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A quadrature-based mixed Petrov-Galerkin finite element method is applied to a fourth-order
linear ordinary differential equation. After employing a splitting technique, a cubic spline trial
space and a piecewise linear test space are considered in the method. The integrals are then
replaced by the Gauss quadrature rule in the formulation itself. Optimal order a priori error
estimates are obtained without any restriction on the mesh.

1. Introduction

In this paper, we develop a quadrature-based Petrov-Galerkin mixed finite element method
for the following fourth-order boundary value problem:

d2

dx2

[
a(x)

d2u

dx2

]
+ b(x)u = f(x), x ∈ I = (0, 1), (1.1)

subject to the boundary conditions

u(0) = 0, u(1) = 0; u
′′
(0) = 0, u

′′
(1) = 0, (1.2)

where a(x)/= 0, x ∈ I. Let α(x) = 1/a(x). We, hereafter, suppress the dependency of the
independent variable x on the functions α(x), b(x), and f(x). Therefore, we write α, b, and
f instead of these functions.

Let us define the splitting of the above fourth-order equation as follows.
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Set

u
′′
= αv, x ∈ I. (1.3)

Then the differential equation (1.1) with the boundary conditions (1.2) can be written as a
coupled system of equations as follows:

u
′′
= αv, x ∈ I, with u(0) = u(1) = 0, (1.4)

v
′′
+ bu = f, x ∈ I, with v(0) = v(1) = 0. (1.5)

In this paper, the error analysis will take place in the usual Sobolev spaceWm
p (I) defined on

the domain I = (0, 1) with Hm(I) denoting Wm
2 (I). The Sobolev norms are given below. For

an open interval E and a non negative integerm,

‖v‖Wm
p (E) =

(
m∑
i=0

∥∥∥v(i)
∥∥∥p
Lp(E)

)1/p

, if 1 ≤ p <∞,

= max
1≤i≤n

∥∥∥v(i)
∥∥∥
L∞(E)

, if p = ∞.

(1.6)

We suppress the dependence of the norms on I when E = I. Further, Hm
0 (I) denotes the

function space

{
φ ∈ Hm(I) : φ(0) = φ(1) = 0

}
. (1.7)

2. Continuous and Discrete H1-Galerkin Formulation

Given n > 1, let

Πn : 0 = x0 < x1 < · · · < xn = 1 (2.1)

be an arbitrary partition of [0, 1] with the property that h → 0 as n → ∞, where h =
max1≤k≤nhk and hk = xk − xk−1, k = 1, . . . , n. Let (u, v) represent the L2 inner product, and let
〈u, v〉h represent the discrete inner product of any two functions u, v ∈ L2(I) and be defined
as follows:

(u, v) =
∫
uv dx, 〈u, v〉h = Qh(uv), (2.2)

where Qh is the fourth-order Gaussian quadrature rule:

Qh

(
g
)
:=

1
2

n∑
i=1

hk
[
g(xk,1) + g(xk,2)

]
. (2.3)
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Here, xk,i = xk−1 + ξihk, i = 1, 2, are the two Gaussian points in the subinterval [xk−1, xk]with
ξ1 = (1/2)(1 − 1/

√
3), ξ2 = 1 − ξ1.

Let us now consider the following cubic spline space as trial space:

Sh,3 =
{
ϕ ∈ C2(I) : ϕ|Ik ∈ P3(Ik), k = 1, 2, . . . , n

}
, (2.4)

where Pr(Ik) is the space of polynomials of degree r defined over the kth subinterval Ik =
[xk−1, xk].

The corresponding space with zero Dirichlet boundary condition is denoted by

0
Sh,3 =

{
ϕ ∈ Sh,3 : ϕ(0) = ϕ(1) = 0

}
. (2.5)

Further, let us consider the following piecewise linear space

Sh,1 =
{
ϕ ∈ C(I) : ϕ|Ik ∈ P1(Ik), k = 1, 2, . . . , n

}
(2.6)

as the test space.

2.1. Weak Formulation

The weak formulation corresponding to the split equations (1.4) and (1.5) is defined,
respectively, as follows.

Find {u, v} ∈ H2
0(I) such that

(
u

′′
, φ
)
=
(
αv, φ

)
, φ ∈ H2(0, 1), (2.7)

(
v

′′
+ bu, φ

)
=
(
f, φ

)
, φ ∈ H2(0, 1). (2.8)

2.2. The Petrov-Galerkin Formulation

The Petrov-Galerkin formulation corresponding to the above weak formulation (2.7) and
(2.8) is defined, respectively, as follows.

Find {uh, vh} ∈ 0
Sh,3 such that

(
u

′′
h, φh

)
=
(
αvh, φh

)
, φh ∈ Sh,1,(

v
′′
h + buh, φh

)
=
(
f, φh

)
, φh ∈ Sh,1.

(2.9)

The integrals in the above Petrov-Galerkin formulation are not evaluated exactly at the
implementation level. We, therefore, define the following discrete Petrov-Galerkin procedure
in which the integrals are replaced by the Gaussian quadrature in the scheme as follows.
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2.3. Discrete Petrov-Galerkin Formulation

The discrete Petrov-Galerkin formulation corresponding to (2.7) and (2.8) is defined, respec-
tively, as follows.

Find {uh, vh} ∈ 0
Sh,3 such that

〈
u

′′
h, φh

〉
h
=
〈
αvh, φh

〉
h, φh ∈ Sh,1, (2.10)

〈
v

′′
h + buh, φh

〉
h
=
〈
f, φh

〉
h, φh ∈ Sh,1. (2.11)

The approximate solutions uh and vh without any conditions on boundary points are ex-
pressed as a linear combination of the B-splines as follows:

uh(x) =
n+1∑
j=−1

γjBj(x), vh(x) =
n+1∑
j=−1

δjBj(x), (2.12)

where the jth basis Bj(x) of the cubic B-splines space Sh,3 for j = −1, 0, 1, 2, . . . , n, n+1 is given
below:

Bj(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if x ≤ xj−2,
1
6h3

(
x − xj−2

)3
, if xj−2 ≤ x ≤ xj−1,

1
6h3

(
h3 + 3h2

(
x − xj−1

)
+ 3h

(
x − xj−1

)2 − 3
(
x − xj−1

)3)
, if xj−1 ≤ x ≤ xj ,

1
6h3

(
h3 + 3h2

(
xj+1 − x

)
+ 3h

(
xj+1 − x

)2 − 3
(
xj+1 − x

)3)
, if xj ≤ x ≤ xj+1,

1
6h3

(
xj+2 − x

)3
, if xj+1 ≤ x ≤ xj+2,

0, if x ≥ xj+2.
(2.13)

For j = −1, 0 and j = n, n + 1, the basis functions are defined as in the above form, after
extending the partition by introducing fictitious nodal points x−3, x−2, x−1 on the left-hand
side and xn+1, xn+2, xn+3 on the right-hand side, respectively. Further, the ith basis φi(x) of the
piecewise linear “hat” splines space Sh,1 for i = 0, 1, 2, . . . , n is given below:

φi(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if x ≤ xi−1,
1
h
(x − xi−1), if xi−1 ≤ x ≤ xi,

1
h
(xi+1 − x), if xi ≤ x ≤ xi+1,

0, ifx ≥ xi+1.

(2.14)
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In a similar manner, for i = 0 and i = n, the basis functions are defined as in the
above form, after extending the partition by introducing fictitious nodal point x−1 on the left-
hand side and xn+1 on the right-hand side, respectively. The mixed discrete Petrov-Galerkin
method for (2.10) and (2.11)without assuming boundary conditions in the trial space is given
as follows:

n+1∑
j=−1

γj
〈
B

′′
j , φi

〉
h
−

n+1∑
j=−1

δj
〈
αBj, φi

〉
h
= 0, i = 0, 1, 2, . . . , n,

n+1∑
j=−1

γj
〈
bBj , φi

〉
h
+

n+1∑
j=−1

δj
〈
B

′′
j , φi

〉
h
=
〈
f, φi

〉
h, i = 0, 1, 2, . . . , n,

(2.15)

with the corresponding equations:

n+1∑
j=−1

γjBj(0) = 0,
n+1∑
j=−1

γjBj(1) = 0,

n+1∑
j=−1

δjBj(0) = 0,
n+1∑
j=−1

δjBj(0) = 0,

(2.16)

referring to the zero-boundary conditions:

uh(0) = 0, uh(1) = 0, vh(0) = 0, vh(1) = 0. (2.17)

The above set of equations (2.15)–(2.16) can be written as a set of 2n + 6 equations in 2n +
6 unknowns. Here, we study the effect of quadrature rule in the error analysis. Since we
compute the approximations for the solution u(x) as well as for its second derivative v(x)
with integrals replaced by Gaussian quadrature rule in the formulation, this work may be
considered as a quadrature-based mixed Petrov-Galerkin method.

3. Overview of Discrete Petrov-Galerkin Method

Here, the integrals are replaced by composite two-point Gauss rule. Therefore, the resulting
method may be described as a “qualocation” approximation, that is, a quadrature-based
modification of the collocation method. Further, it may be considered as a Petrov-Galerkin
method with a quadrature rule because the test space and trial space are different. Hence,
it may be referred to as discrete Petrov-Galerkin method. One practical advantage of this
procedure over the orthogonal spline collocation method described in Douglas Jr. and
Dupont [1, 2] is that for a given partition there are only half the number of unknowns, and
therefore it reduces the size of the matrix.

The qualocation method was first introduced and analysed by Sloan [3] for boundary
integral equation on smooth curves. Later on Sloan et al. [4] extended this method to a class of
linear second-order two-point boundary value problems and derived optimal error estimates
without quasi-uniformity assumption on the finite element mesh. Then, Jones Doss and Pani
[5] discussed the qualocation method for a second-order semilinear two-point boundary
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value problem. Further, Pani [6] expanded its scope by adapting the analysis to a semilinear
parabolic initial and boundary value problem in a single space variable. Jones Doss and Pani
[7] extended this method to the free boundary problem, that is, one-dimensional single-
phase Stefan problem for which part of the boundary has to be found out along with the
solution process. A quadrature-based Petrov-Galerkin method applied to higher dimensional
boundary value problems is studied in Bialecki et al. [8, 9] and Ganesh and Mustapha [10].

The main idea of this paper is that a quadrature based approximation for a fourth
order problem is analyzed in mixed Galerkin setting. The organization of this paper is as
follows. In previous Sections 1 and 2, the problem is introduced; the weak and the Galerkin
formulations are defined. Overview of discrete Petrov-Galerkin method is discussed in
Section 3. Preliminaries required for our analysis are mentioned in Section 4. Error analysis
is carried over in Section 5. Throughout this paper C is a generic positive constant, whose
dependence on the smoothness of the exact solution can be easily determined from the proofs.

4. Preliminaries

We assume that α and b are such that

α, b ∈ C4
(
I
)
, (4.1)

where I = [0, 1]. We assume that the problem consisting of the coupled equations (1.4) and
(1.5) is uniquely solvable for a given sufficiently smooth function f(x). It can be proved that
the quadrature rule in (2.3) has an error bound of the form

Eh
(
g
)
=
∣∣∣∣Qh

(
g
) − ∫ g∣∣∣∣ ≤ C

n∑
i=1

h4k

∥∥∥g(4)
∥∥∥
L1(Ik)

. (4.2)

This follows from Peano’s kernel theorem (see [11]).
The following inequality is frequently used in our analysis. If v ∈ Wm

p (E) with
p ∈ [1,∞], then there exists a positive constant C depending only on m such that, for any
δ satisfying 0 < δ ≤ |E| ≤ 1,

‖v‖Wi
p(E) ≤ C

[
δm−i‖v‖Wm

p (E) + δ
−i‖v‖Lp(E)

]
, 0 ≤ i ≤ m − 1, (4.3)

where |E| denotes the length of E. For a detailed proof, one may refer to appendix of Sloan et
al. [4] or Chapter 4 of Adams [12]. Let us use the following notation:

Lv := v
′′
. (4.4)

The adjoint operator L∗ with corresponding adjoint boundary condition is defined as follows:

L∗φ = φ
′′
,

φ(0) = φ(1) = 0.
(4.5)
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Since L is a self-adjoint operator, we mention below the regularity of L∗ (equal to L) in the q
norm. We make a stronger assumption as in Sloan et al. [4] that for arbitrary q ∈ [1,∞], there
exists a positive constant C such that

‖L∗u‖Lq(I) ≥ C‖u‖W2
q (I). (4.6)

We have the following inequality due to the Sobolev embedding theorem; the proof of which
can be found in page 97, Adams [12],

∥∥φ∥∥L∞(Ik)
≤ ‖φ‖W1

p (Ik); 1 ≤ p ≤ ∞, φ ∈W1
p(Ik). (4.7)

5. Convergence Analysis

Hereafter throughout this section, for p and q with 1≤ p, q ≤ ∞, s and p−1 + q−1 = 1, we use
the following notations:

‖v‖0,p = ‖v‖Lp , ‖v‖s,p = ‖v‖Ws
p
, ‖v‖s,p,k = ‖v‖Ws

p(Ik). (5.1)

Let us denote the error between u and uh by εh and the error between v and vh by eh,
respectively, that is, εh = u−uh and eh = v−vh. Using (2.11) and (1.5), we obtain the following
error equations:

〈
e

′′
h, φh

〉
h
=
〈
v

′′ − v′′
h, φh

〉
h
=
〈
v

′′
, φh
〉
h
− 〈f − buh, φh

〉
h = −〈b(u − uh), φh

〉
h = −〈bεh, φh〉h,

(5.2)

and therefore we get

〈
e

′′
h, φh

〉
h
= −〈bεh, φh〉h, φh ∈ Sh,1. (5.3)

Further, using (2.10) and (1.4),

〈
ε
′′
h, φh

〉
h
=
〈
u

′′ − u′′
h, φh

〉
h
=
〈
α(v − vh), φh

〉
h =

〈
αeh, φh

〉
h, (5.4)

and therefore we have

〈
ε
′′
h, φh

〉
h
=
〈
αeh, φh

〉
h, φh ∈ Sh,1. (5.5)

The following lemma gives estimates for the error in the quadrature rule for the term (e
′′
h
χh)

and (ε
′′
hχh) for χh ∈ Sh,1. These estimates are required for our error analysis later. The proof

of the lemma is similar to the proof of Lemma4.2 of Sloan et al. [4].
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Lemma 5.1. For all χh ∈ Sh,1 and h sufficiently small,

(a) Eh(e
′′
h
χh) ≤ Ch4‖v‖6,p‖χh‖1,q,

(b) Eh(e
′′
hχh) ≤ Ch3‖v‖6,p‖χh‖0,q,

(c) Eh(ε
′′
h
χh) ≤ Ch4‖u‖6,p‖χh‖1,q,

(d) Eh(ε
′′
hχh) ≤ Ch3‖u‖6,p‖χh‖0,q.

The following result gives estimate for εh(x), where x is any arbitrary point in I. This
estimate is crucial for our error analysis.

Lemma 5.2. Let u be the weak solution of (1.4) defined through (2.7). Further, let uh be the cor-
responding discrete Petrov-Galerkin solution defined through (2.10). Then, the error εh = u − uh
satisfies

|εh(x)| ≤ C
[
h2‖εh‖2,p + h4‖u‖6,p + h‖eh‖1,p

]
, (5.6)

where x is an arbitrary point in [0, 1].

Proof. For a given x ∈ [0, 1], let Φ be an element of Lp(I)
⋂
C(I) satisfying the following

auxiliary problem:

Φ
′′
= 0, x ∈ I − {x},

Φ(0) = Φ(1) = 0, Φ′
−(x) −Φ′

+(x) = −1. (5.7)

The above problem has a solution. For example,

Φ(x) =

{
(x − 1)x, 0 ≤ x ≤ x,
x(x − 1), x ≤ x ≤ 1

(5.8)

satisfies the above differential equation, the boundary conditions, and the jump condition.
Let us define Ψ as follows:

Ψ(x) =

{
Φ

′′
, x ∈ I − {x},

0, at x = x.
(5.9)



International Journal of Mathematics and Mathematical Sciences 9

Then, Ψ = 0 a.e. on I. We first multiply εh with Ψ and then integrate over I. On applying
integration by parts, using the fact that εh(0) = εh(1) = 0 and the jump condition for Φ′, we
obtain

0 = (εh,Ψ) =
∫x
0
εhΨ +

∫1

x

εhΨ =
∫x
0
εhΦ

′′
+
∫1

x

εhΦ
′′

=
[
εhΦ′]x

0 −
∫x
0
ε′hΦ

′ +
[
εhΦ′]1

x −
∫1

x

ε′hΦ
′ = εh(x)

[
Φ′

−(x) −Φ′
+(x)

] − ∫x
0
ε′hΦ

′ −
∫1

x

ε′hΦ
′

= −εh(x) −
∫x
0
ε′hΦ

′ −
∫1

x

ε′hΦ
′.

(5.10)

Applying integration by parts once again, using boundary condition forΦ and the continuity
of Φ, we obtain

0 = −εh(x) −
{[
ε′hΦ

]x
0 −
∫x
0
ε
′′
hΦ +

[
ε′hΦ

]1
x
−
∫1

x

ε
′′
hΦ

}
= −εh(x) +

(
ε
′′
h,Φ

)
, (5.11)

that is, εh(x) = (ε
′′
h
,Φ). Let Φh be the linear interpolant of Φ. Then, we have

εh(x) =
(
ε
′′
h,Φ −Φh

)
+
(
ε
′′
h,Φh

)
−
〈
ε
′′
h,Φh

〉
h
+
〈
ε
′′
h,Φh

〉
h

|εh(x)| ≤
∣∣∣(ε′′

h,Φ −Φh

)∣∣∣ + ∣∣∣Eh(ε′′
hΦh

)∣∣∣ + ∣∣∣〈ε′′
h,Φh

〉
h

∣∣∣ ≤ T1 + T2 + T3. (5.12)

We know that

‖Φh‖1,q ≤ ‖Φ −Φh‖1,q + ‖Φ‖1,q ≤ Ch‖Φ‖2,q + ‖Φ‖2,q ≤ C‖Φ‖2,q. (5.13)

We now compute the estimates for the terms T1, T2, and T3 as follows:

T1 =
∣∣∣(ε′′

h,Φ −Φh

)∣∣∣ ≤ ∥∥∥ε′′
h

∥∥∥
0,p
‖Φ −Φh‖0,q ≤ Ch2‖εh‖2,p‖Φ‖2,q. (5.14)

Using Lemma 5.1(c) and (5.13), we obtain

T2 =
∣∣∣Eh(ε′′

hΦh

)∣∣∣ ≤ Ch4‖u‖6,p‖Φ‖2,q. (5.15)

Using (5.5), (2.3), and the Sobolev embedding theorem (4.7) locally on Ik for both ‖eh‖0,∞,k

and ‖Φh‖0,∞,k, we have

T3 =
∣∣∣〈ε′′

h,Φh

〉
h

∣∣∣ = |〈αeh,Φh〉h| ≤ C
n∑
k=1

hk
2
‖eh‖0,∞,k‖Φh‖0,∞,k ≤ C

n∑
k=1

hk
2
‖eh‖1,p,k‖Φh‖1,q,k.

(5.16)



10 International Journal of Mathematics and Mathematical Sciences

Using Hölder’s inequality for sums and (5.13), we have

T3 ≤ Ch‖eh‖1,p‖Φh‖1,q ≤ Ch‖eh‖1,p‖Φ‖2,q. (5.17)

For Φ satisfying the auxiliary problem, it is easy to verify that ‖Φ‖2,q ≤ K, where K is a
constant not depending on h.

Using T1, T2, and T3 in (5.12), we have

|εh(x)| ≤ C
[
h2‖εh‖2,p + h4‖u‖6,p + h‖eh‖1,p

]
. (5.18)

This completes the proof.

In the following lemma, we initially compute the error (v − vh) in terms of (u − uh),
and then later on we establish an optimal estimate of error (v − vh) independent of (u − uh).

Lemma 5.3. Let u and v be the weak solutions of the coupled equations (1.4) and (1.5) defined
through (2.7) and (2.8), respectively. Further, let uh and vh be the corresponding discrete Petrov-
Galerkin solutions defined through (2.10) and (2.11), respectively. Then the estimates of the errors
eh = v − vh in Lp,W1

p , andW
2
p norms are given as follows:

‖eh‖0,p ≤ C
[
h4‖v‖6,p + h5‖u‖6,p + h3‖εh‖2,p

]
,

‖eh‖1,p ≤ C
[
h3‖v‖6,p + h4‖u‖6,p + h2‖εh‖2,p

]
,

‖eh‖2,p ≤ C
[
h2‖v‖6,p + h4‖u‖6,p + h2‖εh‖2,p

]
.

(5.19)

Proof. Let η be an arbitrary element of Lq, and let φ ∈ W2
q be the solution of the auxiliary

problem

L∗φ = η,

φ(0) = φ(1) = 0.
(5.20)

We now have

(
eh, η

)
=
(
eh, L

∗φ
)
=
(
Leh, φ

)
=
(
e

′′
h, φ − φh

)
+
(
e

′′
h, φh

)

=
(
e

′′
h, φ − φh

)
+
(
e

′′
h, φh

)
−
〈
e

′′
h, φh

〉
h
+
〈
e

′′
h, φh

〉
h

=
(
e

′′
h, φ − φh

)
+ Eh

(
e

′′
hφh
)
+
〈
e

′′
h, φh

〉
h
,∣∣(eh, η)∣∣ ≤ ∣∣∣(e′′

h, φ − φh
)∣∣∣ + ∣∣∣Eh(e′′

hφh
)∣∣∣ + ∣∣∣〈e′′

h, φh
〉
h

∣∣∣
≤ T4 + T5 + T6,

(5.21)

where φh ∈ Sh,1 is the linear interpolant of φ.
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We know that

∥∥φh∥∥1,q ≤ ∥∥φ − φh
∥∥
1,q +

∥∥φ∥∥1,q ≤ Ch∥∥φ∥∥2,q + ∥∥φ∥∥2,q ≤ C∥∥φ∥∥2,q. (5.22)

We shall compute the estimates for the terms T4, T5, and T6 as follows:

T4 =
∣∣∣(e′′

h, φ − φh
)∣∣∣ ≤ ∥∥∥e′′

h

∥∥∥
0,p

∥∥φ − φh
∥∥
0,q ≤ Ch2‖eh‖2,p

∥∥φ∥∥2,q,
T5 =

∣∣∣Eh(e′′
hφh
)∣∣∣ ≤ Ch4‖v‖6,p∥∥φh∥∥1,q ≤ Ch4‖v‖6,p∥∥φ∥∥2,q by Lemma 5.1(a), (5.22).

(5.23)

Using (5.3), (2.3), and the Sobolev embedding theorem (4.7) locally on Ik for ‖φh‖0,∞,k, we
have

T6 =
∣∣∣〈e′′

h, φh
〉
h

∣∣∣ = ∣∣−〈bεh, φh〉h∣∣ ≤ C
n∑
k=1

hk
2
‖εh‖0,∞,k

∥∥φh∥∥0,∞,k ≤ C
n∑
k=1

hk
2
‖εh‖0,∞,k

∥∥φh∥∥1,q,k.
(5.24)

Using Hölder’s inequality for sums, Lemma 5.2, and (5.22), we obtain

T6 ≤ Ch
[
h2‖εh‖2,p + h4‖u‖6,p + h‖eh‖1,p

]∥∥φh∥∥1,q ≤ C[h3‖εh‖2,p + h5‖u‖6,p + h2‖eh‖1,p]∥∥φ∥∥2,q.
(5.25)

Substituting T4, T5, and T6 in (5.21), we have

∣∣(eh, η)∣∣ ≤ C[h2‖eh‖2,p + h4‖v‖6,p + h3‖εh‖2,p + h5‖u‖6,p + h2‖eh‖1,p]∥∥φ∥∥2,q. (5.26)

Using (4.6) and the regularity of the auxiliary problem, we have ‖φ‖2,q ≤ C‖η‖0,q. Since η ∈ Lq
is arbitrary, we have

‖eh‖0,p ≤ C
(
h2‖eh‖2,p + h3‖εh‖2,p + h4‖v‖6,p + h5‖u‖6,p

)
. (5.27)

We now estimate ‖e′′
h‖ via a projection argument. Let Ph be the orthogonal projection onto Sh,1

with respect to L2 inner product defined by

(
v

′′ − Phv′′
, ψh
)
= 0, ψh ∈ Sh,1. (5.28)

The domain of Ph may be taken to be L1. From Crouzeix and Thomée [13] and de Boor [14],
it is seen that the L2 projection is stable. Thus,

‖Phv‖0,p ≤ C‖v‖0,p. (5.29)



12 International Journal of Mathematics and Mathematical Sciences

Then the error e
′′
h can be interpreted in terms of the error of the above projection:

∥∥∥e′′
h

∥∥∥
0,p

=
∥∥∥v′′ − v′′

h

∥∥∥
0,p

≤
∥∥∥v′′ − Phv′′

∥∥∥
0,p

+
∥∥∥Phv′′ − v′′

h

∥∥∥
0,p
. (5.30)

From the stability property (5.29), the error in the projection follows as in de Boor [14], that
is,

∥∥∥v′′ − Phv′′
∥∥∥
0,p

≤ Ch2
∥∥∥v′′

∥∥∥
2,p

≤ Ch2‖v‖4,p. (5.31)

Then the remaining task is to compute the estimate of ‖Phv′′ − v′′
h
‖0,p.

For ψh ∈ Sh,1,

(
Phv

′′ − v′′
h, ψh

)
=
(
Phv

′′ − v′′
+ v

′′ − v′′
h, ψh

)
=
(
Phv

′′ − v′′
, ψh
)
+
(
v

′′ − v′′
h, ψh

)
=
(
v

′′ − v′′
h, ψh

)
using (5.28),(

Phv
′′ − v′′

h, ψh
)
=
(
e

′′
h, ψh

)
=
(
e

′′
h, ψh

)
−
〈
e

′′
h, ψh

〉
h
+
〈
e

′′
h, ψh

〉
h

= Eh
(
e

′′
hψh
)
+
〈
e

′′
h, ψh

〉
h
,∣∣∣(Phv′′ − v′′

h, ψh
)∣∣∣ ≤ ∣∣∣Eh(e′′

hψh
)∣∣∣ + ∣∣∣〈e′′

h, ψh
〉
h

∣∣∣ ≤ T7 + T8.

(5.32)

We shall compute the estimates for the terms T7 and T8

T7 =
∣∣∣Eh(e′′

hψh
)∣∣∣ ≤ Ch3‖v‖6,p∥∥ψh∥∥0,q (5.33)

by Lemma 5.1(b).
Following the steps of computation involved in the term T6, we obtain the estimate of

T8 as

T8 =
∣∣∣〈e′′

h, ψh
〉
h

∣∣∣ ≤ C[h2‖εh‖2,p + h4‖u‖6,p + h‖eh‖1,p]∥∥ψh∥∥0,q, (5.34)

where we have used the inverse inequality ‖ψh‖1,q,k ≤ h−1
k
‖ψh‖0,q,k locally. Using T7 and T8 in

(5.32), we get

∣∣∣(Phv′′ − v′′
h, ψh

)∣∣∣ ≤ C[h3‖v‖6,p + h2‖εh‖2,p + h4‖u‖6,p + h‖eh‖1,p]∥∥ψh∥∥0,q. (5.35)

We now show the above inequality for η ∈ Lq to obtain ‖Phv′′ − v′′
h‖0,p.
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Now let η be an arbitrary element of Lq. Then since v
′′
h ∈ Sh,1, it follows from the

definition of Phη, (5.35), and (5.29) with p replaced by q, that

0 =
(
Phv

′′ − v′′
h, η − Phη

)
,∣∣∣(Phv′′ − v′′

h, η
)∣∣∣ = ∣∣∣(Phv′′ − v′′

h, Phη
)∣∣∣ ≤ C[h3‖v‖6,p + h2‖εh‖2,p + h4‖u‖6,p + h‖eh‖1,p]∥∥Phη∥∥0,q

≤ C
[
h3‖v‖6,p + h2‖εh‖2,p + h4‖u‖6,p + h‖eh‖1,p

]∥∥η∥∥0,q,∥∥∥Phv′′ − v′′
h

∥∥∥
0,p

≤ C
[
h3‖v‖6,p + h2‖εh‖2,p + h4‖u‖6,p + h‖eh‖1,p

]
.

(5.36)

Now, from (5.30), (5.31), and (5.36), we conclude that

∥∥∥e′′
h

∥∥∥
0,p

≤ Ch2‖v‖4,p + C
[
h3‖v‖6,p + h2‖εh‖2,p + h4‖u‖6,p + h‖eh‖1,p

]
≤ C

[
h2‖v‖6,p + h2‖εh‖2,p + h4‖u‖6,p + h‖eh‖1,p

]
.

(5.37)

Now, using the fact ‖eh‖2,p ≤ ‖eh‖1,p + ‖e′′
h
‖0,p and the above estimate, we have

‖eh‖2,p ≤ ‖eh‖1,p + C
[
h2‖v‖6,p + h2‖εh‖2,p + h4‖u‖6,p + h‖eh‖1,p

]

≤ C
[
‖eh‖1,p + h2‖v‖6,p + h2‖εh‖2,p + h4‖u‖6,p

]

≤ C
[
‖eh‖1,p + h2‖v‖6,p + h2‖εh‖2,p + h4‖u‖6,p

]
.

(5.38)

Now using (4.3)withm = 2 and i = 1, we have

‖eh‖1,p ≤ C
(
h−1‖eh‖0,p + h‖eh‖2,p

)
. (5.39)

Substituting (5.39) in the above expression, we obtain

‖eh‖2,p ≤ C
[(
h−1‖eh‖0,p + h‖eh‖2,p

)
+ h2‖v‖6,p + h2‖εh‖2,p + h4‖u‖6,p

]
. (5.40)

For sufficiently small h, we have

‖eh‖2,p ≤ C
[
h−1‖eh‖0,p + h2‖v‖6,p + h2‖εh‖2,p + h4‖u‖6,p

]
. (5.41)

Using (5.41) in (5.27),

‖eh‖0,p ≤ C
[
h2
(
h−1‖eh‖0,p + h2‖v‖6,p + h2‖εh‖2,p + h4‖u‖6,p

)
+ h4‖v‖6,p + h5‖u‖6,p + h3‖εh‖2,p

]
.

(5.42)
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For sufficiently small h, we get

‖eh‖0,p ≤ C
[
h4‖v‖6,p + h5‖u‖6,p + h3‖εh‖2,p

]
. (5.43)

Using (5.43) in (5.41), we have

‖eh‖2,p ≤ C
[
h−1
(
h4‖v‖6,p + h5‖u‖6,p + h3‖εh‖2,p

)
+ h2‖v‖6,p + h2‖εh‖2,p + h4‖u‖6,p

]
≤ C

[
h2‖v‖6,p + h2‖εh‖2,p + h4‖u‖6,p

]
.

(5.44)

Using (5.43) and (5.44) in (5.39), we have

‖eh‖1,p ≤ C
[
h−1
(
h4‖v‖6,p + h5‖u‖6,p + h3‖εh‖2,p

)
+ h
(
h2‖v‖6,p + h2‖εh‖2,p + h4‖u‖6,p

)]
≤ C

[
h3‖v‖6,p + h4‖u‖6,p + h2‖εh‖2,p

]
.

(5.45)

Equations (5.43), (5.44), and (5.45) give the required result.

We now compute the error estimate of εh in Lp, W1
p , andW

2
p norms as has been done

in the previous case.

Lemma 5.4. Let u and v be the weak solutions of the coupled equations (1.4) and (1.5) defined
through (2.7) and (2.8), respectively. Further, let uh and vh be the corresponding discrete Petrov-
Galerkin solutions defined through (2.10) and (2.11), respectively. Then the estimates of the errors
εh = u − uh in Lp, W1

p andW2
p norms are given as follows:

‖εh‖0,p ≤ C
[
h4‖u‖6,p + h‖eh‖1,p

]
,

‖εh‖1,p ≤ C
[
h3‖u‖6,p + ‖eh‖1,p

]
,

‖εh‖2,p ≤ C
[
h2‖u‖6,p + ‖eh‖1,p

]
.

(5.46)

Proof. Let ρ be an arbitrary element of Lq, and let φ ∈ W2
q be the unique solution of the

auxiliary problem

L∗φ = ρ,

φ(0) = φ(1) = 0.
(5.47)

Then we have

(
εh, ρ

)
=
(
εh, L

∗φ
)
=
(
Lεh, φ

)
=
(
ε
′′
h, φ
)
=
(
ε
′′
h, φ − φh

)
+
(
ε
′′
h, φh

)
−
〈
ε
′′
h, φh

〉
h
+
〈
ε
′′
h, φh

〉
h
,

(5.48)
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where φh ∈ Sh,1 is a linear interpolant of φ,

∣∣(εh,ρ)∣∣ ≤ ∣∣∣(ε′′
h, φ − φh

)∣∣∣ + ∣∣∣Eh(ε′′
hφh
)∣∣∣ + ∣∣∣〈ε′′

h, φh
〉
h

∣∣∣ ≤ T9 + T10 + T11. (5.49)

Following the steps involved in the computation of T4 and T5, we obtain the estimates of T9
and T10 as follows:

T9 ≤ Ch2‖εh‖2,p
∥∥φ∥∥2,q,

T10 ≤ Ch4‖u‖6,p
∥∥φ∥∥2,q,

(5.50)

by Lemma 5.1(c) and (5.22).
Using (5.5) and (2.3) first, then the Sobolev embedding theorem (4.7) locally on Ik for

‖φh‖0,∞,k and ‖eh‖0,∞,k to estimate T11, we have

T11 =
∣∣∣〈ε′′

h, φh
〉
h

∣∣∣ = ∣∣〈αeh, φh〉h∣∣ ≤ C
n∑
k=1

hk
2
‖eh‖0,∞,k

∥∥φh∥∥0,∞,k ≤ C
n∑
k=1

hk
2
‖eh‖0,∞,k

∥∥φh∥∥1,q,k
≤ C

n∑
k=1

hk
2
‖eh‖1,p,k

∥∥φh∥∥1,q,k.
(5.51)

Further, using Hölder’s inequality for sums and (5.22), we obtain

T11 ≤ Ch‖eh‖1,p
∥∥φh∥∥1,q ≤ Ch‖eh‖1,p∥∥φ∥∥2,q. (5.52)

Substituting the estimates T9, T10, and T11 in (5.49), we obtain

∣∣(εh,ρ)∣∣ ≤ C[h2‖εh‖2,p + h4‖u‖6,p + h‖eh‖1,p]∥∥φ∥∥2,q. (5.53)

Using (4.6) and regularity of the auxiliary problem, we have ‖φ‖2,q ≤ C‖ρ‖o,q. Since ρ ∈ Lq is
arbitrary, we have

‖εh‖0,p ≤ C
[
h2‖εh‖2,p + h4‖u‖6,p + h‖eh‖1,p

]
. (5.54)

The estimate of ‖ε′′
h‖0,p can be obtained through a projection argument as mentioned in

Lemma 5.3 as

∥∥∥ε′′
h

∥∥∥
0,p

≤ C
[
h2‖u‖6,p + ‖eh‖1,p

]
, (5.55)
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where we have used Lemma 5.1(d). In a similar manner we can compute the estimates for
‖εh‖0,p, ‖εh‖1,p and ‖εh‖2,p as

‖εh‖0,p ≤ C
[
h4‖u‖6,p + h‖eh‖1,p

]
,

‖εh‖1,p ≤ C
[
h3‖u‖6,p + ‖eh‖1,p

]
,

‖εh‖2,p ≤ C
[
h2‖u‖6,p + ‖eh‖1,p

]
.

(5.56)

Using all the estimates from Lemmas 5.3 and 5.4, we have the following main error estimates.

Theorem 5.5. Assume that u and v satisfy (1.4) and (1.5), respectively, with (4.1). Assume also that

u ∈ W6
p and v ∈ W6

p , where p ∈ [1,∞]. Then (2.10) and (2.11) have unique solutions uh ∈ 0
Sh,3 and

vh ∈ 0
Sh,3, respectively, and for h sufficiently small, one has

‖u − uh‖i,p ≤ Ch4−i
[
‖u‖6,p + ‖v‖6,p

]
,

‖v − vh‖i,p ≤ Ch4−i
[
‖u‖6,p + ‖v‖6,p

]
, i = 0, 1, 2.

(5.57)

Proof. Assume temporarily that solutions uh and vh of (2.10) and (2.11), respectively, exist.
Using (5.46) in (5.45), we obtain

‖eh‖1,p ≤ C
[
h3‖v‖6,p + h4‖u‖6,p + h2

(
h2‖u‖6,p + ‖eh‖1,p

)]
. (5.58)

For sufficiently small h, we have

‖eh‖1,p ≤ C
(
h3‖v‖6,p + h4‖u‖6,p

)
. (5.59)

An application of the above in (5.46), we get

‖εh‖2,p ≤ C
[
h2‖u‖6,p + h3‖v‖6,p

]
. (5.60)

Apply (5.59) in (5.56) to have

‖εh‖0,p ≤ C
[
h4‖u‖6,p + h4‖v‖6,p

]
. (5.61)

Use (5.60) in (5.43) to get

‖eh‖0,p ≤ C
[
h4‖v‖6,p + h5‖u‖6,p

]
. (5.62)
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Using (5.60) in (5.44), we obtain

‖eh‖2,p ≤ C
[
h2‖v‖6,p + h4‖u‖6,p

]
. (5.63)

Using (5.61) and (5.60) in (5.39)with eh replaced by εh, we have

‖εh‖1,p ≤ C
[
h3‖u‖6,p + h3‖v‖6,p

]
. (5.64)

The required result can be obtained from estimates (5.59) to (5.64).

So far we have assumed temporarily that solutions uh and vh exist. We now discuss
the existence and uniqueness of discrete Petrov-Galerkin approximation. Since the matrix
corresponding to (2.10) and (2.11) with zero boundary conditions for uh and vh is square,

existence of uh ∈ 0
Sh,3 and vh ∈ 0

Sh,3 for any f ∈ C0(I) will follow from uniqueness, that is,
from the property that the corresponding homogeneous equations have only trivial solutions.

Suppose that uh and vh corresponding to u and v satisfy

〈
u

′′
h − αvh, χh

〉
= 0,〈

v
′′
h + buh, χh

〉
= 0, χh ∈ Sh,1.

(5.65)

It follows from (5.61) and (5.62) (with u replaced by 0 and eventually v ≡ 0) that, for suffi-
ciently small h,

‖uh‖0,p ≤ 0, ‖vh‖0,p ≤ 0, (5.66)

and hence uh ≡ 0 and vh ≡ 0. Thus, uniqueness is proved, and hence existence follows from
uniqueness.
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