposed a robust M-type wavelet denoising method. Averkamp and Houdré
[9] extended the minimax theory for wavelet thresholding to some known symmetric heavy
tail noises. In a similar way to Kovac [7], Wei et al. [10] used a two-stage robust denoising
approach based on a median filter and wavelet thresholding. At the first stage, the corrupt
data is passed through the median filter, in which the outliers are suppressed. At the second
stage, the data is shrunk with a soft wavelet threshold, and the ultimate reconstructed signal
is attained. More recently, new methods have been proposed by Oh et al. [11], based on the
concept of pseudo data, and by Oh et al. [12], based on the concept of robust thresholding
within robust estimation. Altaher and Ismail [13] showed that the practical performance of
these methods would be improved by taking into consideration the automatic boundary
treatment proposed by Oh et al. [14] and Oh and Lee [15].

In all the literature discussed above, Kovac and Silverman [5] were the only ones to
take into account the effect of correlated noise and outliers at the same time, but the limitation
of this method is the use of classical boundary assumptions. This method performs well
when the boundary assumptions are satisfied, but its practical achievement can be greatly
improved by using the idea of polynomial wavelet regression (PWR) or local polynomial
wavelet regression (LPWR) for automatic boundary corrections. We conclude that there is
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a real need to find a proper way to take into simultaneous consideration the effect of the
boundary problem, correlated noise, and outliers by one estimator; this is main contribution
of the present paper.

The rest of this paper is organized as follows. In Section 2, we give a brief background
for automatic boundary treatments in wavelet regression. Section 3 reviews the wavelet
estimation of Kovac and Silverman [5] and generalized least squares, followed by our
proposed methods. A simulation experiment and real data examples are presented in
Section 4. Conclusions are drawn in Section 5.

2. Background

2.1. Boundary Treatment in Wavelet Thresholding

Boundary effects have been taken into account when using classical wavelet thresholding by
imposing on f some boundary assumptions such as symmetry or periodicity. Unfortunately,
such assumptions are not always valid, and the problem still exists for some cases. The
boundary problem can be treated automatically using the principles of either polynomial
wavelet regression (PWR) or local polynomial wavelet regression (LPWR).

2.1.1. Polynomial Wavelet Regression (PWR)

The polynomial wavelet regression method (PWR) considered by Oh et al. [14] is based on
a combination of wavelet functions f̂W(x) and low order polynomials f̂P (x). Therefore, the
estimator of f , f̂PW , is

f̂PW(x) = f̂P (x) + f̂W(x). (2.1)

The optimal order for the polynomial model will enable the polynomial estimator to
remove the “nonperiodicity” in the data. Then, the remaining signal can be well estimated
using wavelet thresholding with, say, a periodic boundary assumption. Different approaches
have been proposed in order to find such choices of the proper polynomial order and
threshold value. For the threshold value, the EBayesThresh procedure of [16] is the most
popular for its good theoretical properties and good performance in simulations and in
practice. To find f̂PW(x), it is proposed to regress the observed data {yi}ni=1 on {x, . . . , xd}
for a fixed order value, d. Once f̂P (x) has been estimated, the remaining signal is expected to
be hidden in the residuals, {ei = yi − f̂P (x)}ni=1. For this, the second step is to apply wavelet
regression to {ei}ni=1. The final estimate of f will be the summation of f̂P (x) and f̂W(x) as in
(2.1). For more details, see, for example, Oh et al. [14] or Lee and Oh [17].

The use of PWR for resolving boundary problems works efficiently if the polynomial
estimator f̂P is able to remove the “nonperiodicity” in the data, and this certainly requires
using a proper order with an appropriate threshold. Different criteria have been proposed
to aid in choosing the order of the polynomial model that should be incorporated into the
wavelet functions in order to get successful corrections to the bias at the boundary region.
Here we give a brief introduction to the common ones.
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(1) Lee and Oh [17] proposed two criteria: the first criterion uses the value of d that
maximizes

r(d) =
d∑
i=1

a2
i −

2σ2d

n
, d = 0, 1, . . . . (2.2)

Here, {ai}di=0 denote the parameter coefficients of the polynomial model. In this
method, a model of this order d has been used with the SURE threshold.

(2) The second criterion is based on the Bayesian information criterion (BIC), which is
employed to select d by minimizing

BIC = n log

⎡
⎣ 1
n

{
n∑
i=1

yi − f̂P

(
i

n

)}2
⎤
⎦ + d log(n). (2.3)

In this method, a model of order d should be used with EbayeThresh of Johnstone
and Silverman [16].

(3) Oh and Kim [18] proposed three different Bayesian methods based on integrated
likelihood, conditional empirical Bayes, and reversible jump Markov chain Monte
Carlo (MCMC). For the mathematical details regarding these methods, see Oh and
Kim [18].

2.1.2. Local Polynomial Wavelet Regression (LPWR)

The local polynomial wavelet regression method was introduced by Oh and Lee [15] as an
improved boundary adjustment in wavelet regression. Instead of using the global polynomial
fit as in Oh et al. [14], it was proposed to use a local polynomial fit, f̂LP. Therefore, the local
polynomial wavelet regression estimator, f̂LPWR(x), can be written as follows:

f̂LPWR(x) = f̂LP(x) + f̂W(x). (2.4)

As shown in Oh and Lee [15], f̂LPWR(x) can be computed through an iterative
algorithm inspired by the back-fitting algorithm, see Johnstone and Silverman [16]. The
following steps summarize the key points for finding the final local polynomial wavelet
regression estimate, f̂LPWR(x).

(1) Select an initial estimate f̂0 for f and let f̂LPWR = f̂0.

(2) For j = 1, 2, . . . iterate the following steps.

(a) Apply wavelet thresholding to the residuals yi − f̂LPWR and obtain f̂
j

W .

(b) Estimate f̂ j

LP by fitting a local polynomial regression to yi − f̂
j

W .

(3) Stop if f̂LPWR = f̂
j

LP + f̂
j

W converges.
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3. Method

3.1. Wavelet Estimation of Kovac and Silverman [5]

The level-dependent thresholding method proposed by Johnstone and Silverman [3]
considers the case where the noise is correlated but stationary. In this case, the variances
of the wavelet coefficients differ between levels but are identical, so the coefficients can be
thresholded level by level, see Altaher and Ismail [19] for numerical simulation results. On
the other hand, if the noise is correlated but not stationary, the discrete wavelet transform
(DWT) coefficients will be heteroscedastic and correlated. Kovac and Silverman [5] have
taken these circumstances into consideration and proposed more general thresholding
method which can be used for both stationary and nonstationary noise.

As shown in Kovac and Silverman [5], an algorithm can be used to find all the
variances and within-level covariances in the wavelet table of a sequence with a given
covariance structure. If the covariance matrix of the original data is band limited, then the
algorithm is linear in the length of the sequence. It also has been shown that the variance-
calculation algorithm allows data on any set of independent variable values to be treated as
follows: first, the noisy data are interpolated to a new equally spaced grid of a suitable length
(the function makegrid available in R can be used). Then, wavelet thresholding is applied to
the gridded data.

Based on the information given in Kovac and Silverman [5], the key points of this
method are as follows.

Given a discrete sequence y = (y1, . . . , yn) observed on (x1, . . . , xn), a new equally
spaced grid t1, . . . , tN on (0, 1) is generated, where tk = (k+0.5)/N, k = 0, 1, . . . ,N−1,N = 2j ,
j = min{J ∈ Z : 2j > n}.

Based on this grid, the original data values yi on xi are linearly interpolated to new
data values y∗ on the new grid:

y∗
i =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

y1; tk ≤ x1

yi + (tk − xi)
yi+1 − yi

xi+1 − xi
; xi ≤ tk ≤ xi+1

yn; tk > xn.

(3.1)

This interpolation can be written in the matrix form as follows:

y∗ = Ry, (3.2)

where the matrix R is the linear transformation matrix. The first step of wavelet regression is
to apply the discrete wavelet transform, which can be written in the matrix form as follows:

d = Wy∗, (3.3)

whereW is theN ×N wavelet matrix. Since the original observations {yi} are correlated, the
covariance matrix of y∗ is given by

Σ = RΣyR
′ =

{
σjk

}
. (3.4)
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Figure 1: Curve estimation of data with correlated noise: (a) fitted by level-dependent thresholding, (b)
fitted by the method of Kovac and Silverman [5], (c) fitted by the first proposed method, and (d) fitted by
the second proposed method. The black line is the fitted curve, while the red is the true function.

For all j and k, consider thresholds of the form

λj,k = λσ̂jk, (3.5)

where λ =
√
2 log(n), the universal threshold.

Although this method works fine for many different kinds of functions, only the
classical treatment for the boundary problem is considered (such as assumptions of
periodicity or symmetry). Now, as a motivation for our proposed methods which will be
described later, we present here a very popular function, called fg1, of Donoho and Johnstone
[1] to show how badly this traditional method behaves when the regression function is
neither periodic nor symmetric. Then, we will show how we could improve the estimation
quality if we combine this method with a polynomial model or a local polynomial model.
Figure 1 depicts the weakness and the improvement in the estimation method of [5]. In
this figure, it can be seen that the best fit is given by our proposed methods, that is, when
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we combine the thresholding method of Kovac and Silverman [5] with polynomial or local
polynomial models.

Details for these methods will be given next, but first we will introduce the method of
generalized least squares which will be used in the first stage of our proposed method.

3.2. Ordinary Least Squares versus Generalized Least Squares

Consider the standard linear model:

Y = Xβ + ε, (3.6)

where Y is the n × 1 response vector; X is an n × p model matrix; β is a p × 1 vector of
parameters to be estimated; ε is an n × 1 vector of errors. The error term ε could be constant
and uncorrelated such ε ∼ N(0, σ2In) or correlated, such as ε ∼ N(0,Ω), where Ω is the
variance-covariance matrix of the errors. Based on these two assumptions, we can distinguish
two formulas for the parameter estimates.

If ε ∼ N(0, σ2In), then

β̂OLS =
(
X′X

)−1
X′Y, var

(
β̂OLS

)
= σ2(X′X

)−1
. (3.7)

The presence of correlated noise has several effects on OLS. Although the regression
coefficient estimates are still unbiased, they are no longer minimum-variance estimates.
In the case of positively correlated noise, the residual mean squared error may seriously
underestimate the error variance, σ2. Consequently the standard errors of the regression
coefficientsmay be too small. As a result, the confidence intervals are shorter than they should
be, see Montgomery et al. [20].

An alternative solution to estimate the regression coefficients in the presence of
correlated noise is to use the following generalized least square estimates.

If ε ∼ N(0,Ω), then

β̂GLS =
(
X′Ω−1X

)−1
X′Ω−1Y, var

(
β̂GLS

)
=
(
X′Ω−1X

)−1
. (3.8)

Using the Choleski decomposition, the matrix Ω can be written in terms of a triangular
matrix, S, such that Ω = S′S. The model in (3.6) can be written as follows:

S−1Y = S−1Xβ + S−1ε, (3.9)

Y ∗ = X∗β + ε∗, (3.10)

where Y ∗ = S−1Y and X∗ = S−1X. In the new model (3.10) one can easily show that var(ε∗) =
var(S−1ε) = In.
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3.3. Proposed Robust Estimation Method for Data with Outliers and
Correlated Noise

In this section, we will propose some two-stage combined methods which can be used in the
presence of outliers and correlated noise. The classical way in PWR and LPWR is to use OLS
to get the residuals. Due to the serious effects of the correlated noise on OLS, we suggest
using the method of generalized least squares (GLSs) as an effective alternative solution to
get rid of (or at least reduce) these effects. A primary step for removing outlying observation
is employed before applying GLS.

At the second stage, we employ the wavelet thresholding estimator illustrated in
Section 3.1 for removing the remaining noise. Therefore, the final estimate will be the
summation of the function estimate from the polynomial model (or local polynomial) at the
first stage and the estimate of the Kovac and Silverman [5] estimator at the second stage.

The following two algorithms describe our two proposed methods. The first algorithm
is for PWR and the second is for LPWR.

Algorithm 3.1. Let {xi, yi} be the original noisy data sample. The following few steps describe
the first proposed method.

(1) Remove any outliers in {yi}. The function get.outliers available in R can be used to
determine probable problematic outliers.

(2) Interpolate the remaining data to a new equally spaced design and use them in the
next steps. The function makegrid (available in R) can be used.

(3) Apply the generalized least squares method and select the optimal polynomial
order to be used for getting f̂P and then the residuals êi. The function gls is used to
apply GLS; it is available in R in the nlme package.

(4) Apply the wavelet thresholding procedure of [5] to the residuals and find f̂W .

(5) The final estimate will be f̂P + f̂W .

Algorithm 3.2. In a similar way to Algorithm 3.1, the second proposed method involves the
following steps.

(1) Remove any outliers in {yi}. The function get.outliers is used.

(2) The function makegrid is used to interpolate the remaining data to a new equally
spaced design and use them in the next steps.

(3) Apply a local polynomial estimator using the interpolated data to get f̂LP and then
the residuals.

(4) Apply the wavelet thresholding procedure of Kovac and Silverman [5] to the
residuals and find f̂W .

(5) The final estimate will be f̂LP + f̂W .

4. Evaluating the Practical Performance

4.1. Simulation Experiment

The R statistical package was used to carry out a simulation study in order to compare the
numerical performance of the following three methods:



International Journal of Mathematics and Mathematical Sciences 9

Table 1: Autoregressive models used in the simulations.

AR(1) AR(2) MA(1)
Parameter

0.3 (0.7, 0.2) 3.8
0.5 (0.5, 0.2) 2.5
0.7 (0.2, 0.7) 1.8
0.9 (0.1, 0.5) 0.8

(1) The wavelet regression method of Kovac and Silverman [5], labelled as (I).

(2) The proposed method based on a polynomial model, labelled as (II).

(3) The proposed method based on a local polynomial model, labelled as (III).

We simulated 100-time series data of length 128 using three common correlated process
models with different parameters. These included first- and second-order autoregressive
models and a first-order moving average model, see Table 1. For each model, we added
four different kinds of noise, similar to Gelper et al. [21]. Then the three wavelet regression
methods (I, II, and III) were applied, and, finally, the global and local mean squared errors
were computed for comparison. The four kinds of noise were as follows.

(1) Pure normal noise with 0 mean and variance equal to 1 (clean data, CD)

(2) Mixture normal noise: 0.95 N(n, 0, 1) + 0.05 N(n, 0, 10) (symmetric outliers, SQ).

(3) Mixture normal noise: 0.95 N(n, 0, 1) + 0.05 N(n, 10, 1) (asymmetric outliers, AQ).

(4) t(3) noise (fat tail noise).

Generating time series data will ensure that we have data with correlated noise. The noises
mentioned above will play the role of having outliers. For example, in the second noise
setting, a small fraction of the clean observations is replaced by symmetric outliers (SOs),
and, in the third noise setting, it is replaced by asymmetric outliers (AOs). The last noise is a
heavy tail noise, a common example of non-Gaussian noise with outliers.

The numerical results for the global mean squared error and local mean squared error
are given in Tables 3, 4, and 5. Having examined these simulation results, the following
empirical remarks can be made.

(i) In terms of the global mean squared error:

(1) In the case of clean data, the global mean squared error shows that the
proposed method (III) outperforms the other two methods for all three
autoregressive models with their four different parameters. Among the other
two methods, the proposed method (I) outperforms the traditional method of
[5]. The only exception was for AR(2) with parameter (0.2, 0.7).

(2) In the case of symmetric outliers, the global mean squared error shows that
the proposed method (II) outperforms the other two methods for all three
autoregressive models and their four different parameters. The only exception
was for MA(1) with parameter (3.8). In this case, the proposed method (III)
provided the best results.

(3) In the case of asymmetric outliers, the global mean squared error shows that
the proposed method (II) outperforms the other two methods for all three
autoregressive models and their four different parameters.
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(4) In the case of fat tail data, the global mean squared error shows that the
proposed method (III) performs much better than the other two methods for
all three autoregressive models with their four different parameters.

(ii) In terms of the local mean squared error:

(1) In the case of clean data, the local mean squared error shows that the
proposed method (III) outperforms the remaining two methods for all three
autoregressive models and their four different parameters. The only exception
was for AR(1) with parameter (0.3) and AR(2) with parameter (0.1, 0.5).

(2) In the case of symmetric outliers, the local mean squared error shows that the
two proposed methods II and III outperform the traditional method of Kovac
and Silverman [5]. For AR(1) and AR(2), the proposed method (II) achieved
better results except for the parameters (0.3) and (0.1, 0.5).

(3) In the case of asymmetric outliers, the local mean squared error shows that the
proposed method (II) outperforms the other two methods except for AR(1)
with parameter (0.9) and MA(1) with parameter (3.8).

(4) In the case of long tail data, the local mean squared error shows that the
proposed method (III) performs better than the other two methods.

(5) Generally, in terms of the global mean squared error, out of the 48 different
models with different parameters used in this simulation, it has been found
that the first proposed method won 25 times, the second proposed method
won 23 times, while the traditional method of Kovac and Silverman [5] did not
win even once. In terms of the local mean squared error, out of the 48 different
models with different parameters used in the simulation, it has been found
that the first proposed method won 19 times, the second proposed method
won 22 times, while the traditional method of Kovac and Silverman [5] won
only 7 times.

Overall, this simulation experiment revealed that the two proposed methods are preferable
to that of Kovac and Silverman [5] in fitting data with correlated noise and outliers.

4.2. Evaluation through Real Data Examples

In this section, we will apply the traditional method of Kovac and Silverman [5] and the two
new proposed methods to two data sets.

The first data are the US monthly influenza mortality data taken from Shumway and
Stoffer [22]. The response variable denotes the mortality caused by pneumonia and influenza
at month t. Figure 2 is a plot of the monthly pneumonia and influenza deaths per 10,000 in the
US 11 years from 1968 to 1978. Many interesting features can be seen in this data. The number
of deaths typically tends to increase more slowly than it decreases. There is no reason to think
that this time series follows a linear Gaussian process. If that was the case, we would not have
seen such large bursts of positive and negative changes occurring periodically.

The second data are also from Shumway and Stoffer [22], the average global
temperature deviations for n = 64 years in degrees centigrade (1880–1943); see Figure 3.

We first study the correlation structure to make sure that we have data with
correlated noise. Figure 4 shows the autocorrelation functions and their corresponding partial
correlation functions. Then we follow up by computing the Durbin-Watson statistics for
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Figure 2: U.S. monthly pneumonia and influenza deaths per 10,000 over 11 years from 1968 to 1978.
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Figure 3: Average global temperature deviations for n = 64 years in degrees centigrade (1880–1943).

the OLS regression estimates, see Table 2. The results are clear evidence for significant
correlations at lags 1, 4, and 5 for both data sets.

Figure 5 shows the estimated curve using the two proposed methods (panels (c) and
(d)) and the traditional method (panel (b)) of Kovac and Silverman [5]. Visual evaluation
is not sufficient for determining which method is more accurate than the others, so we
used the mean squared error for judgement. The mean squared error values are (0.01127487,
0.01046806, and 0.004596079) for the traditional method, the first proposed method, and the
second proposed method, respectively. This means that the best fit is given by the second
proposed method, then by the first proposed method, and finally by the traditional method.
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Figure 4: Autocorrelation and partial-autocorrelation functions for the residuals from the OLS method.
The first row is for first data, while the second row is for the second data.

Table 2: Summary for Durbin-Watson test.

lag Autocorrelation D-W Statistic P value
First data

1 0.6883450 0.6168636 0.000
2 0.1922665 1.5993563 0.140
3 −0.1685699 2.3187448 0.254
4 −0.3652775 2.6990538 0.010
5 −0.3673240 2.6521103 0.008

Second data
1 0.6883450 0.6168636 0.000
2 0.1922665 1.5993563 0.162
3 −0.1685699 2.3187448 0.274
4 −0.3652775 2.6990538 0.022
5 −0.3673240 2.6521103 0.010
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Table 3: Simulation results of global and local mean squared using AR(1) with different parameters. The
first half of the table displays the global mean squared error.

ρ I II III

CD

0.3 1.032684 1.031848 0.9912508

0.5 1.190477 1.142319 0.8841418

0.7 1.454564 1.417338 0.8683088

0.9 1.186370 1.117227 0.7043864

SQ

0.3 1.603859 1.070997 1.672791

0.5 1.646231 1.084239 1.700433

0.7 1.829821 1.050726 1.625967

0.9 1.981135 1.121463 1.589858

AQ

0.3 1.430155 0.8245817 1.563744

0.5 1.921071 1.3050117 1.888181

0.7 1.774816 1.0581883 1.713439

0.9 1.917869 1.5325202 1.702284

Fat tail data

0.3 1.0792571 0.9587506 0.9144366

0.5 0.9066489 0.8696987 0.7690691

0.7 1.3491463 1.2460089 0.8146345

0.9 1.5744066 1.4142226 0.7023962

mse at boundary

CD

0.3 1.959192 1.993277 1.9739248

0.5 1.698549 1.601896 1.2203974

0.7 1.161763 1.426407 0.9157507

0.9 1.647253 1.808840 1.1332881

SQ

0.3 2.045994 1.6759544 2.374387

0.5 1.891612 1.2883680 2.514418

0.7 1.714374 0.8980506 2.353474

0.9 2.196825 0.9884269 1.968370

AQ

0.3 1.796641 1.135821 2.304636

0.5 2.336372 1.676010 2.936859

0.7 1.752143 1.256421 1.807269

0.9 2.542747 2.410233 2.061829

Fat tail data

0.3 1.3175606 1.3487222 1.0755325

0.5 0.6829416 0.6869467 0.8313126

0.7 1.0077950 1.0629237 0.8260527

0.9 1.0001727 1.3372696 0.6346054
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Table 4: Simulation results of global and local mean squared using AR(2) with different parameters. The
first half of the table displays the global mean squared error.

Parameter I II III

CD

(0.7, 0.2) 1.1674119 1.1430405 0.6588707

(0.5, 0.1) 1.1753915 1.1456239 0.8297044

(0.2, 0.7) 1.4271601 1.5023487 1.0724085

(0.1, 0.5) 0.9575155 0.9564091 0.8454300

SQ

(0.7, 0.2) 1.778795 1.1063826 1.570100

(0.5, 0.1) 1.693634 1.0449833 1.736956

(0.2, 0.7) 1.882562 1.2680705 1.862326

(0.1, 0.5) 1.596086 0.9444905 1.669918

AQ

(0.7, 0.2) 1.898400 1.235252 1.742275

(0.5, 0.1) 1.771281 1.129160 1.694660

(0.2, 0.7) 1.904999 1.289010 1.979608

(0.1, 0.5) 1.860164 1.297206 1.929902

Fat tail data

(0.7, 0.2) 1.1154769 0.9981609 0.4987108

(0.5, 0.1) 0.9402973 0.8866934 0.6799741

(0.2, 0.7) 1.1724818 1.2601606 1.1130583

(0.1, 0.5) 0.9557715 0.9238237 0.8206673

mse at boundary

CD

(0.7, 0.2) 3.3196129 3.3166944 1.1779039

(0.7, 0.2) 1.0757030 1.1300048 0.6423341

(0.7, 0.2) 1.0365045 2.0357543 0.9276551

(0.7, 0.2) 0.6378157 0.7400542 0.6481636

SQ

(0.7, 0.2) 3.1439208 2.5169418 2.102952

(0.7, 0.2) 0.9689782 0.3868747 1.548121

(0.7, 0.2) 1.8243869 1.0661310 1.839487

(0.7, 0.2) 1.8154754 1.2451924 2.386717

AQ

(0.7, 0.2) 1.576587 0.9909815 1.885401

(0.7, 0.2) 2.258808 1.1307186 2.460695

(0.7, 0.2) 1.872568 1.0907302 2.251098

(0.7, 0.2) 1.532332 1.2593857 2.012984

Fat tail data

(0.7, 0.2) 3.1254564 2.5821331 0.5579562

(0.7, 0.2) 0.7235822 0.7457132 0.7487358

(0.7, 0.2) 0.6287745 0.7475777 0.7258418

(0.7, 0.2) 1.2695745 1.2063235 0.9366066
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Table 5: Simulation results of global and mean squared using MA(1) with different parameters. The first
half of the table displays the global mean squared error.

Parameter I II III

CD

3.8 13.536209 13.381343 12.409326

2.5 6.493029 6.250129 3.902021

1.8 3.632426 3.476316 2.471782

0.8 1.209791 1.207804 1.093832

SQ

3.8 11.937604 11.322564 10.695495

2.5 6.600532 6.249817 6.266773

1.8 3.320055 2.938204 3.127264

0.8 1.977752 1.474812 2.017470

AQ

3.8 10.178566 9.860996 10.013281

2.5 6.419729 5.897459 5.992016

1.8 4.255425 3.715337 4.192729

0.8 2.090731 1.512278 2.047738

Fat data

3.8 13.016700 12.559023 9.863463

2.5 5.898913 5.943974 5.090725

1.8 3.065080 3.040102 2.481520

0.8 1.436546 1.366507 1.207752

mse at boundary

CD

3.8 5.519441 5.366619 3.964631

2.5 5.020789 4.724176 3.088903

1.8 3.580416 3.968404 1.913348

0.8 1.723382 1.708755 1.546141

SQ

3.8 10.195461 10.449241 9.949788

2.5 8.098829 7.855652 7.235322

1.8 5.466819 5.554564 4.674587

0.8 2.176779 1.743749 2.731832

AQ

3.8 15.197856 15.222380 15.307931

2.5 4.591728 3.899142 4.743319

1.8 2.667287 2.348781 3.388881

0.8 2.589583 2.201528 2.374601

Fat tail data

3.8 14.576058 14.671735 13.338548

2.5 3.395124 3.348310 3.594896

1.8 5.401277 5.372652 4.416008

0.8 1.209738 1.214468 1.478539
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Figure 5: Curve estimation for the first data: (a) noisy data, (b) the fitting by [5], (c) the fitting by first
proposed method, and (d) the fitting by the second proposed method.

The fitting of the second data set is depicted in Figure 6. Themean squared error values
are (0.008085288, 0.006734333, and 0.005019866). This means that the best fitting is given by
the second proposedmethod, then by the first proposedmethod, and finally by the traditional
method.

A similar conclusion is reached when we examine the local mean squared error. The
local mean squared error values using the first data set are 0.01767953, 0.01677273, and
0.00516326 and, for the second data set, 0.007946142, 0.002644399, and 0.002241301.

5. Conclusion

In this paper, the boundary problem and the effects of correlated noise and outliers have
been considered for wavelet thresholding estimation. Two combined methods have been
proposed to eliminate simultaneously the effect of the boundary problem, the outliers, and
the correlated noise. The proposed methods have combined the thresholding estimator
of [5] with either a local polynomial model or a polynomial model, through generalized
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Figure 6: Curve estimation for the second data: (a) noisy data, (b) the fitting by [5], (c) the fitting by first
proposed method, and (d) the fitting by the second proposed method. The green line is the fitting.

least squares estimation. Simulation experiment and real data examples have been used to
evaluate the practical performance of the proposed methods. Overall, the results revealed
that the two proposed methods are preferable to that of Kovac and Silverman [5] in fitting
data with correlated noise and outliers.
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