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The notion of BRK-algebra is introduced which is a generalization of BCK/BCI/BCH/Q/QS/BM-
algebras. The concepts of G-part, p-radical, medial of a BRK-algebra are introduced and studied
their properties. We proved that the variety of all medial BRK-algebras is congruence permutable
and showed that every associative BRK-algebra is a group.

1. Introduction

In 1996, Imai and Iséki [1] introduced two classes of abstract algebras: BCK-algebras and
BCI-algebras. These algebras have been extensively studied since their introduction. In 1983,
Hu and Li [2] introduced the notion of a BCH-algebra which is a generalization of the
notion of BCK and BCI-algebras and studied a few properties of these algebras. In 2001,
Neggers et al. [3] introduced a new notion, called a Q-algebra and generalized some theorems
discussed in BCI/BCK-algebras. In 2002, Neggers and Kim [4] introduced a new notion,
called a B-algebra, and obtained several results. In 2007, Walendziak [5] introduced a new
notion, called a BF-algebra, which is a generalization of B-algebra. In [6], C. B. Kim and H.
S. Kim introduced BG-algebra as a generalization of B-algebra. We introduce a new notion,
called a BRK-algebra, which is a generalization of BCK/BCI/BCH/Q/QS/BM-algebras. The
concept of G-part, p-radical, and medial of a BRK-algebra are introduced and studied their
properties.

2. Preliminaries

First, we recall certain definitions from [2–5, 7, 8] that are required in the paper.



2 International Journal of Mathematics and Mathematical Sciences

Definition 2.1. A BCI-algebra is an algebra (X, ∗, 0) of type (2, 0) satisfying the following
conditions:

(B1) (x ∗ y) ∗ (x ∗ z) ≤ (z ∗ y),
(B2) x ∗ (x ∗ y) ≤ y,

(B3) x ≤ x,

(B4) x ≤ y and y ≤ x imply x = y,

(B5) x ≤ 0 implies x = 0, where x ≤ y is defined by x ∗ y = 0, for all x, y, z ∈ X.

If (B5) is replaced by (B6): 0 ≤ x, then the algebra is called a BCK-algebra. It is known
that every BCK-algebra is a BCI-algebra but not conversely.

Definition 2.2. A BCH-algebra is an algebra (X, ∗, 0) of type (2,0) satisfying (B3), (B4), and
(B7): (x ∗ y) ∗ z = (x ∗ z) ∗ y.

It is shown that every BCI-algebra is a BCH-algebra but not conversely.

Definition 2.3. A Q-algebra is an algebra (X, ∗, 0) of type (2,0) satisfying (B3), (B7), and (B8):
x ∗ 0 = x.

A Q-algebra is said to be a QS-algebra if it satisfies the additional relation:

(B9) (x ∗ y) ∗ (x ∗ z) = z ∗ y,

for any x, y, z ∈ X. It is shown that every BCH-algebra is a Q-algebra but not conversely.

Definition 2.4. A B-algebra is an algebra (X, ∗, 0) of type (2,0) satisfying (B3), (B8), and (B10):
(x ∗ y) ∗ z = x ∗ (z ∗ (0 ∗ y)).

A B-algebra is said to be 0-commutative if a ∗ (0 ∗ b) = b ∗ (0 ∗ a) for any a, b ∈ X. In
[3], it is shown that Q-algebras and B-algebras are different notions.

Definition 2.5. A BF-algebra is an algebra (X, ∗, 0) of type (2,0) satisfying (B3), (B8), and (B11):
0 ∗ (x ∗ y) = (y ∗ x).

It is shown that every B-algebra is BF-algebra but not conversely.

Definition 2.6. A BM-algebra is an algebra (X, ∗, 0) of type (2,0) satisfying (B8) and (B12): (x ∗
y) ∗ (x ∗ z) = z ∗ y.

Definition 2.7. A BH-algebra is an algebra (X, ∗, 0) of type (2,0) satisfying (B3), (B4), and (B8).

Definition 2.8. A BG-algebra is an algebra (X, ∗, 0) of type (2,0) satisfying (B3), (B8), and (BG):
(x ∗ y) ∗ (0 ∗ y) = x.

3. BRK-Algebras

In this section, we define the notion of BRK-algebra and observe that the axioms in the
definition are independent.
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Definition 3.1. A BRK-algebra is a nonempty set Awith a constant 0 and a binary operation ∗
satisfying axioms:

(B8) x ∗ 0 = x,

(B13) (x ∗ y) ∗ x = 0 ∗ y for any x, y ∈ A.

For brevity, we also callA a BRK-algebra. InA, we can define a binary relation “ ≤′′ by
x ≤ y if and only if x ∗ y = 0.

Example 3.2. Let A := R − {−n}, 0/=n ∈ Z
+ where R is the set of all real numbers and Z

+ is the
set of all positive integers. If we define a binary operation ∗ on A by

x ∗ y =
n
(
x − y

)

n + y
, (3.1)

then (A, ∗, 0) is an BRK-algebra.

Example 3.3. Let A = {0, 1, 2} in which ∗ is defined by

∗ 0 1 2

0 0 2 2

1 1 0 0

2 2 0 0

. (3.2)

Then (A, ∗, 0) is a BRK-algebra.

We know that every BCK-algebra is a BCI-algebra and every BCI-algebra is a BCH-
algebra and every BCH-algebra is a Q-algebra. We can observe that every Q-algebra is a
BRK-algebra but converse needs not be true.

Example 3.4. Let A = {0, 1, 2, 3} in which ∗ is defined by

∗ 0 1 2 3

0 0 1 0 1

1 1 0 1 0

2 2 1 0 1

3 3 2 3 0

. (3.3)

Then (A, ∗, 0) is a BRK-algebra, which is not a BCK/BCI/BCH/Q-algebra.

We know that every QS-algebra is a BM-algebra and we can observe that every BM-
algebra is a BRK-algebra but converses need not be true.
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Example 3.5. Let A = {0, 1, 2, 3} in which ∗ is defined by

∗ 0 1 2 3

0 0 2 2 0

1 1 0 0 2

2 2 0 0 2

3 3 1 1 0

. (3.4)

Then (A, ∗, 0) is a BRK-algebra, which is not a QS/BM-algebra.

It is easy to see that B/BG/BF/BH-algebra and BRK-algebras are different notions.
For example, Example 3.3 is a BRK-algebra which is not a BH-algebra and Example 3.4 is
an BRK-algebra which is not B/BG/BF-algebra. Consider the following example. Let A =
{0, 1, 2, 3, 4, 5} be a set with the following table:

∗ 0 1 2 3 4 5

0 0 2 1 3 4 5

1 1 0 2 4 5 3

2 2 1 0 5 3 4

3 3 4 5 0 2 1

4 4 5 3 1 0 2

5 5 3 4 2 1 0

. (3.5)

Then (A, ∗, 0) is a B/BF/BG/BH-algebra which is not an BRK-algebra.
We observe that the two axioms (B8) and (B13) are independent. Let A = {0, 1, 2} be a

set with the following left table:

∗ 0 1 2

0 0 1 2

1 1 1 2

2 2 1 2

∗ 0 1 2

0 0 1 0

1 1 0 1

2 0 1 0

. (3.6)

Then the axiom (B8) holds but not (B13), since (1 ∗2) ∗1 = 2 ∗1 = 1/= 2 = 0 ∗2. Similarly, the set
A = {0, 1, 2}with the above right table satisfies the axiom (B13) but not (B8), since 2∗0 = 0/= 2.

Proposition 3.6. If (A, ∗, 0) is a BRK-algebra, then, for any x, y ∈ A, the following conditions hold:

(1) x ∗ x = 0,

(2) x ∗ y = 0 ⇒ 0 ∗ x = 0 ∗ y.
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Proof. Let (A, ∗, 0) be a BRK-algebra and x, y ∈ A. Then

(1) x ∗ x = (x ∗ 0) ∗ x = 0 ∗ 0 = 0 (by B8 and B13),

(2) x ∗ y = 0 ⇒ (x ∗ y) ∗ x = 0 ∗ x ⇒ 0 ∗ y = 0 ∗ x.

Proposition 3.7. Every BRK-algebra A satisfies the following property:

0 ∗ (x ∗ y) = (0 ∗ x) ∗ (0 ∗ y), (3.7)

for any x, y ∈ A.

Proof. Let x, y ∈ A. Then

0 ∗ (x ∗ y) =
((
0 ∗ y) ∗ (x ∗ y)) ∗ (0 ∗ y) (

by B13
)

=
[((

x ∗ y) ∗ x) ∗ (x ∗ y)] ∗ (0 ∗ y) (
by B13

)

= (0 ∗ x) ∗ (0 ∗ y).
(3.8)

Theorem 3.8. Every BRK-algebraA satisfying x ∗ (x ∗y) = x ∗y for all x, y ∈ A is a trivial algebra.

Proof. Putting x = y in the equation x ∗ (x ∗ y) = x ∗ y, we obtain x ∗ 0 = 0 ⇒ x = 0. Hence, A
is a trivial algebra.

Theorem 3.9. Every BRK-algebra A satisfying (x ∗ y) ∗ (x ∗ z) = z ∗ y for all x, y, z ∈ A is a
BCI-algebra.

Proof. Let (A, ∗, 0) be a BRK-algebra and (x ∗ y) ∗ (x ∗ z) = z ∗ y for all x, y, z ∈ A. Then

(1) (x ∗ y) ∗ (x ∗ z) ∗ (z ∗ y) = (z ∗ y) ∗ (z ∗ y) = 0,

(2) (x ∗ (x ∗ y)) ∗ y = ((x ∗ 0) ∗ (x ∗ y)) ∗ y = (y ∗ 0) ∗ y = y ∗ y = 0,

(3) x ∗ x = 0,

(4) Let x ∗ y = 0 = y ∗ x. Then x = x ∗ 0 = x ∗ (x ∗ y) = (x ∗ 0) ∗ (x ∗ y) = y ∗ 0 = y,

(5) x ∗ 0 = 0 ⇒ x = 0.

Theorem 3.10. Every 0-commutative B-algebra is a BRK-algebra.

Proof. Let A be a 0-commutative B-algebra. Then x ∗ (x ∗ y) = y for all x, y ∈ A. Hence,
(x ∗ y) ∗ x = x ∗ (x ∗ (0 ∗ y)) = 0 ∗ y.

The following theorem can be proved easily.

Theorem 3.11. Let (A, ∗, 0) be a BRK-algebra. Then, for any x, y ∈ A, the following conditions hold.

(1) If (x ∗ y) ∗ (0 ∗ (0 ∗ y)) = (x ∗ y) ∗ y, then 0 ∗ (0 ∗ (0 ∗ y)) = 0 ∗ y.
(2) If (x ∗ y) ∗ (0 ∗ y) = (x ∗ y) ∗ y, then 0 ∗ (0 ∗ y) = 0 ∗ y.
(3) If x ∗ (y ∗ x) = x ∗ (0 ∗ (x ∗ y)), then 0 ∗ (y ∗ x) = 0 ∗ (0 ∗ (x ∗ y)).
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4. G-Part of BRK-Algebras

In this section, we define G-part, p-radical and medial of a BRK-algebra. We give a necessary
and sufficient condition for a BRK-algebra to become a medial BRK-algebra and investigate
the properties of G-part in BRK-algebras.

Definition 4.1. A nonempty subset I of a BRK-algebraA is called a subalgebra ofA if x ∗y ∈ I
whenever x, y ∈ I.

Definition 4.2. A nonempty subset I of a BRK-algebra A is called an ideal of A if for any
x, y ∈ A:

(i) 0 ∈ I,

(ii) x ∗ y ∈ I and y ∈ I imply x ∈ I.

Obviously, {0} and A are ideals of A. We call {0} and A the zero ideal and the trivial
ideal of A, respectively. An ideal I is said to be proper if I /=A.

Definition 4.3. An ideal I of a BRK-algebra A is called a closed ideal of A if 0 ∗ x ∈ I for all
x ∈ I.

Example 4.4. Let A = {0, 1, 2} in which ∗ is defined by

∗ 0 1 2

0 0 2 2

1 1 0 0

2 2 0 0

. (4.1)

Then (A, ∗, 0) is a BRK-algebra and the set I = {0, 2} is a subalgebra, an ideal, and a closed
ideal of A.

Definition 4.5. Let A be a BRK-algebra. For any subset S of A, we define

G(S) = {x ∈ S | 0 ∗ x = x}. (4.2)

In particular, if S = A, then we say that G(A) is the G-part of a BRK-algebra.

For any BRK-algebra A, the set:

B(A) = {x ∈ A | 0 ∗ x = 0} (4.3)

is called a p-radical of A. Clearly, B(A) is a subalgebra and an ideal of A.
A BRK-algebra A is said to be p-semisimple if B(A) = {0}.
The following property is obvious:

G(A) ∩ B(A) = {0}. (4.4)
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Lemma 4.6. If (A, ∗, 0) is a BRK-algebra and a ∗ b = a ∗ c for a, b, c ∈ A, then 0 ∗ b = 0 ∗ c.

Proof. Let (A, ∗, 0) be a BRK-algebra and a, b, c ∈ A. Then by (B13), a ∗ b = a ∗ c ⇒ (a ∗ b) ∗a =
(a ∗ c) ∗ a ⇒ 0 ∗ b = 0 ∗ c.

Theorem 4.7. Let (A, ∗, 0) be a BRK-algebra. Then a left cancellation law holds in G(A).

Proof. Let a, b, c ∈ G(A)with a ∗ b = a ∗ c. Then, by Lemma 4.6, 0 ∗ b = 0 ∗ c. Since b, c ∈ G(A),
we obtain b = c.

Proposition 4.8. Let (A, ∗, 0) be a BRK-algebra. If x ∈ G(A), then 0 ∗ x ∈ G(A).

Proof. Let x ∈ G(A). Then 0 ∗ x = x and hence 0 ∗ (0 ∗ x) = 0 ∗ x. Therefore, 0 ∗ x ∈ G(A).

Converse of the above proposition needs not be true. From Example 4.4, we can see
that 0 ∗ 1 = 2 ∈ {0, 2} = G(A) but 1 /∈ G(A).

Theorem 4.9. If x, y ∈ G(A), then x ∗ y ∈ G(A).

Proof. Let x, y ∈ G(A). Then 0 ∗x = x and 0 ∗y = y. Hence, 0 ∗ (x ∗y) = (0 ∗x) ∗ (0 ∗y) = x ∗y.
Therefore, x ∗ y ∈ G(A).

Proposition 4.10. If (A, ∗, 0) is a BRK-algebra and x, y ∈ A, then

y ∈ B(A) ⇐⇒ (
x ∗ y) ∗ x = 0. (4.5)

Proof. Let (A, ∗, 0) be a BRK-algebra and x, y ∈ A. Then, by (B13), y ∈ B(A) ⇔ 0 ∗ y = 0 ⇔
(x ∗ y) ∗ x = 0.

Theorem 4.11. If S is a subalgebra of a BRK-algebra (A, ∗, 0), then G(A) ∩ S = G(S).

Proof. Clearly, G(A) ∩ S ⊆ G(S). If x ∈ G(S), then 0 ∗ x = x and x ∈ S ⊆ A. Hence, x ∈ G(A).
Therefore, x ∈ G(A) ∩ S. Thus, G(A) ∩ S = G(S).

Theorem 4.12. Let (A, ∗, 0) be a BRK-algebra. If G(A) = A, then A is p-semisimple.

Proof. Assume that G(A) = A. Then {0} = G(A) ∩ B(A) = A ∩ B(A) = B(A). Hence, A is
p-semisimple.

Theorem 4.13. Every closed ideal of a BRK-algebra is a subalgebra.

Proof. Let I be a closed ideal of a BRK-algebra (A, ∗, 0) and x, y ∈ I. Then 0 ∗ y ∈ I. By (B13),
(x ∗ y) ∗ x = 0 ∗ y ∈ I. Since I is an ideal and x ∈ I, we have x ∗ y ∈ I. So I is a subalgebra of
A.

Note that the converse of the above theorem is not true. In Example 3.4, the set {0, 1, 2}
is a subalgebra but not a closed ideal.

Theorem 4.14. Let I be a subset of a BRK-algebra A. Then I is a closed ideal of A if and only if it
satisfies (i) 0 ∈ I (ii) x ∗ z ∈ I, y ∗ z ∈ I and z ∈ I imply x ∗ y ∈ I, for all x, y, z ∈ A.
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Proof. Let I be a closed ideal of A. Clearly, 0 ∈ I. Assume that x ∗ z, y ∗ z, z ∈ I. Since I
is an ideal, we have x, y ∈ I which implies that x ∗ y ∈ I because I is a closed ideal and
hence a subalgebra of A. Conversely, assume that I satisfies (i) and (ii). Let x ∗ y, y ∈ I. Since
0 ∗ 0, y ∗ 0, 0 ∈ I, by (ii)we have 0 ∗ y ∈ I. From (ii), again it follows that x = x ∗ 0 ∈ I so that
I is an ideal of A. Now suppose that x ∈ I. Since 0 ∗ 0, x ∗ 0, 0 ∈ I, we obtain 0 ∗ x ∈ I by (ii).
This completes the proof.

Definition 4.15. A BRK-algebra (A, ∗, 0) is said to be positive implicative if

((
x ∗ y) ∗ y) ∗ (0 ∗ y) = x ∗ y (4.6)

for all x, y ∈ A.

The BRK-algebra in Example 3.3 is positive implicative.

Definition 4.16. Let (A, ∗, 0) be a BRK-algebra. For a fixed a ∈ A. The map Ra : A → A given
by Ra(y) = y ∗ a for all y ∈ A is called right translation of A. Similarly the map La : A → A
given by La(y) = a ∗ y for all y ∈ A is called a left translation of A.

Definition 4.17. Let (A, ∗, 0) be a BRK-algebra. For a fixed a ∈ A. The map Ta : A → A given
by Ta(y) = (y ∗ a) ∗ (0 ∗ a) for all y ∈ A is called a weak right translation of A. Similarly,
the map Ma : A → A given by Ma(y) = (a ∗ y) ∗ (0 ∗ y) for all y ∈ A is called a weak left
translation of A.

Theorem 4.18. A BRK-algebra (A, ∗, 0) is positive implicative if and only if Rz = Tz ◦ Rz for all
z ∈ A.

Proof. Let A be a BRK-algebra and Rz = Tz ◦ Rz for z ∈ A. Then

y ∗ z = Rz

(
y
)
= (Tz ◦ Rz)

(
y
)
= Tz

(
Rz

(
y
))

= Tz
(
y ∗ z) =

((
y ∗ z) ∗ z) ∗ (0 ∗ z), ∀y, z ∈ A.

(4.7)

Hence, A is positive implicative BRK-algebra. Conversely, assume that A is positive
implicative BRK-algebra. Let x, y ∈ A. Then

Rx

(
y
)
= y ∗ x =

((
y ∗ x) ∗ x) ∗ (0 ∗ x) = (

Rx

(
y
) ∗ x) ∗ (0 ∗ x)

= Tx
(
Rx

(
y
))

= (Tx ◦ Rx)
(
y
)
.

(4.8)

Hence, Rx = Tx ◦ Rx.

Definition 4.19. A BRK-algebra (A, ∗, 0) satisfying

(
x ∗ y) ∗ (z ∗ u) = (x ∗ z) ∗ (y ∗ u) (4.9)

for any x, y, z and u ∈ A, is called a medial BRK-algebra.
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Example 4.20. Let A := R − {−n}, 0/=n ∈ Z
+ where R is the set of all real numbers and Z

+ is
the set of all positive integers. If we define a binary operation ∗ on A by

x ∗ y =
n
(
x − y

)

n + y
, (4.10)

then (A, ∗, 0) is a medial BRK-algebra.

Theorem 4.21. If A is a medial BRK-algebra, then, for any x, y, z ∈ A, the following hold:

(i) x ∗ (y ∗ z) = (x ∗ y) ∗ (0 ∗ z),

(ii) (x ∗ y) ∗ z = (x ∗ z) ∗ y.

Proof. Let A be a medial BRK-algebra and x, y, z ∈ A. Then

(i) (x ∗ y) ∗ (0 ∗ z) = (x ∗ 0) ∗ (y ∗ z) = x ∗ (y ∗ z),

(ii) (x ∗ y) ∗ z = (x ∗ y) ∗ (z ∗ 0) = (x ∗ z) ∗ (y ∗ 0) = (x ∗ z) ∗ y.

By the above theorem, the following corollary follows.

Corollary 4.22. Every medial BRK-algebra is a Q-algebra.

Theorem 4.23. Let A be a medial BRK-algebra. Then the right cancellation law holds in G(A).

Proof. Let a, b, x ∈ G(A) with a ∗ x = b ∗ x. Then, for any y ∈ G(A), x ∗ y = (0 ∗ x) ∗ y =
(0 ∗ y) ∗ x = y ∗ x. Therefore,

a = 0 ∗ a = (x ∗ a) ∗ x = (a ∗ x) ∗ x = (b ∗ x) ∗ x = (x ∗ b) ∗ x = 0 ∗ b = b. (4.11)

Now, we give a necessary and sufficient condition for a BRK-algebra to become a
medial BRK-algebra.

Theorem 4.24. A BRK-algebra A is medial if and only if it satisfies:

(i) x ∗ y = 0 ∗ (y ∗ x) for all x, y ∈ A,

(ii) (x ∗ y) ∗ z = (x ∗ z) ∗ y for all x, y, z ∈ A.

Proof. Suppose (A, ∗, 0) is medial and x, y, z ∈ A. Then

(i) 0 ∗ (y ∗ x) = (x ∗ x) ∗ (y ∗ x) = (x ∗ y) ∗ (x ∗ x) = (x ∗ y) ∗ 0 = x ∗ y,

(ii) (x ∗ y) ∗ z = (x ∗ y) ∗ (z ∗ 0) = (x ∗ z) ∗ (y ∗ 0) = (x ∗ z) ∗ y.
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Conversely, assume that the conditions hold. Then

(
x ∗ y) ∗ (z ∗ u) = 0 ∗ ((z ∗ u) ∗ (x ∗ y)) (

by (i)
)

= 0 ∗ ((z ∗ (x ∗ y)) ∗ u) (
by (ii)

)

=
(
0 ∗ (z ∗ (x ∗ y))) ∗ (0 ∗ u) (

by Proposition 3.7
)

=
((
x ∗ y) ∗ z) ∗ (0 ∗ u) (

by (i)
)

=
(
(x ∗ z) ∗ y) ∗ (0 ∗ u) (

by (ii)
)

= ((x ∗ z) ∗ (0 ∗ u)) ∗ y (
by (ii)

)

= (0 ∗ ((0 ∗ u) ∗ (x ∗ z))) ∗ y (
by (i)

)

= (0 ∗ ((z ∗ x) ∗ u)) ∗ y (
by (ii) & (i)

)

= (u ∗ (z ∗ x)) ∗ y (
by (i)

)

=
(
u ∗ y) ∗ (z ∗ x) (

by (ii)
)

= 0 ∗ ((z ∗ x) ∗ (u ∗ y)) (
by (i)

)

= (x ∗ z) ∗ (y ∗ u) (
by Proposition 3.7 and (i)

)

(4.12)

Therefore, A is medial.

Corollary 4.25. A BRK-algebra A is medial if and only if it is a medial QS-algebra.

The following theorem can be proved easily.

Theorem 4.26. An algebra (A, ∗, 0) of type (2, 0) is a medial BRK-algebra if and only if it satisfies:

(i) x ∗ (y ∗ z) = z ∗ (y ∗ x),

(ii) x ∗ 0 = x,

(iii) x ∗ x = 0.

Corollary 4.27. If A is a medial BRK-algebra, then x ∗ (x ∗ y) = y for all x, y ∈ A.

Corollary 4.28. The class of all of medial BRK-algebras forms a variety, written ν(MR).

Proposition 4.29. A variety ν is congruence-permutable if and only if there is a term p(x, y, z) such
that

ν � p
(
x, x, y

) ≈ y, ν � p
(
x, y, y

) ≈ x. (4.13)

Corollary 4.30. The variety ν(MR) is congruence permutable.

Proof. Let p(x, y, z) = x ∗ (y ∗ z). Then by Corollary 4.25 and (B8), we have p(x, x, y) = y and
p(x, y, y) = x, and so the variety ν(MR) is congruence permutable.

The following example shows that a BRK-algebra may not satisfy the associative law.
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Example 4.31. Let A = {0, 1, 2} be a set with the following table:

∗ 0 1 2

0 0 2 2

1 1 0 0

2 2 0 0

. (4.14)

Then (A, ∗, 0) is a BRK-algebra, but associativity does not hold since (1 ∗2) ∗1 = 0 ∗1 = 2/= 1 =
1 ∗ 0 = 1 ∗ (2 ∗ 1).

Theorem 4.32. If A is an associative BRK-algebra, then, for any x ∈ B(A), x = 0.

Proof. Let x ∈ B(A). Then 0 = 0 ∗ x = (x ∗ x) ∗ x = x ∗ (x ∗ x) = x ∗ 0 = x.

Theorem 4.33. If A is an associative BRK-algebra, then G(A) = A.

Proof. Let A be an associative BRK-algebra. Clearly, G(A) ⊆ A. Let x ∈ A. Then 0 ∗ x =
(x ∗ x) ∗ x = x ∗ (x ∗ x) = x ∗ 0 = x. Hence, x ∈ G(A). Therefore, G(A) = A.

Now, we prove that every associative BRK-algebra is a group.

Theorem 4.34. Every BRK-algebra (A, ∗, 0) satisfying the associative law is a group under the oper-
ation “ ∗ ′′.

Proof. Putting x = y = z in the associative law (x ∗y) ∗ z = x ∗ (y ∗ z) and using (B3) and (B8),
we obtain 0 ∗ x = x ∗ 0 = x. This means that 0 is the zero element of A. By (B3), every element
x of A has as its inverse the element x itself. Therefore, (A, ∗) is a group.

5. Conclusion and Future Research

In this paper, we have introduced the concept of BRK-algebra and studied their properties.
In addition, we have defined G-part, p-radical, and medial of BRK-algebra and proved that
the variety of medial algebras is congruence permutable. Finally, we proved that every
associative BRK-algebra is a group.

In our future work, we introduce the concept of fuzzy BRK-algebra, interval-val-
ued fuzzy BRK-algebra, intuitionistic fuzzy structure of BRK-algebra, intuitionistic fuzzy
ideals of BRK-algebra, and intuitionistic (T,S)-normed fuzzy subalgebras of BRK-algebras,
intuitionistic L-fuzzy ideals of BRK-algebra.

I hope this work would serve as a foundation for further studies on the structure of
BRK-algebras.
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