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Based on some ideas of Greene and Krantz, we study the semicontinuity of automorphism groups
of domains in one and several complex variables. We show that semicontinuity fails for domains
in Cn, n > 1, with Lipschitz boundary, but it holds for domains in C1 with Lipschitz boundary.
Using the same ideas, we develop some other concepts related to mappings of Lipschitz domains.
These include Bergman curvature, stability properties for the Bergman kernel, and also some ideas
about equivariant embeddings.

1. Introduction

A domain in C
n is a connected open set. If Ω is a domain, then we let Aut(Ω) denote the

group (under the binary operation of composition of mappings) of biholomorphic self-maps
of Ω. When Ω is a bounded domain, Aut(Ω) is a real (never a complex) Lie group.

A notable theorem of Greene and Krantz [1] says the following.

Theorem 1.1. Let Ω0 be a smoothly bounded, strongly pseudoconvex domain with defining function
ρ0 (see [2] for the concept of defining function). There is an ε > 0 so that, if ρ is a defining function
for a smoothly bounded, strongly pseudoconvex domain Ω with ‖ρ0 − ρ‖Ck < ε (some large k) then
the automorphism group of Ω is a subgroup of the automorphism group of Ω0. Furthermore, there is a
diffeomorphism Φ : Ω → Ω0 such that the mapping

Aut(Ω) � ϕ �−→ Φ ◦ ϕ ◦Φ−1 (1.1)

is an injective group homomorphism of Aut(Ω) into Aut(Ω0).

In what follows we shall refer to this result as the “semicontinuity theorem.”
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It should be noted that, although this theorem was originally proved for strongly
pseudoconvex domains in C

n, the very same proof shows that the result is true in C
1 for

any smoothly bounded domain Ω0. In fact the proof, while parallel to the original proof in
[1], is considerably simpler in the one-dimensional context.

The original proof of this result, which was rather complicated, used stability results
for the Bergman kernel and metric established in [3] and also the idea of Bergman
representative coordinates. An alternative approach, using normal families, was developed
in [4]. The paper [5] produced a method for deriving a semicontinuity theorem when the
domain boundaries are only C2. The more recent work [6] gives a new and more powerful
approach to this matter of reduced boundary smoothness. The paper [7] gives yet another
approach to the matter and proves a result for finite type domains.

It is geometrically natural to wonder whether there is a semicontinuity theorem when
the boundary has smoothness of degree less than 2. On the one hand, experience in geometric
analysis suggests that C2 is a natural cutoff for many positive results (see [8]). On the
other hand, Lipschitz boundary is very natural from the point of view of dilation and other
geometric operations.

The purpose of this paper is to show that the semicontinuity theorem fails for domains
in C

n, n > 1, with Lipschitz boundary. But it holds for domains in C
1 with Lipschitz boundary.

The reason for this difference is connected, at least implicitly, with the failure of the Riemann
mapping theorem in several complex variables. We shall explain this point in more detail as
the presentation develops.

2. The Several-Complex-Variable Situation

The main result of this section is the following.

Theorem 2.1. Let n > 1 and consider domains inC
n. There is a sequenceΩj of strongly pseudoconvex

domains with Lipschitz boundary and another domainΩ with Lipschitz boundary so thatΩj → Ω in
the Lipschitz topology on defining functions and so that

(a) for each j, Aut(Ωj) = Z;

(b) Aut(Ω) = {id}.

See [9] for a consideration of strongly pseudoconvex domains with less than C2

boundary. This result shows that the semicontinuity theorem fails for domains with Lipschitz
boundary.

It should be understood that all the domains considered in this paper have finite
connectivity. In particular, the complement of the domain only has finitely many components.
And each component of the complement has Lipschitz boundary. We do not allow boundary
components that are a single point. Each boundary component is the closure of an open set.

We shall use some ideas in [10] in constructing the example enunciated in the theorem.
We shall make our construction in C

2. But it is easy to produce analogous examples in any
C
n.

Proof of the Theorem. Let ψ ∈ C∞
c (C

n) be such that

(i) suppψ ⊆ B(0, 1);
(ii) ψ ≥ 0;

(iii) ψ(0) = 1.
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We will build our domains by modifying the unit ball B in C
2. We will make particular

use of these automorphisms of the unit ball, for a a complex number of modulus less than 1:

Ψa(z1, z2) =

⎛
⎜⎝ z1 − a

1 − az1
,

√
1 − |a|2z2
1 − az1

⎞
⎟⎠. (2.1)

See [11].
We define

η1(z1, z2) = −1 + |z1|2 + |z2|2 −
(

1
10

)
ψ

⎛
⎝10

⎛
⎝(z1, z2) −

⎛
⎝

√
3
4
,
1
2

⎞
⎠

⎞
⎠

⎞
⎠. (2.2)

Set

U1 =
{
(z1, z2) ∈ C

2 : η1(z1, z2) < 0
}
. (2.3)

ClearlyU1 is a domain with smooth boundary. It is a ball with a “bump” attached at the point
(
√
3/4, 1/2).

Now define

Ω1 =
∞⋃

j=−∞
Ψ2j

1/10(U1). (2.4)

We see that Ω1 has infinitely many bumps which accumulate at the points (1, 0) and (−1, 0).
It is because of those accumulation points that the boundary of Ω1 is only Lipschitz.

In general we let, for k ≥ 2,

ηk(z1, z2) = − 1 + |z1|2 + |z2|2 −
(

1
10k

)

× ψ
⎛
⎝10k

⎛
⎝(z1, z2) −

⎛
⎝

√(
1
2

)k−1
−
(
1
2

)2k

, 1 −
(
1
2

)k
⎞
⎠

⎞
⎠

⎞
⎠.

(2.5)

Set

Uk =
{
(z1, z2) ∈ C

2 : ηk(z1, z2) < 0
}
. (2.6)

ClearlyUk is a domain with smooth boundary. It is a ball with a “bump” attached at the point

(
√
(1/2)k−1 − (1/2)2k, 1 − (1/2)k).
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Now define, for k ≥ 2,

Ωk = Ωk−1 ∪
∞⋃

j=−∞
Ψ2j+k−1

1/10 (Uk). (2.7)

We see that Ωk has infinitely many bumps which accumulate at the points (1, 0) and (−1, 0).
It is because of those accumulation points that the boundary of Ω1 is only Lipschitz.

Finally we let

Ω =
∞⋃
k=1

Ωk. (2.8)

Now it is clear that Ωk → Ω in the Lipschitz topology on defining functions. Further-
more, the ideas in [10] show that the automorphism group of Ωk consists precisely of the
mappingsΨ2j+k−1

1/10 , j ∈ Z. So the automorphism group ofΩk is canonically isomorphic to Z. But
it is also clear that the automorphism group of Ω consists of the identity alone.

That completes the construction described in the theorem.

3. The One-Variable Situation

The one-variable result is the following.

Theorem 3.1. Consider domains in C
1. Let Ω0 ⊆ C

1 be a bounded domain with Lipschitz boundary
and defining function ρ0. If ε > 0 is sufficiently small then, whenever Ω is a bounded domain with
Lipschitz boundary and defining function ρ satisfying ‖ρ0−ρ‖Lip < ε then the automorphism group of
Ω is a subgroup of the automorphism group of Ω0. Moreover, there is a diffeomorphism Φ : Ω → Ω0

so that the mapping

Aut(Ω) � ϕ �−→ Φ ◦ ϕ ◦Φ−1 ∈ Aut(Ω0) (3.1)

is an injective group homomorphism.

We see here that the situation is in marked contrast to that for several complex
variables. Our proof of this result will rely on uniformization for planar domains, a result
which has no analogue in several complex variables.

Proof of the Theorem. Fix the domain Ω0 and let Ω be of distance ε from Ω0 in the Lipschitz
topology.

It is a standard result of classical function theory that a finitely connected domain in
the plane, with no component of the complement equal to a point, is conformally equivalent
to the plane with finitely many nontrivial closed discs excised—see [12]. Call this conformal
mapping the “normalization” of the domain. What is particularly nice about this result is
that the proof is constructive and it is straightforward to see that the normalization of Ω is
close to the normalization of Ω0 just because Ω is close to Ω0. Indeed the normalization of
Ω will be close to that of Ω0 in the C2 topology. Just because once it is close in the Lipschitz
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topology then it is automatically close in a smoother topology (because the boundary consists
of finitely many nontrivial circles).

Thus we may apply the one-dimensional version of the semicontintuity theorem for
C2 boundary to see that the automorphism group of the normalization of Ω is a subgroup of
the automorphism group ofΩ0. And the diffeomorphismΦ exists as usual. Now we may use
the normalizing conformal mapping to transfer this result back to the original domains Ω0

and Ω.
That completes the proof.

We note that another approach to construct the normalization map is by way of
Green’s functions. This method is also quite explicit and constructive. Stability results for
elliptic boundary value problems are well known. So this again leads to a proof of the
semicontinuity theorem by transference to the normalized domain.

4. Related Results in One Complex Dimension

Key to the work of Greene and Krantz in [3] and [1] is a stability result for the Bergman
kernel. In that theorem, the authors consider a base domain Ω0 and a “nearby” domain Ω.
As usual, we define “nearby” in terms of closeness of the defining functions in a suitable
topology. But it is useful to note that, in this circumstance, there is a diffeomorphism Π :
Ω → Ω0, which is close to the identity in a suitable Ck topology. With this thought in mind,
Greene and Krantz proved the following.

Theorem 4.1. LetΩ0 be a fixed, smoothly bounded, strongly pseudoconvex domain. LetΩ be a domain
which is “ε-close” toΩ0 in a Ck topology. LetΠ be the mapping described in the preceding paragraph.
If ε is small enough, then the Bergman kernel KΩ for Ω is close to KΩ0 ◦ Π in the Cm topology for
some 0 < m < k.

This result also holds in one complex dimension, and the proof in that context is
actually much easier.

Our remark now is that this theorem is actually true in the Lipschitz topology. We use
the argument of the last section. Namely, if Ω is close to Ω0 in the Lipschitz topology, then
the normalization of Ω is close to the normalization of Ω0 in a smooth topology. This one-
dimensional version of Theorem 4.1 applies to the normalized domains. The result follows.

5. Equivariant Embeddings

A lovely result of Maskit [13] is the following.

Theorem 5.1. Let Ω ⊆ C be any planar domain. Then there is a univalent, holomorphic embedding
Φ : Ω → C so that the automorphism group of the image domain Φ(Ω) consists only of linear
fractional transformations.

An elegant corollary of Maskit’s result is that if ϕ is any automorphism of a planar
domain that fixes three points then ϕ is the identity mapping. This follows because it is clear
that any linear fractional transformation that fixes three points is the identity.

We would like to remark here that the ideas in this paper give a “poor man’s version”
of this theorem. For letΩ be any domainwith Lipschitz boundary aswe have been discussing.
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So each component of the complement is the closure of a region having Lipschitz boundary.
Now the normalizing map sends this domain Ω to a planar domain bounded by finitely
many disjoint circles. It is easy to see, using Schwarz reflection and Schwarz’s lemma, that
any conformal self-map of such a domain must be linear fractional. So any such map that
fixes three points must be the identity.

6. The Bun Wong/Rosay Theorem

A classical result in several complex variables is the following (see [14, 15]).

Theorem 6.1. Let Ω ⊆ C
n be a bounded domain. Let P ∈ ∂Ω and assume that ∂Ω is strongly

pseudoconvex in a neighborhood of P . Suppose that there are a point X ∈ Ω and automorphisms ϕj of
Ω such that ϕj(X) → P as j → ∞. Then Ω is biholomorphic to the unit ball.

In a similar spirit, Krantz [16] proved the following result.

Theorem 6.2. LetΩ ⊆ C be a bounded domain and let P ∈ ∂Ω have the property that ∂Ω near P is a
C1 curve. Suppose that there are a point X ∈ Ω and automorphisms ϕj of Ω such that ϕj(X) → P as
j → ∞. Then Ω is conformally equivalent to the unit disc.

In this section we will reexamine Theorem 6.2 in the context of this paper, that is, in
relation to finitely connected domains with Lipschitz boundary. As noted, such a domain is
conformally equivalent to a domain Ω̂whose boundary consists of finitely many circles. Now
we have the following possibilities.

(a) If ∂Ω̂ consists of just one circle, then Ω̂ is the disc, and there is nothing to prove.

(b) If ∂Ω̂ consists of two circles, one inside the other, then Ω̂ is (conformally equivalent
to) an annulus. Then the automorphism group of such a domain is two copies of
the unit circle. In particular, it is compact. So the hypotheses of Theorem 6.2 do not
obtain.

(c) If ∂Ω̂ consists of two circles, neither of which is inside the other, then the domain
is unbounded. The automorphism group of such a domain is compact, and the
hypotheses of Theorem 6.2 do not apply.

(d) If ∂Ω̂ consists of at least three circles, with all the circles but one lying inside the
other one, then it is well known (see [17] or [18]) that the automorphism group of
Ω̂ is finite. Then the hypotheses of Theorem 6.2 do not obtain.

Thus, we see by inspection that Theorem 6.2 is true in the context of the domains that
we have been discussing in this paper.

7. Curvature of the Bergman Metric

It is a matter of considerable interest to know the curvature properties of the Bergman
metric on a planar domain. In particular, negativity of the curvature near the boundary is
a useful analytic tool (see [3]). If Ω is a planar domain with Lipschitz boundary, then its
normalized domain is bounded by finitely many circles. The asymptotic boundary behavior
of the Bergman kernel on such a domain is very well understood—see [19]. In particular,
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the kernel near a boundary point P is asymptotically very much like the kernel for the disc.
Thus, a straightforward calculation confirms that the curvature of the Bergman metric near
the boundary is negative. Of course this statement pulls back to the original domain in a
natural way.

8. Closing Remarks

It is natural to want to consider the results presented here in either the C1 topology or even
the C2−ε topology. At this time the techniques are not available to attack those questions.

In several complex variables, one would also like to prove semicontinuity theorems
for broad classes of domains. This will be the subject for future papers.
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