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Steffensen-type methods are practical in solving nonlinear equations. Since, such schemes do not
need derivative evaluation per iteration. Hence, this work contributes two new multistep classes
of Steffensen-type methods for finding the solution of the nonlinear equation f(x) = 0. New
techniques can be taken into account as the generalizations of the one-step method of Steffensen.
Theoretical proofs of the main theorems are furnished to reveal the eighth-order convergence. Per
computing step, the derived methods require only four function evaluations. Experimental results
are also given to add more supports on the underlying theory of this paper as well as lead us to
draw a conclusion on the efficiency of the developed classes.

1. Introduction

Finding rapidly and accurately the zeros of nonlinear functions is a common problem
in various areas of numerical analysis. This problem has fascinated mathematicians for
centuries, and the literature is full of ingenious methods, and discussions of their merits and
shortcomings [1-13].

Over the last decades, there exist a large number of different methods for finding the
solution of nonlinear equations either iteratively or simultaneously. Thus far, some better
modified methods for finding roots of nonlinear equations cover mainly the pioneering
work of Kung and Traub [14] or the efficient ways to build high-order methods through
the procedures discussed in [15-18].

In this paper, we consider the problem of finding a numerical procedure to solve a
simple root a of the nonlinear equation:

f(x) =0, (1.1)
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by derivative-free high-order iterations without memory. We here note that higher order of
convergence is only possible through employing multistep methods. In what follows, we first
give two definitions concerning iterative processes.

Definition 1.1. Let the sequence {x,} tends to a such that

lim 8= g s (1.2)

n—o (X, - a)P
Therefore, the order of convergence of the sequence {x,} is p, and C is known as the
asymptotic error constant. If p = 1, p = 2, or p = 3, the sequence is said to converge linearly,
quadratically, or cubically, respectively.

Definition 1.2. The efficiency of a method [2] is measured by the concept of efficiency index
and is defined by

EI=p!'/?, (1.3)

where p is the order of the method and f is the whole number of (functional) evaluations
per iteration. Note that in (1.3) we consider that all function and derivative evaluations have
the same computational cost. Moreover, we should remind that by Kung-Traub conjecture
[14]: an iterative scheme without memory for solving nonlinear equations has the optimal
efficiency index 2(#~D/F and optimal rate (speed) of convergence 2(/~1.

The so-called method of Newton is basically taken into account to solve (1.1). This
scheme is an optimal one-step one-point iteration without memory. The method is in fact
the essence of all the improvements of root solvers. We should remind that iterations are
themselves divided into two main categories of derivative-involved methods (in which at
least one derivative evaluation is needed to proceed; see, e.g., [19, 20]) and derivative-free
methods (do not have a direct derivative evaluation per iteration [21-23]) which are more
economic in terms of derivative evaluation. Clearly, the arising real problems in science and
engineering are not normally of the type to let the users to calculate their first or second
derivatives. Since, they include hard structures, which make the procedure of finding the
derivatives so difficult or time consuming. Due to this, derivative-free methods now comes
to attention to solve the related problems as easily as possible. For further reading, one may
refer to [24-28].

This paper tries to overcome on the matter of derivative evaluation for nonlinear
solvers by giving two general classes of three-step eighth-order convergence methods, which
have the optimal efficiency index, optimal order, accurate performance in solving numerical
examples as well as are totally free from derivative calculation per full cycle to proceed.
Hence, after this short introduction in this section, we organize the rest of the paper as
comes next. Section 2 shortly provides one of the most applicable usages of root solvers in
Mechanical Engineering in order to manifest their applicability. This section is followed by
Section 3, where some of the available derivative-free schemes in root-finding are discussed
and presented. Section 4 gives the heart of this paper by contributing two novel classes
of three-step derivative-free without memory iterations. The theoretical proofs of the main
theorems are given therein to show that each member of our classes without memory attain
as much as possible of the efficiency index by using as small as possible of the number
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of evaluations. In Section 5, we give large number of numerical experiments to reveal the
accuracy of the obtained methods from the proposed classes. And finally, Section 6 contains
a short conclusion of this study.

2. Describing an Application of Nonlinear Equations Solvers

In Mechanical Engineering, a trunnion (a cylindrical protrusion used as a mounting and/or
pivoting point; in a cannon, the trunnions are two projections cast just forward of the center
of mass of the cannon are fixed to a two-wheeled movable gun carriage) has to be cooled
before it is shrink fitted into a steel hub.

The equation that gives the temperature T to which the trunnion has to be cooled to
attain the desired contraction is given by

f(Ty) = ~0.50598 x 1071°T} +0.38292 x 107'T7 +0.74363 x 10T + 0.88318 x 10~ = 0.
(2.1)

Clearly (2.1) could be solved using nonlinear equation solvers. This was one
application of the matter of nonlinear equation solving by iterative processes in the scalar
case. At this time, consider that the obtained nonlinear scalar equations in other problems
are complicated; therefore their first and second derivatives are not at hand and moreover,
better accuracy by low elapsed time is needed. Consequently, a close look at the derivative-
free high-order methods should be paid by considering multi step iterations. Also note that
such iterative schemes can be extended to solve systems of nonlinear equations which have
a lot of applications in engineering problems, see for more [29].

3. Available Derivative-Free Methods in the Literature

For the first time, Steffensen in [30] coined the following derivative-free form of Newton's
method:

f(xn)

m/ Wy = Xn + f(Xn), (3.1)

Xn+l = X —

which possesses the same rate of convergence and efficiency index as Newton's.
We here remind the well-written family of derivative-free three-step methods, which
was given by Kung and Traub [14] as comes next

f ) f (yn)
f(]/n) _f(xn)’

. f(xn)f(yn)[ 1 1 ]
fl ’

f(Zn) - f(xn) Yn, xn] - f[znr yn]

Yn =Xn + ﬁf(xn)/

Zn =Yn—P

Wy = Zy
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) f (Yn) f(z0)
f(wn) _f(xn)

Xn+1 = Wy —

e et 7
f@n) = f(yn) | flwn,2n]  f[zn, Y]

e e |
f(zn) - f(xn) f[znf yn] f[]/n, xn] ’
(3.2)

where f € R\ {0}. This family of one-parameter methods possesses the eighth-order
convergence utilizing four pieces of information, namely, f(x,), f(y.), f(z.) and f(wy,).
Therefore, its classical efficiency index is 1.682. Note that the first two steps of (3.2), are
an optimal fourth-order derivative-free uniparametric family, which could also be given as
comes next

yn:xn_%/ wn:xn+ﬁf(xn)l ﬂGR\{O},

3.3
£ () fa0n) 43

(f (@n) = f(Yn)) f X Y]

Xn+l = Yn —

Another uniparametric three-step derivative-free iteration was presented recently by
Zheng et al. in [21] as follows:

f(xn)

Yn =Xn — f[xn/wn] ’ Wy = Xp +ﬂf(xn)r

f(yn)
f 0, yn) + f [y, w0n] = f o0, wn]’

f(zn)
flznyn] + £z Y %] (20 = yn) + f (20 Y, Xn, 0] (20 = Y) (20 = Xn)

Zp = Yn —

Xn+l = Zn —

(3.4)

where f[x,, Xu-1,...,%x,-] is the divided differences of f(x). And we recall that they can be
defined recursively via

flal = fG; flox] = = =75 xry (3.5)

and, form >i+1, via

Xi, Xi e, Xm-1] — Xi Xi o, X
f[inXi+1’.."xm] — f[ irAi+ls 7 m;] xf[ i+l Ai+2, 7 m], xi#xm. (36)
i~ Am
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4, Main Contributions

As usual to build high-order iterations, we must consider a multipoint cycle. Now in order
to contribute, we pay heed to the follow up three-step scheme in which the first step is
Steffensen, while the second and the third steps are Newton’s iterations. This procedure is
completely inefficient. Since it possesses 8'/4 =~ 1.414 as its efficiency index, which is the same
to Steffensen’s and Newton's:

I AC) Lt LS W

Yn = Xn — m, Zp = Yn f’(yn) ’ Xn+l n— f’(Zn) .

To annihilate the derivative evaluations of the structure (4.1) and also keep the order at
eight we must reconstruct our structure in which the first two steps provide the optimal order
four using three evaluations and subsequently to the eighth-order convergence by consuming
four function evaluations. Toward this end, we make use of weight function approach as
comes next (and also by replacing f'(y,) = f[x,, wn] and f'(z,) = f[xn, w,]):

_ f(xn) _
yn—xn—m, Wy = Xp +ﬂf(xn),
_ f(yn)
Zn = Yn — m{G(A) x H(B)}, (4.2)
Xunt = 2= LK) x L(A) x P(E) x Q(B) x J(A))
fxn, wh] ’

wherein g € R\ {0}, G(A), H(B), K(I'), L(A), P(E), Q(B), and J(A) are seven real-
valued weight functions when A = (f(y)/f(x)), B = (f(y)/f(w)), I = (f(2)/f(x)),
A = (f(z)/f(w)), and E = (f(z)/ f(y)), without the index n, should be chosen such that
the order of convergence arrives at the optimal level eight. Theorem 4.1 indicates the way
of selecting the weight functions in order to reach the optimal efficiency index by using the
smallest possible number of function evaluations.

Theorem 4.1. Let us consider a as a simple root of the nonlinear equation f(x) = 0 in the domain D.
And assume that f(x) is sufficiently smooth in the neighborhood of the root. Then the derivative-free
iterative class without memory defined by (4.2) is of optimal order eight, when the weight functions

satisfy

G0)=G0) =1, G"(0)=G®0) =0, |G<4> (0)| < o,
H©O)=H'(0)=1, H"(0)=0,

HO(0) = 18+ 6B [x, w5+ Bf [, wal (4+ Bf [x,00])),  [HH(0)| < o0,
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K0)=K'(0)=1,
L) =L'(0) =1,

P(0)=P(0)=1,  |P"(0)| <o,
QO =QO=1 QO =2+2pf[xswil, Q¥ =0,]QY(O)] <,

JO=J©O =1 JO=790=0 |J90]<c.
(4.3)

Proof. Using Taylor’s series and symbolic computations, we can determine the asymptotic
error constant of the three-step uniparametric class (4.2)-(4.3). Furthermore, assume
en = X, — a be the error in the nth iterate and take into account f(a) = 0, cx =
F®(a)/k!, forall k =1,2,3,.... Now, we expand f(x,) around the simple zero a. Hence, we
have

2 3 4 5 5 6 7 8 9
f(xy) = c1e, + C2€;, + C3€), + Ca€, + C5€,, + C5€;, + Co€)y + C7€), + Cge)y + O(en>. (4.4)

By considering (4.4) and the first step of (4.2), we attain

mma=c(+p)e s +O(e]). (45)

(5]

In the same vein, by considering (4.3) and (4.5), we obtain for the second step that

— o (1+cap) (—0163(1 :chﬁ) +c3(2+ clﬁ)2> - O<ez), o
G

and f(z,) = ((c2(1 + aif)(-cic3(1 + c1f) + 22 +c1f)?))/Pek + -+ + O(e)). We also

have (f(zn)/flxn,wn]) = (1/63) c2(1 + c1f)(—c1cs(1 + c1f) + c3(2 +af))el + -+ 0(E).
Using symbolic computation in the last step of (4.2) and considering (4.3) and (4.6), we
have

. f) (1+ap)2+ap) <—C1C3(1 +c1f) +c2(2+ c1ﬂ)2> St O<e,91>.
f[xn/wn] CzlL
4.7)
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Furthermore using (4.3), we have

f(zn)
Firn wy] KO X L&) x PE) < Q(B) < J(A))

_ c2(1+c1p) <—C1C3(1 +cof)+c3(2+ clﬁ)2>eﬁ

3
1

, i i (4.8)
~ 3 <c%c§(1 +c1B) (2 +c1f) + Eeaca(1+c1f) (2 + 1)
1

—cicies(1+ 1) (26 + c1f(37 + c1f(19 + 3c1B)))

+4(29+ c1p(65 + 1 (57 + 4c1p(6 + 1)) ) ) )en+-~+O (e ).

And finally, Taylor series expansion around the simple root in the last iterate by using (4.3)
and the above relation (values of higher order derivatives of K(I') and L(A); not explicitly
given in (4.9), can be arbitrary at the point 0), will result in

enit = - icz(cza rof) (-ac(1+ap) + G2+ ap))
x (-24ctcacy (1 + 1)’ + 126} (1 + 1p)* (-2 + P (0))
+24e1cdes (1+ 1) (2(6+ c1p(6+ 1)) — (2+ 1p)*P'(0) )
+c3(-504 +192P"(0) - G¥ (0) - H(0) + ¥ (0)
+o p(4(—27o +96P"(0) - G (0) + J@ (0))
+or p<6(—144 +48P"(0) - G (0) + J@ (0))
+cp(crp(-48+12P"(0) - GD(0) + ]9 (0))

+4<—78 +24P"(0) - GD(0) + J@ (0)))))

+Q(4) (0)) ) ) efl +0 <e,91>,
(4.9)

which shows that the three-step without memory class (4.2)-(4.3) reaches the order of
convergence eight by using only four pieces of information. This completes that proof. O
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A simple computational example from the class (4.2)-(4.3) can be

f(xn)
flxn, wn] ’

o f(ym)
Zn = Yn f[

X, Wy ]

F) [ f)\
) {<l Fo) <f<Xn>> >
£ (yn) Fu)\’
x<1 oy O fln ) G+ flanwnl (4+ f [x”’w”]))><f(wn>> > }

B f(zn)
Xnil = Zn — m{wl},

Yn=Xn— wn=xn+f(xn)r

(4.10)

where

(@) fEY fz) [ f) f) [ fl)\
W= (1 TG " (f(xn)> ><1 " fwn <f<wn>> > <1 NI < f(yn)> )

f(yn) fyn) \ fyn) (f)\
" <1 oy (Sl (5075 ><1 ooy (765) >

(4.11)
and its error equation is as comes next
1+ cl)3c§<(2 +c1)’-c(1+ C1)C3> ((5+c1(3+c1))c; —4cicacs + cPey) . .
€ni1= CZ e, +0 (en>.
(4.12)

Remark 4.2. Although the structure (4.10) is hard, it could be coded easily because f[x,, w,]
and the factors f(y.)/f(xn), f(yn)/f(wn), f(zu)/f(xn), f(zn)/f(wn), and f(zy)/ f(yn)
should be computed only once per computing step and their values will be used throughout
and we thus have some operational calculations in implementing (4.10).

The contributed class (4.2)-(4.3) uses the forward finite difference approximation in
its first step. If we use backward finite difference estimation, then another novel three-step
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eighth-order derivative-free iteration without memory can be constructed. For this reason,
our second general derivative-free class could be given as

_ f(xn) _
yn—xn_mr wn—xn_ﬂf(xn)r
B f(yn) :
s yn - f[xn/ZUn] {A(t) * B(l)}, (413)
N %{Pm + Q) + () + LK),

where g € R\ {0}, A(t), B(i), P(r), Q(i), J(t), and L(k) are six real-valued weight functions
whent = f(y)/f(x),i=f(y)/f(w),r=f(z)/f(y), k= f(z)/f(w), without the index n, and

they must read

A0 =A0) =1, A"0)=2, A®©0)=0, |A<4> (0)| <o,
BO)=B©0) =1, B'(0)=6-4fflx,w], BY0)=0, [B90)|<0c0,
PO)=P0)=1, |P"(0)] <o,
QO)=0, QO =1,  Q"(0)=10-8pf[xm wy], (4.14)
QO(0) = 60+ 12Bf [, wal (-84 3pf [x wi]),  |Q¥(0)] < o0,

JO =0, JO=1 J©O=2 J90)=0, |J90)]<es,

L(0)=0,  L'(0) =4—2Bf[xn wnl.

The scheme (4.13)-(4.14) defines a new family of multipoint methods. To obtain the
solution of (1.1) by the new derivative-free class, we must set a particular guess x, ideally
close to the simple root. In numerical analysis, it is very useful and essential to know the
behavior of an approximate method. Therefore, we will prove the order of convergence of
the new eighth-order class.

Theorem 4.3. Let us consider a as a simple root of the nonlinear equation f(x) = 0 in the domain D.
And assume that f(x) is sufficiently smooth in the neighborhood of the root. Then the derivative-free
iterative class defined by (4.13)-(4.14) is of optimal order eight.

Proof. Applying Taylor series and symbolic computations, we can determine the asymptotic
error constant of the three-step uni-parametric family (4.13)-(4.14). Assume e, = x,, —a be the
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error in the nth iterate and take into account f(a) =0, cx = f(k) (a)/k!, forall k =1,2,3,....
Then, the procedure of this proof is similar to the proof of Theorem 4.1. Thus, we below give
the final error equation of (4.13)-(4.14):

1 2
Cp+l = — Ic? <C2C3(—1 + Clﬂ)

x (24ctcrcs (-1 + 1)’ + 48crcdes (-1 + 1) (7 + (7 + 1))
~ 1233 (<1 + 1)’ (-2 + P"(0))
+ch <264 + AD(0) + B (0) - 79 (0)
+cp(-4(156 + A (0) - J9(0))
+cip(6(60+ AD(0) - 9 (0))

+o1p(—4A9(0) + o1 p(-24 + AW (0) - JW (0))

+4]9(0))) -Q9()))el +0(e)).
(4.15)

This shows that the contributed class (4.13)-(4.14) achieves the optimal order eight by using
only four pieces of information. The proof is complete. O

A very efficient example from our novel class (4.13)-(4.14) can be the following
iteration without memory

N % W, = %0~ f (),
Zn = Yn = f[fx(n—%
(e () (e oomema (i)}
= 20 = LD (),

(4.16)
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where

i fe@ (FE@N S e e Fe)
W2_1+f(yn)+<f(yn)> * oy T O "”(nwn))

T (10 + 2 X, W] (=8 + 3 [, w00])) <f(y") >

f(wn)
(4.17)
f)
+ <11 — fxn, wn] <26 —15f [xn, wa] + (f[xn, wn])3>> <f(wn)>
Fn)  (f\ f(z2)
+ o + <f(xn)> +(4 2f[x"’w”])f(wn)’
and its very simple error equation comes next as
o= (-1+c1)’ches(2(7 + (-7 + 501)01)026‘3 +(-1+ C1)0164)e§ N O(efl). (4.18)

1

Mostly, and according to the assumptions made in the proof of Theorem 4.1, ¢/ should be in
the denominator of the asymptotic error constant of the optimal eighth-order methods, and if
one obtains some forms like c? or c‘Ll3 , then the derived methods will be mostly finer than the
other existing forms of optimal eighth-order methods.

Remark 4.4. Each method from the proposed derivative-free classes in this paper reaches the
efficiency index v/8 = 1.682, which is greater than v4 = 1.587 of the optimal fourth-order
techniques’ and v/2 = 1.414 of optimal one-point methods’ without memory.

Some other examples from the class (4.13)-(4.14) can be easily constructed by changing
the involved weight function in (4.14). For example, we can have

Yn = Xp = ]% Wy = Xp = f(xn),
A (e () ) (st (Fe) )|
Kot = 2= B (W),

(4.19)
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with

Lf@) | f) F)\’
o) flan T O ><f(wn)>

+ (10 +2f 20, 0] (- 8+3f[xn,wn]))<f((;/]n))>

(4.20)

+ (11 = fln, 4] (26 = 15f [0, wa] + (f[xa,00])°))

(' 12 (Y o 2

zn)

where its error equation comes next as

(-1 +c1)%c203(2(7 + (=7 + c1)c1)2es + (=1 + c1)e12 + (=1 + 1) crcacs
ens1 = — ( 25 2 )eﬁ+0<ez>.
=1
(4.21)

And also we could construct

= f(xn) Wy = Xp — f(xn)

= X, —
n n f[xn,le]/

~ f(ym)

= f[xn/ wn]
Fm) ([ fu)\’ f(yn) )\
: {<1 e (76) >< fany -t (f25) )}

_ f(zn)
(4.22)

where

f)  (FEN, fm) Flun)\*
Wl f(yn>+<f(yn>> flwn) (5_4f["”’w”]><f<wn)>
MY

+ (104 2f [, w0,) (-8 + 3f [xn, wa])) <f<wn>
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(11 = £l 0a] (26 = 15f o, 0] + (flvm 00])7) <M>

f(wn)
fm) , (o f(yn)>4 ] f()
+ o + <f(xn)> + F ) + (4 2f[x"’w"])f(wn)’
(4.23)
and its error equation comes next as
- (-1+ c1)3c§C3<(—1 + 01)303 - 2c1(76+ (=7 +c1)c1)coes — (-1 + cl)c%a;) 62 . O(ez>,
G

(4.24)

5. Numerical Examples

We check the effectiveness of the novel derivative-free classes of iterative methods (4.2)-(4.3)
and (4.13)-(4.14) in this section. In order to do this, we choose (4.10) as the representative
from the optimal class (4.2)-(4.3) and (4.16) as the representative of the novel three-step class
(4.13)-(4.14). We have compared (4.10) and (4.16) with Steffensen’s method (3.1), the fourth-
order family of Kung and Traub (3.3) with = 0.01, the eighth-order technique of Kung and
Traub (3.2) with § = 1, and the optimal eighth-order family of Zheng et al. (3.4) with g =1,
using the examples listed in Table 1.

The results of comparisons are given in Table 2 in terms of the number significant
digits for each test function after the specified number of iterations, that is, for example,
0.1e — 1190 shows that the absolute value of the given nonlinear function f;, after three
iterations, is zero up to 1190 decimal places. For numerical comparisons, the stopping
criterion is | f (x,,)| < 1.E —1200. In Table 2, IT and TNE stand for the number of iterations and
the total number of (function) evaluations. We used four different initial guesses to analyze
the behaviors of the methods totally. In Table 2, F stands for failure, for instance, when the
iteration for the particular initial guess becomes divergence, or finds another root, needs more
numerical computing steps to find an acceptable solution of the nonlinear equations.

It can be observed from Table 2 that almost in most cases our contributed methods
from the classes of derivative free without memory iterations are superior in solving
nonlinear equations. Numerical computations have been carried out using variable precision
arithmetic in MATLAB 7.6.

We here remark that the eighth-order iterative methods such as (4.10) and (4.16)
improve the number of correct digits in the convergence phase for the simple roots of (1.1)
by a factor of eight and in order to show this and also the asymptotic error constant, we have
applied 1200 digits floating point.

Note that experimental results show that whatever the value of f#0 is small, then
the output results of solving nonlinear equations will be more reliable. As a matter of fact,
experimental results for the contributed methods from the three-step derivative-free classes
(4.2)-(4.3) and (4.13)-(4.14) can give better feedbacks in most cases, for instance they provide
better accuracy than those illustrated in Table 2, by choosing very small values for . By
doing this for f, the error equation will be narrowed. Also note that, if we approximate f
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Table 1: The examples considered in this study.

Test functions Simple zeros

filx) = (sinx)? + x =0

fa(x) = (1 +x) +cos(rx/2) = V1 - 22 ay = —0.728584046444826 - - -
fa(x) = (sinx)? —x2+1 as =~ 1.404491648215341 - - -
fa(x) = e +sin(x) -2 ay = —1.0541271240912128 - - -
fs5(x) =xe*-0.1 as = 0.111832559158963 - - -
fo(x) = Vxt+8sin(or/ (x2 +2)) + (23 /(x* + 1)) — V6 + (8/17) ag =-2

fr(x) = Va2 +2x +5 - 2sin(x) - x* +3 ay = 2.331967655883964 - - -
fo(x) =sin1(x? 1) —x/2+1 ag = 0.594810968398369 - - -
fo(x) = (sin(x) - v2/2)(x +1) g ~ 0.785398163397448 - - -
f10(x) = x —sin(cos(x)) + 1 ayo = —0.1660390510510295 - - -
f11(x) = x° = 10 cos(tan™" (x*)) + 17x a1 = 0.580593457809920 - - -
f12(x) = sin(cos(tan™! (2x*"(®)))) — 2x ap = 0.273402731005321 - - -
f13(x) = x% - x? = 2x — cos(x) +2 a3 = 0.498542523582153 - - -
fra(x) = Va® +sin(x) - 30 a4 = 9.716501993365200 - - -
f15(x) = tan! (2% - x) a5 =1

f16(x) = sin T(x?) - 2x a6=0

by an iteration through the data of the first step per cycle, then with memory iterations from
the suggested classes will be attained, which is the topic of the forthcoming papers in this
field.

A simple glance at Table 2 reveals that (4.16) is mostly better than its competitors.
The reason indeed is that whatever the error equation is finer, the better numerical results
will be attained. The error equations correspond to (4.16), for instance (4.18) is very small,
in fact in its denominator we have ¢ which clearly shows these refinements. In general,
and according to the assumptions made in the proof of Theorem 4.1, ¢] should be in the
denominator of the optimal eighth-order methods, and if one obtains forms like ¢? or ¢},
then the derived methods will be mostly finer than the other existing forms of the optimal
eighth-order methods.

6. Conclusions

Multipoint methods without memory are methods that use new information at a number of
points. Much literature on the multipoint Newton-like methods for function of one variable
and their convergence analysis can be found in Traub [2].

In this paper, two novel classes of iterations without memory were discussed fully. We
have shown that each member of our contributions reach the optimal order of convergence
eight by consuming only four function evaluations per full cycle. Thus, our classes support
the optimality conjecture of Kung and Traub for building optimal without memory iterations.
Our classes can be taken into account as the generalizations of the well-cited derivative-free
method of Steffensen. We have given a lot of numerical examples in Section 5 to support the
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Table 2: Results of convergence under fair circumstances for different derivative-free methods.

f  Guess (3.1) (3.3) (3.4) (3.2) (4.10) (4.16)
fi IT 8 4 3 3 3 3
TNE 16 12 12 12 12 12
0.3 Ifl  07e-104 03e-143 06e-269 0.1e-210 03e-187  0.1e—1190
-0.1 Ifl  03e-166 03e-216 0.le-412 04e-318 02e-230 02e-1186
05 Ifl  0le-89 0le-107 05e-209 07e-167 01e-150  0.4e—-572
0.2 If|  04e-132 05e—177 08e-334 0le-267 03e-239 02e-1183
f2 IT 9 4 3 3 3 3
TNE 18 12 12 12 12 12
-03 Il 02e-6  03e-143 07e-66  03e-53  07e-75  02e—-160
-0.6 Ifl  07e-516 01e-237 0.le-413 01e-398 0.1e-392  0.8¢—485
-0.8 Ifl  05e-351 04e-224 07e-301 0.1e-240 0.1e-152  02e—-654
-0.4 If|  06e-156 0.1e—216 04e—185 0.1e—178 05e—190  0.le —246
fs IT 9 4 3 3 3 3
TNE 18 12 12 12 12 12
19 If|  04e-104 08e-124  0.le-94 F 0.6e—121  0.le- 144
2 Ifl  08e-125 0.1e-110  0.le-60 F 0.6e-65  05e-135
21 Ti F 0.le-100  0.3e-35 F 05e-53  0.2e-108
16 If| 01e-298 01e-203 04e-350 04e-258 0.1e-334  0.7e-243
2 IT 8 4 3 3 3 3
TNE 16 12 12 12 12 12
-15 Ifl  03e-62 07e-128 0.le-125 0le-2  07e-98  0.le-93
-12 If|  06e-387 01e-233 04e-441 06e-359 0.6e-418  03e-284
-16 Ifl  07e-109 05e-111  0O.4e->53 F 03e-52  03e-53
-1 If|  01e-319 02e-330 0le-696 04e—-618 0.1e-670  0.8¢—415
fs IT 8 4 3 3 3 3
TNE 16 12 12 12 12 12
0.3 Ifl  02e-103 07e-148 0.1e-300 0.1e-205 03e-55  0.le—325
0.2 Ifl  03e-193 04e-240 05e-478 07¢-391 0.1e-311  0.7e-578
0.1 If|  02e-422 03e-471 05e-933 0.1e-855 02e-801 0.le—1146
0.15 If| 03e-289 04e-337 02e—668 05e-586 05e—524  0.le—814
fs IT 8 4 3 3 3 3
TNE 16 12 12 12 12 12
-3 Ifl  05e-222 01e-229 04e-275 07e-268 03e-275 0.le—169
-25 Ifl  02e-337 03e-263 04e-439 0.1e-423 04e—417  05e—-412
-32 Ifl  0le-174 01e-185 05e-218 02e-211 06e-218  0.5e—-106
2.1 If| 05e-420 0.6e-390 0le-672 02e—639 0.1e—635 03e—547
fr IT 8 4 3 3 3 3
TNE 16 12 12 12 12 12
3 Ifl  02e-263 02e-232 0.1e-395 08¢-429 04e-431  0.1e—-220
3.1 Ifl  03e-246 01e-227 02e-362 02e-412 02e-386  0.6e—170
14 If|  03e-208 03e-273 04e-276 0.1e-320 02e-386  02e-131
15 If|  01e-222 04e-301 04e-349 01e-295 0.1e-384  0.le—309
fs IT 9 4 3 3 3 3
TNE 18 12 12 12 12 12
0.9 Ifl  07e-307 0.6e-263 06e-270 01e-390 0.1e-285  0.le-632
12 Ifl  01e-93 03e-231 0le-76 0le-184 0.6e-84  0.4e-451
1 Ifl  0le-179 0le-234 02e-114 03e-299 03e-161  0.7¢ - 549

0.3 |1 02e—-487  0.6e—-275  0.le —461 0.3e—-466  0.5e-527 0.5e — 898
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Table 2: Continued.
f  Guess (3.1) (3.3) (3.4) (3.2) (4.10) (4.16)
fo IT 8 4 3 3 3 3
TNE 16 12 12 12 12 12
0.9 [f] 0.3e —423 0.2e — 380 0.3e — 684 0.8e — 608 0.7e - 610 0.2e — 1038
1 [f] 0.2e — 285 0.4e - 276 0.1e - 519 0.1e - 879 0.6e — 359 0.4e - 878
0.4 [f] 0.3e — 84 0.5e — 168 0.5e — 234 0.1e — 144 0.6e — 28 0.6e — 612
0.6 If] 0.1e — 340 04e-277  0.7e —479 0.7e — 629 0.1e — 629 0.1e — 804
10 IT 9 4 3 3 3 3
TNE 18 12 12 12 12 12
-0.3 [f] 0.1e — 539 0.4e - 305 0.4e — 543 0.3e — 488 0.5e — 451 0.5e — 1046
-0.6 [f] 0.1e — 215 0.1e — 146 0.4e — 235 0.2e — 154 0.6e — 50 0.1e — 465
-0.9 [f] 0.1e-5 0.9¢e - 64 0.4e -77 0.1e - 23 0.1e-9 0.2e - 159
0.3 If] 0.3e — 313 0.9¢e - 209 0.9e — 358 0.5e-314  0.2e -277 0.1e - 724
fn IT 9 4 3 3 3 3
TNE 18 12 12 12 12 12
0.7 If] 0.6e - 17 0.1e — 256 0.2e — 252 0.3e — 249 0.1e - 59 0.2e — 378
0.5 |f] 0.3e — 263 0.1e — 326 0.2e — 403 0.1e — 430 0.5e — 498 0.3e — 164
0.8 [f] E 0.5e — 245 0.2e — 154 0.1e — 194 0.2e -6 0.1e — 43
0.4 [f] 0.1e - 112 0.1e — 261 0.1e — 229 0.3e — 244 0.7e — 102 0.7e - 22
fi2 IT 9 4 3 3 3 3
TNE 18 12 12 12 12 12
2 If] E 0.1e — 122 0.5e — 260 09e-257  0.1e —260 0.6e — 120
0.6 |f] 0.1e — 453 0.3e — 234 0.4e — 262 0.7e — 231 0.9e — 253 0.1e — 338
1 |f1 0.1le — 322 0.2e - 183 0.5e - 192 0.1e - 160 0.1e — 187 0.3e — 330
0.5 If] 0.1e - 567 0.5e — 263 0.6e — 390 0.8e — 364 0.1e — 382 0.2e — 380
fi3 IT 8 4 3 3 3 3
TNE 16 12 12 12 12 12
0.6 |1 0.2e — 358 0.4e — 259 0.1e — 628 0.5e — 565 0.4e — 605 0.6e — 283
0.55 |1 0.2e — 431 0.3e — 343 0.3e - 774 0.1e - 711 0.1e — 348 0.9¢e — 602
0.3 |1 0.1e — 269 0.2e — 232 0.4e—-447 0.6e-384  0.2e —417 0.5e — 361
0.4 |1 0.6e — 352 0.7e — 295 0.6e — 614 0.3e — 552 0.2e — 585 0.9e — 440
fia IT 9 4 3 3 3 3
TNE 18 12 12 12 12 12
115 [f] 0.1e - 178 0.9¢e - 169 0.3e — 212 0.3e—244  0.1e —243 0.2e - 309
10 |f] 0.7e — 469 0.2e - 363 0.3e — 504 0.5e — 508 0.2e —474 0.1e - 574
8 [f] 0.4e — 242 0.6e — 171 0.5e - 296 0.1e — 283 0.7e — 266 0.1e — 230
9.2 [f] 0.1e — 474 0.3e - 314 0.1e — 490 0.2e — 448 0.3e — 487 0.2e — 421
fis IT 8 4 3 3 3 3
TNE 16 12 12 12 12 12
1.5 [f] 0.2e - 20 0.1e — 184 0.8e - 119 0.1e - 86 0.2e - 96 0.1e — 647
1.2 [f] 0.6e — 325 0.1e-177  0.4e - 386 0.1e — 290 0.1e-274  0.5e - 1096
1.7 [f] E 0.1e - 61 0.5e - 270 0.1e - 271 0.5e — 28 0.8e — 554
0.9 [f] 0.1e — 162 0.4e — 208 0.1e — 403 0.1e — 298 0.5e — 209 0.7e — 1190
fi6 IT 9 4 3 3 3 3
TNE 18 12 12 12 12 12
-0.1 |f] 0.2e — 654 0.7e - 315 0.1e — 653 0.2e — 580 0.4e — 892 0.2e - 731
-0.2 |f1 0.6e — 490 0.3e — 244 0.3e — 486 0.1e —412 0.1e — 655 0.2e — 495
-0.3 If] 0.9e - 390 0.2e — 205 0.6e — 380 0.3e — 305 0.9¢ — 504 0.7e — 352
0.2 [f] 0.1e — 534 0.4e - 216 0.4e — 532 0.2e — 458 0.3e — 698 0.6e — 122
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underlying theory developed in this paper. Numerical results were completely in harmony
with the theory developed in this paper, and accordingly, the contributions hit the target.
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