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The aim of this paper is to offer a generalization of the Philos and Staikos lemma. As a possible
application of the lemma in the oscillation theory, we study the asymptotic properties and
oscillation of the nth order delay differential equations (E) (r(t)[x(n−1)(t)]

γ
)
′
+ q(t)xγ (τ(t)) = 0.

The results obtained utilize also the comparison theorems.

1. Introduction

In this paper, we will study the asymptotic and oscillation behavior of the solutions of the
higher-order advanced differential equations:

(
r(t)

[
x(n−1)(t)

]γ)′
+ q(t)xγ(τ(t)) = 0. (E)

Throughout the paper, we will assume q, τ, r ∈ C([t0,∞)), and

(H1) n ≥ 3, γ is the ratio of two positive odd integers,

(H2) r(t) > 0, q(t) > 0, τ(t) ≤ t, limt→∞τ(t) = ∞.

Whenever, it is assumed

R(t) =
∫ t

t0

r−1/γ(s)ds −→ ∞ as t −→ ∞. (1.1)
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By a solution of (E) we mean a function x(t) ∈ Cn−1([Tx,∞)), Tx ≥ t0, which has the
property r(t)(x(n−1)(t))γ ∈ C1([Tx,∞)) and satisfies (E) on [Tx,∞). We consider only those
solutions x(t) of (E) which satisfy sup{|x(t)| : t ≥ T} > 0 for all T ≥ Tx. We assume that (E)
possesses such a solution. A solution of (E) is called oscillatory if it has arbitrarily large zeros
on [Tx,∞), and otherwise it is called to be nonoscillatory.

The problem of the oscillation of higher-order differential equations has been widely
studied by many authors, who have provided many techniques for obtaining oscillatory
criteria for studied equations (see, e.g., [1–19]).

Philos and Staikos lemma (see [16, 17]) essentially simplifies the examination of nth-
order differential equations of the form

y(n)(t) + q(t)yγ(τ(t)) = 0, (1.2)

since it provides needed relationship between y(t) and y(n−1)(t), and this fact permit us to
establish just one condition for asymptotic behavior of (1.2). If we try to apply the Philos and
Staikos lemma to (E), the strong condition r ′(t) ≥ 0 appears (see, e.g., [2, 18, 20]). In this
paper we offer such generalization of the Philos and Staikos lemma, where this restriction
is relaxed. Moreover, the obtained lemma yields many applications in the oscillation theory.
As an example of it, we offer its disposal in the comparison theory and we establish new
oscillation criteria for (E).

2. Main Results

The following result is a well-known lemma of Kiguradze, see, for example, [6] or [13].

Lemma 2.1. Let z(t) ∈ Ck−1([t0,∞)) and r(t)(z(k−1)(t))γ ∈ C1([t0,∞)) with z(t) > 0,
(r(t)(z(k−1)(t))γ)′ ≤ 0, and not identically zero on a subray of [t0,∞). Then there exist a t1 ≥ t0
and an integer �, 0 ≤ � ≤ k − 1, with k + � odd so that

(−1)�+jz(j)(t) > 0, j = �, . . . , k − 1,

z(i)(t) > 0, i = 1, . . . , � − 1, when � > 1,
(2.1)

on [t1,∞).

Now we are prepared to provide a generalization of the Philos and Staikos lemma.

Lemma 2.2. Let z(t) be as in Lemma 2.1 and numbers t1 and � assigned to z(t) by Lemma 2.1. Then
for 0 < � < k − 1,

z(t) ≥ r1/γ(t)z(k−1)(t)
(k − 2)!

∫ t

t1

r−1/γ(s)(s − t1)k−2ds, (2.2)
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for � = k − 1;

z(t) ≥ r1/γ(t)z(k−1)(t)
(k − 2)!

∫ t

t1

r−1/γ(s)(t − s)k−2ds, (2.3)

for t ≥ t1.

Proof. Let � be the integer assigned to function z(t) as in Lemma 2.1. Assume that � < k − 1,
then, for any s, t with t ≥ s ≥ t1,

−z(k−2)(s) ≥
∫ t

s

z(k−1)(u)du =
∫ t

s

r1/γ(u)z(k−1)(u)r−1/γ(u)du

≥ r1/γ(t)z(k−1)(t)
∫ t

s

r−1/γ(u)du.

(2.4)

Repeated integration in s from s to t yields

z(�)(s) ≥ r1/γ(t)z(k−1)(t)
∫ t

s

r−1/γ(u)
(u − s)k−2−�

(k − 2 − �)!
du. (2.5)

On the other hand, if � ≥ 1, then, for every t ≥ t1,

z(�−1)(t) ≥
∫ t

t1

z(�)(s)ds. (2.6)

Repeated integration from t1 to t leads to

z(t) ≥ 1
(� − 1)!

∫ t

t1

z(�)(s)(t − s)�−1ds. (2.7)

Setting (2.5) into (2.7), one gets

z(t) ≥ r1/γ(t)z(k−1)(t)
(� − 1)!(k − � − 2)!

∫ t

t1

(t − s)�−1
∫ t

s

r−1/γ(u)(u − s)k−2−�duds

≥ r1/γ(t)z(k−1)(t)
(k − 3)!

∫ t

t1

∫ t

s

r−1/γ(u)(u − s)k−3duds

=
r1/γ(t)z(k−1)(t)

(k − 2)!

∫ t

t1

r−1/γ(u)(u − t1)k−2ds.

(2.8)
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We have verified the first part of the lemma. Now assume that � = k − 1. It follows from (2.7)
that

z(t) ≥ 1
(k − 2)!

∫ t

t1

z(k−1)(s)(t − s)k−2du

≥ 1
(k − 2)!

∫ t

t1

r1/γ(s)z(k−1)(s)r−1/γ(s)(t − s)k−2ds

=
r1/γ(t)z(k−1)(t)

(k − 2)!

∫ t

t1

r−1/γ(s)(t − s)k−2ds.

(2.9)

The proof is complete now.

Employing additional conditions, we are able to joint (2.5) and (2.7) to just one
estimate.

Lemma 2.3. Let z(t) be as in Lemma 2.1 and limt→∞z(t)/= 0. Let r ′(t) ≥ 0, Then for any λ ∈ (0, 1)
there exists some tλ ≥ t1 such that

z(t) ≥ λ

(k − 1)!
tk−1z(k−1)(t), (2.10)

for t ≥ tλ.

Proof. Note that r ′(t) ≥ 0 implies that r−1/γ(t) is nonincreasing. Assume that � is the integer
associated with z(t) in Lemma 2.1. If 0 < � < k − 1, then using (2.2), we have

z(t) ≥ z(k−1)(t)
(k − 2)!

∫ t

t1

(s − t1)k−2ds =
z(k−1)(t)
(k − 1)!

(t − t1)k−1. (2.11)

It is easy to see that for any λ ∈ (0, 1) there exists a tλ ≥ t1 such that t − t1 ≥ λ1/(k−1) t for t ≥ tλ,
which in view of (2.11) yields (2.10).

If � = k−1, then proceeding similarly as above it can be shown that (2.3) implies (2.10).
If � = 0, then it follows from (2.5) that

z(s) ≥ r1/γ(t)z(k−1)(t)
∫ t

s

r−1/γ(u)
(u − s)k−2

(k − 2)!
du =

z(k−1)(t)
(k − 1)!

(t − s)k−1. (2.12)

Setting s = (1 − λ1/2(k−1))t, we have

x
((

1 − λ1/2(k−1)
)
t
)
≥ z(k−1)(t)

(k − 1)!
λ1/2tk−1. (2.13)
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Moreover,

lim
t→∞

x(t)
x
((
1 − λ1/2(k−1)

)
t
) = 1 > λ1/2. (2.14)

Therefore, for all large t,

x(t) ≥ λ1/2x
((

1 − λ1/2(k−1)
)
t
)
≥ λ

(k − 1)!
tk−1z(k−1)(t). (2.15)

The proof is complete now.

In the following result, we compare (2.2) and (2.3) to verify that both estimates are
independent; that is, one does not result from the other, although for r(t) ≡ 1 they are
equivalent.

Remark 2.4. Let z(t) be as in Lemma 2.1, such that z(t) is increasing. At first we consider
r(t) = t3, γ = 3, t1 = 1, and k = 3 then (2.2), (2.3), and (2.10) yield

z(t) ≥ z′′(t)
(
t2 − t ln t − t

)
, z(t) ≥ z′′(t)

(
t2 ln t − t2 + t

)
, z(t) ≥ z′′(t)

λt2

2
, (2.16)

respectively.
Now we modify r(t) = t−3. Then (2.2) and (2.3) reduce to

z(t) ≥ z′′(t)

(
t2

3
− t

2
+

1
6t

)
, z(t) ≥ z′′(t)

(
t2

6
− 1
2
+

1
3t

)
, (2.17)

respectively, and (2.10) is not applicable.

3. Applications

Lemma 2.2 can be applied in various techniques for investigations of the higher-order
differential equations. We offer one such application in comparison theory.

Theorem 3.1. Assume that both first-order delay differential equations

y′(t) +
q(t)

((n − 2)!)γ

(∫ τ(t)

t1

r−1/γ(s)(s − t1)n−2ds

)γ

y(τ(t)) = 0, (E1)

y′(t) +
q(t)

((n − 2)!)γ

(∫ τ(t)

t1

r−1/γ(s)(τ(t) − s)n−2ds

)γ

y(τ(t)) = 0 (E2)
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are oscillatory. Moreover, for n-odd assume that

∫∞

t0

un−2r−1/γ(u)
(∫∞

u

q(s)ds
)1/γ

du = ∞. (P0)

Then

(i) for n even, (E) is oscillatory;

(ii) for n odd, every nonoscillatory solution x(t) of (E) satisfies limt→∞x(t) = 0.

Proof. Assume that x(t) is a nonoscillatory solution of (E); let us say positive. Then
(r(t)[x(n−1)(t)]γ)

′
< 0, and there exist a t1 ≥ t0 and an integer � with n + � odd such that

(2.1) holds.
If 0 < � < n − 1, then by Lemma 2.2

x(t) ≥ r1/γ(t)x(n−1)(t)
(n − 2)!

∫ t

t1

r−1/γ(s)(s − t1)n−2ds. (3.1)

Setting to (E), we get

(
r(t)

[
x(n−1)(t)

]γ)′
+
q(t)r(τ(t))

[
x(n−1)(τ(t))

]γ
((n − 2)!)γ

×
(∫ τ(t)

t1

r−1/γ(s)(τ(s) − t1)n−2ds

)γ

≤ 0.

(3.2)

Then y(t) = r(t)[x(n−1)(t)]γ is positive and satisfies the differential inequality:

y′(t) +
q(t)

((n − 2)!)γ

(∫ τ(t)

t1

r−1/γ(s)(s − t1)n−2ds

)γ

y(τ(t)) ≤ 0. (3.3)

By Theorem 1 in [15], the corresponding equation (E1) has also a positive solution. A
contradiction.

If � = n − 1, then by Lemma 2.2

x(t) ≥ r1/γ(t)x(n−1)(t)
(n − 2)!

∫ t

t1

r−1/γ(s)(t − s)k−2ds, (3.4)

and proceeding as above, we find out that (E2) has a positive solution. A contradiction and
the proof are finished for n even.

Assume that � = 0; note that it is possible only for n is odd. Since x′(t) < 0, then there
exists a finite limt→∞x(t) = c ≥ 0. We claim that c = 0. If not, then x(τ(t)) ≥ c > 0, eventually,
let us say, for t ≥ t2. An integration of (E) from t to∞ yields

r(t)
[
x(n−1)(t)

]γ ≥
∫∞

t

q(s)xγ(τ(s))ds (3.5)
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or equivalently

x(n−1)(t) ≥ r−1/γ(t)
(∫∞

t

q(s)xγ(τ(s))ds
)1/γ

. (3.6)

Integrating n − 1 times from t to∞, we get

x(t) ≥
∫∞

t

(u − t)n−2

(n − 2)!
r−1/γ(u)

(∫∞

u

q(s)xγ(τ(s))ds
)1/γ

du, (3.7)

then

x(t2) ≥ c

(n − 2)!

∫∞

t2

(u − t2)n−2 r−1/γ(u)
(∫∞

u

q(s)ds
)1/γ

du, (3.8)

which contradicts (P0). The proof is complete.

Employing any result (e.g., Theorem 2.1.1 in [13]) for the oscillation of (E1) and (E2),
we immediately obtain criteria for studied properties of (E).

Corollary 3.2. Let

lim inf
t→∞

∫ t

τ(t)
q(u)

(∫ τ(u)

t1

r−1/γ(s)(s − t1)n−2ds

)γ

du >
((n − 2)!)γ

e
,

lim inf
t→∞

∫ t

τ(t)
q(u)

(∫ τ(u)

t1

r−1/γ(s)(τ(s) − t)n−2ds

)γ

du >
((n − 2)!)γ

e
.

(3.9)

Moreover, for n-odd assume that (P0) holds. Then

(i) for n even, (E) is oscillatory;

(ii) for n odd, every nonoscillatory solution x(t) of (E) satisfies limt→∞x(t) = 0.

If we replace (P0) by stronger condition, we can establish oscillation of (E) even if n is
odd.

Theorem 3.3. Let τ ′(t) ≥ 0. Assume that both first-order delay differential equations (E1) and (E1)
are oscillatory. Moreover, for n-odd assume that

lim sup
t→∞

∫ t

τ(t)
(u − τ(t))n−2 r−1/γ(u)

(∫∞

u

q(s)ds
)1/γ

du > (n − 2)!. (P1)

Then (E) is oscillatory.
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Proof. Assume that x(t) is a positive solution of (E). Then there exists an integer � assigned
with x(t) by Lemma 2.1. If 1 ≤ � ≤ n − 1, then proceeding as in the proof of Theorem 3.1 we
eliminate x(t). If � = 0, then it follows from (3.7) that

x(τ(t)) ≥
∫∞

τ(t)

(u − τ(t))n−2

(n − 2)!
r−1/γ(u)

(∫∞

u

q(s)xγ(τ(s))ds
)1/γ

du

≥ x(τ(t))
∫ t

τ(t)

(u − τ(t))n−2

(n − 2)!
r−1/γ(u)

(∫ t

u

q(s)ds

)1/γ

du,

(3.10)

which contradicts (P1). The proof is complete.

Corollary 3.4. Let (3.9) hold. Moreover, for n-odd assume that (P1) holds. Then (E) is oscillatory.

Example 3.5. We consider the forth-order delay differential equation:

(
t
(
x′′(t)

)3)′
+

a

t6
x3(λt) = 0, a > 0, 0 < λ < 1, t ≥ 1. (E3)

It is easy to verify that (P0) holds for (E3); moreover, conditions (3.9) reduce to

aλ5 ln
(
1
λ

)
>

1
e

(
5
3

)3

, (3.11)

a27λ2
[
λ6

125
ln
(
1
λ

)
− 3λ3(1 − λ)

50
+
3
(
1 − λ2

)

40
− (1 − λ)3

24λ3

]
>

1
e
, (3.12)

respectively. Thus, by Corollary 3.4, if both (3.11) and (3.12) hold, then all nonoscillatory
solutions of (E3) tend to zero. For a = α3(α + 1)3(3α + 5)λ3α, with α > 0, one such solution is
x(t) = t−α. On the other hand, condition (P1) takes the form

a

(
ln
(
1
λ

)
+ 1 − λ

)3

> 5. (3.13)

Therefore, by Corollary 3.4, (E3) is oscillatory, provided that all (3.11), (3.12), and (3.13) hold.
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