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A new class of multifunctions, called upper (lower) β(μX, μY )-continuousmultifunctions, has been
defined and studied. Some characterizations and several properties concerning upper (lower)
β(μX, μY )-continuous multifunctions are obtained. The relationships between upper (lower)
β(μX, μY )-continuous multifunctions and some known concepts are also discussed.

1. Introduction

General topology has shown its fruitfulness in both the pure and applied directions. In reality
it is used in data mining, computational topology for geometric design andmolecular design,
computer-aided design, computer-aided geometric design, digital topology, information
system, and noncommutative geometry and its application to particle physics. One can
observe the influence made in these realms of applied research by general topological
spaces, properties, and structures. Continuity is a basic concept for the study of general
topological spaces. This concept has been extended to the setting of multifunctions and
has been generalized by weaker forms of open sets such as α-open sets [1], semiopen sets
[2], preopen sets [3], β-open sets [4], and semi-preopen sets [5]. Multifunctions and of
course continuous multifunctions stand among the most important and most researched
points in the whole of the mathematical science. Many different forms of continuous
multifunctions have been introduced over the years. Some of them are semicontinuity
[6], α-continuity [7], precontinuity [8], quasicontinuity [9], γ-continuity [10], and δ-
precontinuity [11]. Most of these weaker forms of continuity, in ordinary topology such
as α-continuity and β-continuity, have been extended to multifunctions [12–15]. Császár
[16] introduced the notions of generalized topological spaces and generalized neighborhood
systems. The classes of topological spaces and neighborhood systems are contained in
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these classes, respectively. Specifically, he introduced the notions of continuous functions
on generalized topological spaces and investigated the characterizations of generalized
continuous functions. Kanibir and Reilly [17] extended these concepts to multifunctions. The
purpose of the present paper is to define upper (lower) β(μX, μY )-continuous multifunctions
and to obtain several characterizations of upper (lower) β(μX, μY )-continuous multifunctions
and several properties of such multifunctions. Moreover, the relationships between upper
(lower) β(μX, μY )-continuous multifunctions and some known concepts are also discussed.

2. Preliminaries

Let X be a nonempty set, and denote P(X) the power set of X. We call a class μ ⊆ P(X)
a generalized topology (briefly, GT) on X if ∅ ∈ μ, and an arbitrary union of elements of μ
belongs to μ [16]. A set X with a GT μ on it is said to be a generalized topological space (briefly,
GTS) and is denoted by (X, μ). For a GTS (X, μ), the elements of μ are called μ-open sets and
the complements of μ-open sets are called μ-closed sets. For A ⊆ X, we denote by cμ(A)
the intersection of all μ-closed sets containing A and by iμ(A) the union of all μ-open sets
contained inA. Then, we have iμ(iμ(A)) = iμ(A), cμ(cμ(A)) = cμ(A), and iμ(A) = X − cμ(X −
A). According to [18], for A ⊆ X and x ∈ X, we have x ∈ cμ(A) if and only if x ∈ M ∈ μ
impliesM∩A /= ∅. LetB ⊆ P(X) satisfy ∅ ∈ B. Then all unions of some elements ofB constitute
a GT μ(B), and B is said to be a base for μ(B) [19]. Let μ be a GT on a set X /= ∅. Observe that
X ∈ μmust not hold; if all the sameX ∈ μ, then we say that the GT μ is strong [20]. In general,
let Mμ denote the union of all elements of μ; of course, Mμ ∈ μ and Mμ = X if and only if
μ is a strong GT. Let us now consider those GT’s μ that satisfy the folllowing condition: if
M,M′ ∈ μ, then M ∩M′ ∈ μ. We will call such a GT quasitopology (briefly QT) [21]; the QTs
clearly are very near to the topologies.

A subsetR of a generalized topological space (X, μ) is said to be μr-open [18] (resp. μr-
closed) if R = iμ(cμ(R)) (resp. R = cμ(iμ(R))). A subset A of a generalized topological space
(X, μ) is said to be μ-semiopen [22] (resp. μ-preopen, μ-α-open, and μ-β-open) if A ⊆ cμ(iμ(A))
(resp. A ⊆ iμ(cμ(A)), A ⊆ iμ(cμ(iμ(A))), A ⊆ cμ(iμ(cμ(A)))). The family of all μ-semiopen
(resp. μ-preopen, μ-α-open, μ-β-open) sets of X containing a point x ∈ X is denoted by
σ(μ, x) (resp. π(μ, x), α(μ, x), and β(μ, x)). The family of all μ-semiopen (resp. μ-preopen,
μ-α-open, μ-β-open) sets of X is denoted by σ(μ) (resp. π(μ), α(μ), and β(μ)). It is shown
in [22, Lemma 2.1] that α(μ) = σ(μ) ∩ π(μ) and it is obvious that σ(μ) ∪ π(μ) ⊆ β(μ). The
complement of a μ-semiopen (resp. μ-preopen, μ-α-open, and μ-β-open) set is said to be μ-
semiclosed (resp. μ-preclosed, μ-α-closed, and μ-β-closed).

The intersection of all μ-semiclosed (resp. μ-preclosed, μ-α-closed, and μ-β-closed)
sets of X containing A is denoted by cσ(A). cπ(A), cα(A), and cβ(A) are defined similarly.
The union of all μ-β-open sets of X contained inA is denoted by iβ(A).

Now letK/= ∅ be an index set,Xk /= ∅ for k ∈ K, andX =
∏

k∈KXk the Cartesian product
of the sets Xk. We denote by pk the projection pk : X → Xk. Suppose that, for k ∈ K, uk is a
given GT on Xk. Let us consider all sets of the form

∏
k∈KXk, where Mk ∈ μk and, with the

exception of a finite number of indices k, Mk = Zk = Mμk . We denote by B the collection of
all these sets. Clearly ∅ ∈ B so that we can define a GT μ = μ(B) having B for base. We call μ
the product [23] of the GT’s μk and denote it by Pk∈Kμk.

Let us write i = iμ, c = cμ, ik = iμk , and ck = cμk . Consider in the following Ak ⊆ Xk,
A =

∏
k∈KAk, x ∈ ∏

k∈KXk, and xk = pk(x).

Proposition 2.1 (see [23]). One has cA =
∏

k∈KckAk.



International Journal of Mathematics and Mathematical Sciences 3

Proposition 2.2 (see [24]). Let A =
∏

k∈KAk ⊆ ∏
k∈KXk, and let K0 be a finite subset of K. If

Ak ∈ {Mk,Xk} for each k ∈ K −K0, then iA =
∏

k∈KikAk.

Proposition 2.3 (see [23]). The projection pk is (μ, μk)-open.

Proposition 2.4 (see [23]). If every μk is strong, then μ is strong and pk is (μ, μk)-continuous for
k ∈ K.

Throughout this paper, the spaces (X, μX) and (Y, μY ) (or simply X and Y ) always
mean generalized topological spaces. By a multifunction F : X → Y , we mean a point-to-
set correspondence from X into Y , and we always assume that F(x)/= ∅ for all x ∈ X. For a
multifunction F : X → Y , we will denote the upper and lower inverse of a set G of Y by
F+(G) and F−(G), respectively, that is F+(G) = {x ∈ X : F(x) ⊆ G} and F−(G) = {x ∈ X :
F(x) ∩G/= ∅}. In particular, F−(y) = {x ∈ X : y ∈ F(x)} for each point y ∈ Y . For each A ⊆ X,
F(A) = ∪x∈AF(x). Then, F is said to be a surjection if F(X) = Y , or equivalently, if for each
y ∈ Y there exists an x ∈ X such that y ∈ F(x).

3. Upper and Lower β(μX, μY )-Continuous Multifunctions

Definition 3.1. Let (X, μX) and (Y, μY ) be generalized topological spaces. A multifunction F :
X → Y is said to be

(1) upper β(μX, μY )-continuous at a point x ∈ X if, for each μY -open set V of Y containing
F(x), there exists U ∈ β(μX, x) such that F(U) ⊆ V ,

(2) lower β(μX, μY )-continuous at a point x ∈ X if, for each μY -open set V of Y such that
F(x) ∩ V /= ∅, there exists U ∈ β(μX, x) such that F(z) ∩ V /= ∅ for every z ∈ U,

(3) upper (resp. lower) β(μX, μY )-continuous if F has this property at each point of X.

Lemma 3.2. Let A be a subset of a generalized topological space (X, μX). Then,

(1) x ∈ cβX(A) if and only if A ∩U/= ∅ for each U ∈ β(μX, x),

(2) cβX(X −A) = X − iβX(A),

(3) A is μX-β-closed in X if and only if A = cβX(A),

(4) cβX(A) is μX-β-closed in X.

Theorem 3.3. For a multifunction F : X → Y , the following properties are equivalent:

(1) F is upper β(μX, μY )-continuous,

(2) F+(V ) = iβX(F
+(V )) for every μY -β-open set V of Y ,

(3) F−(M) = cβX(F
−(M)) for every μY -β-closed setM of Y ,

(4) cβX(F
−(A)) ⊆ F−(cβY (A)) for every subset A of Y ,

(5) F+(iβY (A)) ⊆ iβX(F
+(A)) for every subset A of Y .

Proof. (1) ⇒ (2) Let V be any μY -β-open set of Y and x ∈ F+(V ). Then F(x) ⊆ V . There
exists U ∈ β(μX) containing x such that F(U) ⊆ V . Thus x ∈ U ⊆ F+(V ). This implies that
x ∈ iβX(F

+(V )). This shows that F+(V ) ⊆ iβX(F
+(V )). We have iβX(F

+(V )) ⊆ F+(V ). Therefore,
F+(V ) = iβX(F

+(V )).
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(2) ⇒ (3) LetM be any μY -β-closed set of Y . Then, Y−M is μY -β-open set, andwe have
X − F−(M) = F+(Y −M) = iβX(F

+(Y −M)) = iβX(X − F−(M)) = X − cβX(F
−(M)). Therefore,

we obtain cβX(F
−(M)) = F−(M).

(3) ⇒ (4) Let A be any subset of Y . Since cβY (A) is μY -β-closed, we obtain F−(A) ⊆
F−(cβY (A)) = cβX(F

−(cβY (A))) and cβX(F
−(A)) ⊆ F−(cβY (A)).

(4) ⇒ (5) Let A be any subset of Y . We have X − iβX(F
+(A)) = cβX(X − F+(A)) =

cβX(F
−(Y − A)) ⊆ F−(cβY (Y − A)) = F−(Y − iβY (A)) = X − F+(iβY (A)). Therefore, we obtain

F+(iβY (A)) ⊆ iβX(F
+(A)).

(5) ⇒ (1) Let x ∈ X and V be any μY -β-open set of Y containing F(x). Then x ∈
F+(V ) = F+(iβY (V )) ⊆ iβX(F

+(V )). There exists a μX-β-open set U of X containing x such that
U ⊆ F+(V ); hence F(U) ⊆ V . This implies that F is upper β(μX, μY )-continuous.

Theorem 3.4. For a multifunction F : X → Y , the following properties are equivalent:

(1) F is lower β(μX, μY )-continuous,

(2) F−(V ) = iβX(F
−(V )) for every μY -β-open set V of Y ,

(3) F+(M) = cβX(F
+(M)) for every μY -β-closed setM of Y ,

(4) cβX(F
+(A)) ⊆ F+(cβY (A)) for every subset A of Y ,

(5) F(cβX(A)) ⊆ cβY (F(A)) for every subset A of X,

(6) F−(iβY (A)) ⊆ iβX(F
−(A)) for every subset A of Y .

Proof. We prove only the implications (4) ⇒ (5) and (5) ⇒ (6) with the proofs of the other
being similar to those of Theorem 3.3.

(4) ⇒ (5) Let A be any subset of X. By (4), we have cβX(A) ⊆ cβX(F
+(F(A))) ⊆

F+(cβY (F(A))) and F(cβX(A)) ⊆ cβY (F(A)).
(5) ⇒ (6) Let A be any subset of Y . By (5), we have F(cβX(F

+(Y −A))) ⊆ cβY (F(F
+(Y −

A))) ⊆ cβY (Y−A) = Y−iβY (A) and F(cβX(F
+(Y−A))) = F(cβX(X−F−(A))) = F(X−iβX(F−(A))).

This implies that F−(iβY (A)) ⊆ iβX(F
−(A)).

Definition 3.5. Ageneralized topological space (X, μX) is said to be μX-β-compact if every cover
of X by μX-β-open sets has a finite subcover.

A subset M of a generalized topological space (X, μX) is said to be μX-β-compact if
every cover ofM by μX-β-open sets has a finite subcover.

Theorem 3.6. Let (X, μX) be a generalized topological space and (Y, μY ) a quasitopological space. If
F : X → Y is upper β(μX, μY )-continuous multifunction such that F(x) is μY -β-compact for each
x ∈ X and M is a μX-β-compact set of X, then F(M) is μY -β-compact.

Proof. Let {Vγ : γ ∈ Γ} be any cover of F(M) by μY -β-open sets. For each x ∈ M, F(x) is
μY -β-compact and there exists a finite subset Γ(x) of Γ such that F(x) ⊆ ∪{Vγ : γ ∈ Γ(x)}.
Now, set V (x) = ∪{Vγ : γ ∈ Γ(x)}. Then we have F(x) ⊆ V (x) and V (x) is μY -β-open set of Y .
Since F is upper β(μX, μY )-continuous, there exists a μX-β-open set U(x) containing x such
that F(U(x)) ⊆ V (x). The family {U(x) : x ∈ M} is a cover of M by μX-β-open sets. Since
M is μX-β-compact, there exists a finite number of points, say, x1, x2, . . . , xn in M such that
M ⊆ ∪{U(xm) : xm ∈ M, 1 ≤ m ≤ n}. Therefore, we obtain F(M) ⊆ ∪{F(U(xm)) : xm ∈ M, 1 ≤
m ≤ n} ⊆ ∪{Vγ : γ ∈ γ(xm), xm ∈ M, 1 ≤ m ≤ n}. This shows that F(M) is μY -β-compact.
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Corollary 3.7. Let (X, μX) be a generalized topological space and (Y, μY ) a quasitopological space. If
F : X → Y is upper β(μX, μY )-continuous surjective multifunction such that F(x) is μY -β-compact
for each x ∈ X and (X, μX) is μX-β-compact, then (Y, μY ) is μY -β-compact.

Definition 3.8. A subset A of a generalized topological space (X, μX) is said to be μX-β-clopen
if A is μX-β-closed and μX-β-open.

Definition 3.9. A generalized topological space (X, μX) is said to be μX-β-connected if X can
not be written as the union of two nonempty disjoint μX-β-open sets.

Theorem 3.10. Let F : X → Y be upper β(μX, μY )-continuous surjective multifunction. If (X, μX)
is μX-β-connected and F(x) is μY -β-connected for each x ∈ X, then (Y, μY ) is μY -β-connected.

Proof. Suppose that (Y, μY ) is not μY -β-connected. There exist nonempty μY -β-open setsU and
V of Y such thatU∪V = Y andU∩V = ∅. Since F(x) is μY -connected for each x ∈ X, we have
either F(x) ⊆ U or F(x) ⊆ V . If x ∈ F+(U∪V ), then F(x) ⊆ U∩V and hence x ∈ F+(U)∪F+(V ).
Moreover, since F is surjective, there exist x and y in X such that F(x) ⊆ U and F(y) ⊆ V ;
hence x ∈ F+(U) and y ∈ F+(V ). Therefore, we obtain the following:

(1) F+(U) ∪ F+(V ) = F+(U ∪ V ) = X,

(2) F+(U) ∩ F+(V ) = F+(U ∩ V ) = ∅,

(3) F+(U)/= ∅ and F+(V )/= ∅.

By Theorem 3.3, F+(U) and F+(V ) are μX-β-open. Consequently, (X, μX) is not μX-β-
connected.

Theorem 3.11. Let F : X → Y be lower β(μX, μY )-continuous surjective multifunction. If (X, μX)
is μX-β-connected and F(x) is μY -β-connected for each x ∈ X, then (Y, μY ) is μY -β-connected.

Proof. The proof is similar to that of Theorem 3.10 and is thus omitted.

Let {Xα : α ∈ Φ} and {Yα : α ∈ Φ} be any two families of generalized topological spaces
with the same index set Φ. For each α ∈ Φ, let Fα : Xα → Yα be a multifunction. The product
space

∏{Xα : α ∈ Φ} is denoted by
∏

Xα and the product multifunction
∏

Fα :
∏

Xα → ∏
Yα,

defined by F(x) =
∏{Fα(xα) : α ∈ Φ} for each x = {xα} ∈ ∏

Xα, is simply denoted by
F :

∏
Xα → ∏

Yα.

Theorem 3.12. Let Fα : X → Yα be a multifunction for each α ∈ Φ and F : X → ∏
Yα a

multifunction defined by F(x) =
∏{Fα(x) : α ∈ Φ} for each x ∈ X. If F is upper β(μX, μ∏

Yα)-
continuous, then Fα is upper β(μX, μYα)-continuous for each α ∈ Φ.

Proof. Let x ∈ X and α ∈ Φ, and let Vα be any μYα-open set of Yα containing Fα(x).
Therefore, we obtain that p−1α (Vα) = Vα × ∏{Yγ : γ ∈ Φ and γ /=α} is a μ∏

Yα -open set of
∏

Yα containing F(x), where pα is the natural projection of
∏

Yα onto Yα. Since F is upper
β(μX, μ∏

Yα)-continuous, there exists U ∈ β(μX, x) such that F(U) ⊆ p−1α (Vα). Therefore, we
obtain Fα(U) ⊆ pα(F(U)) ⊆ pα(p−1α (Vα)) = Vα. This shows that Fα : X → Yα is upper
β(μX, μYα)-continuous for each α ∈ Φ.

Theorem 3.13. Let Fα : X → Yα be a multifunction for each α ∈ Φ and F : X → ∏
Yα a

multifunction defined by F(x) =
∏{Fα(x) : α ∈ Φ} for each x ∈ X. If F is upper β(μX, μ∏

Yα)-
continuous, then Fα is upper β(μX, μYα)-continuous for each α ∈ Φ.

Proof. The proof is similar to that of Theorem 3.12 and is thus omitted.
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4. Upper and Lower Almost β(μX, μY )-Continuous Multifunctions

Definition 4.1. Let (X, μX) and (Y, μY ) be generalized topological spaces. A multifunction F :
X → Y is said to be

(1) upper almost β(μX, μY )-continuous at a point x ∈ X if, for each μY -open set V of Y
containing F(x), there exists U ∈ β(μX, x) such that F(U) ⊆ iμY (cμY (V )),

(2) lower almost β(μX, μY )-continuous at a point x ∈ X if, for each μY -open set V of Y
such that F(x) ∩ V /= ∅, there exists U ∈ β(μX, x) such that F(z) ∩ iμY (cμY (V ))/= ∅ for
every z ∈ U,

(3) upper almost (resp. lower almost) β(μX, μY )-continuous if F has this property at each
point of X.

Remark 4.2. For amultifunction F : X → Y , the following implication holds: upper β(μX, μY )-
continuous ⇒ upper almost β(μX, μY )-continuous.

The following example shows that this implication is not reversible.

Example 4.3. Let X = {1, 2, 3, 4} and Y = {a, b, c, d}. Define a generalized topol-
ogy μX = {∅, {1}, {1, 2}, {2, 3}, {1, 2, 3}} on X and a generalized topology μY =
{∅, {a, c}, {b, c}, {a, b, c}, Y} on Y . Amultifunction F : (X, μX) → (Y, μY ) is defined as follows:
F(1) = {b}, F(2) = F(4) = {d}, and F(3) = {c}. Then F is upper almost β(μX, μY )-continuous
but it is not upper β(μX, μY )-continuous.

A subset Nx of a generalized topological space (X, μX) is said to be μX-neighbourhood
of a point x ∈ X if there exists a μX-openU such that x ∈ U ⊆ Nx.

Theorem 4.4. For a multifunction F : X → Y , the following properties are equivalent:

(1) F is upper almost β(μX, μY )-continuous at a point x ∈ X,

(2) x ∈ cμX(iμX(cμX(F
+(cσY (V ))))) for every μY -open set V of Y containing F(x),

(3) for each μX-open neighbourhoodU of x and each μY -open set V of Y containing F(x), there
exists a μX-open set G of X such that ∅/=G ⊆ U and G ⊆ F+(cσY (V )),

(4) for each μY -open set V of Y containing F(x), there exists U ∈ σ(μX, x) such that U ⊆
cμX(F

+(cσY (V ))).

Proof. (1) ⇒ (2) Let V be any μY -open set of Y such that F(x) ⊆ V . Then there exists U ∈
β(μX, x) such that F(U) ⊆ cσY (V ) = iμY (cμY (V )). Then U ⊆ F+(cσY (V )). Since U is μX-β-open,
we have x ∈ U ⊆ cμX(iμX(cμX(U))) ⊆ cμX(iμX(cμX(F

+(cσY (V ))))).
(2) ⇒ (3) Let V be any μY -open set of Y containing F(x) and U a μX-open set of X

containing x. Since x ∈ cμX(iμX(cμX(F
+(cσY (V ))))), we have U ∩ (iμX(cμX(F

+(cσY (V )))))/= ∅.
Put G = U ∩ (iμX(cμX(F

+(cσY (V ))))); then G is a nonempty μX-open set, G ⊆ U; and G ⊆
iμX(cμX(F

+(cσY (V )))) ⊆ cμX(F
+(cσY (V ))).

(3) ⇒ (4) Let V be any μY -open set of Y containing F(x). By μX(x), we denote the
family of all μX-open neighbourhoods of x. For each U ∈ μX(x), there exists a μX-open set
GU of X such that ∅/=GU ⊆ U and GU ⊆ cμX(F

+(cσY (V ))). Put W = ∪{GU : U ∈ μX(x)};
then W is a μX-open set of X, x ∈ cμX(W), and W ⊆ cμX(F

+(cσY (V ))). Moreover, if we put
U0 = W ∪ {x}, then we obtain U0 ∈ σ(μX, x) and U0 ⊆ cμX(F

+(cσY (V ))).
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(4) ⇒ (1) Let V be any μY -open set of Y containing F(x). There exists G ∈ σ(μX, x)
such that G ⊆ cμX(F

+(cσY (V ))). Therefore, we obtain x ∈ G ∩ F+(V ) ⊆ F+(cσY (V )) ∩
(cμX(iμX(G))) ⊆ F+(cσY (V )) ∩ (cμX(iμX(cμX(F

+(cσY (V )))))) = iβX(F
+(cσY (V ))).

Theorem 4.5. For a multifunction F : X → Y , the following properties are equivalent:

(1) F is lower almost β(μX, μY )-continuous at a point x of X,

(2) x ∈ cμX(iμX(cμX(F
−(cσY (V ))))) for every μY -open set V of Y such that F(x) ∩ V /= ∅,

(3) for any μX-open neighbourhood U of x and a μY -open set V of Y such that F(x) ∩ V /= ∅,
there exists a nonempty μX-open set G of X such that G ⊆ U and G ⊆ cμ(F−(cσY (V ))),

(4) for any μY -open set V of Y such that F(x) ∩ V /= ∅, there exists U ∈ σ(μX, x) such that
U ⊆ cμX(F

−(cσY (V ))).

Proof. The proof is similar to that of Theorem 4.4 and is thus omitted.

Theorem 4.6. For a multifunction F : X → Y , the following properties are equivalent:

(1) F is upper almost β(μX, μY )-continuous,

(2) for each x ∈ X and each μY -open set V of Y containing F(x), there exists U ∈ β(μX, x)
such that F(U) ⊆ cσY (V ),

(3) for each x ∈ X and each μYr-open set V of Y containing F(x), there exists U ∈ β(μX, x)
such that F(U) ⊆ V ,

(4) F+(V ) ∈ β(μX) for every μYr-open set V of Y ,

(5) F−(M) is μX-β-closed in X for every μYr-closed setM of Y ,

(6) F+(V ) ⊆ iβX(F
+(cσY (V ))) for every μY -open set V of Y ,

(7) cβX(F
−(iσY (M))) ⊆ F−(M) for every μY -closed setM of Y ,

(8) cβX(F
−(cμY (iμY (M)))) ⊆ F−(M) for every μY -closed setM of Y ,

(9) cβX(F
−(cμY (iμY (cμY (A))))) ⊆ F−(cμY (A)) for every subset A of Y ,

(10) iμX(cμX(iμX(F
−(cμY (iμY (M)))))) ⊆ F−(M) for every μY -closed setM of Y ,

(11) iμX(cμX(iμX(F
−(iσY (M))))) ⊆ F−(M) for every μY -closed setM of Y ,

(12) F+(V ) ⊆ cμX(iμX(cμX(F
+(cσY (V ))))) for every μY -open set V of Y .

Proof. (1) ⇒ (2) The proof follows immediately from Definition 4.1(1).
(2) ⇒ (3) This is obvious.
(3) ⇒ (4) Let V be any μYr-open set of Y and x ∈ F+(V ). Then F(x) ⊆ V and there

exists Ux ∈ β(μX, x) such that F(Ux) ⊆ V . Therefore, we have x ∈ Ux ⊆ F+(V ) and hence
F+(V ) ∈ β(μX).

(4) ⇒ (5) This follows from the fact that F+(Y −M) = X − F−(M) for every subset M
of Y .

(5) ⇒ (6) Let V be any μX-open set of Y and x ∈ F+(V ). Then we have F(x) ⊆ V ⊆
cσY (V ) and hence x ∈ F+(cσY (V )) = X − F−(Y − cσY (V )). Since Y − cσY (V ) is μYr-closed
set of Y , F−(Y − cσY (V )) is μX-β-closed in X. Therefore, F+(cσY (V )) ∈ β(μX, x) and hence
x ∈ iβX(F

+(cσY (V ))). Consequently, we obtain F+(V ) ⊆ iβX(F
+(cσY (V ))).

(6) ⇒ (7) Let M be any μY -closed set of Y . Then, since Y − M is μY -open, we obtain
X−F−(M) = F+(Y −M) ⊆ iβX(F

+(cσY (Y −M))) = iβX(F
+(Y − iσY (K))) = iβX(X−F−(iσY (M))) =

X − cβX(F
−(iσY (M))). Therefore, we obtain cβX(F

−(iσY (M))) ⊆ F−(M).
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(7) ⇒ (8) The proof is obvious since iσY (M) = cμY (iμY (M)) for every μY -closed set M.
(8) ⇒ (9) The proof is obvious.
(9) ⇒ (10) Since iμY (cμY (iμY (A))) ⊆ cβY (A) for every subset A, for every μY -

closed set M of Y , we have iμX(cμX(iμX(F
−(cμY (iμY (M)))))) ⊆ cβX(F

−(cμY (iμY (M)))) =
cβX(F

−(cμY (iμY (cμY (M))))) ⊆ F−(cμY (M)) = F−(M).
(10) ⇒ (11) The proof is obvious since iσY (M) = cμY (iμY (M)) for every μX-closed set

M.
(11) ⇒ (12) Let V be any μY -open set of Y . Then Y − V is μY -closed in Y and

we have iμX(cμX(iμX(F
−(iσY (Y − V ))))) ⊆ F−(Y − V ) = X − F+(V ). Moreover, we have

iμX(cμX(iμX(F
−(iσY (Y−V ))))) = iμX(cμX(iμX(F

−(Y−cσY (V ))))) = iμX(cμX(iμX(X−F+(cσY (V ))))) =
X − cμX(iμX(cμX(F

+(cσY (V ))))). Therefore, we obtain F+(V ) ⊆ cμX(iμX(cμX(F
+(cσY (V ))))).

(12) ⇒ (1) Let x be any point of X and V any μY -open set of Y containing F(x). Then
x ∈ F+(V ) ⊆ cμX(iμX(cμX(F

+(cσY (V ))))) and hence F is upper almost β(μX, μY )-continuous at
x by Theorem 4.4.

Theorem 4.7. The following are equivalent for a multifunction F : X → Y :

(1) F is lower almost β(μX, μY )-continuous,

(2) for each x ∈ X and each μY -open set V of Y such that F(x) ∩ V /= ∅, there exists U ∈
β(μX, x) such that U ⊆ F−(cσY (V )),

(3) for each x ∈ X and each μYr-open set V of Y such that F(x) ∩ V /= ∅, there exists U ∈
β(μX, x) such that U ⊆ F−(V ),

(4) F−(V ) ∈ β(μX) for every μYr-open set V of Y ,

(5) F+(M) is μX-β-closed in X for every μYr-closed setM of Y ,

(6) F−(V ) ⊆ iβX(F
−(cσY (V ))) for every μY -open set V of Y ,

(7) cβX(F
+(iσY (M))) ⊆ F+(M) for every μY -closed setM of Y ,

(8) cβX(F
+(cμY (iμY (M)))) ⊆ F+(M) for every μY -closed setM of Y ,

(9) cβX(F
+(cμY (iμY (cμY (A))))) ⊆ F+(cμY (A)) for every subset A of Y ,

(10) iμX(cμX(iμX(F
+(cμY (iμY (M)))))) ⊆ F+(M) for every μY -closed setM of Y ,

(11) iμX(cμX(iμX(F
+(iσY (M))))) ⊆ F+(M) for every μY -closed setM of Y ,

(12) F−(V ) ⊆ cμX(iμX(cμX(F
−(cσY (V ))))) for every μY -open set V of Y .

Proof. The proof is similar to that of Theorem 4.6 and is thus omitted.

Theorem 4.8. The following are equivalent for a multifunction F : X → Y :

(1) F is upper almost β(μX, μY )-continuous,

(2) cβX(F
−(V )) ⊆ F−(cμY (V )) for every V ∈ β(μY ),

(3) cβX(F
−(V )) ⊆ F−(cμY (V )) for every V ∈ σ(μY ),

(4) F+(V ) ⊆ iβX(F
+(iμY (cμY (V )))) for every V ∈ π(μY ).

Proof. (1) ⇒ (2) Let V be any μY -β-open set of Y . Since cμY (V ) is μYr-closed, by
Theorem 4.6 F−(cμY (V )) is μX-β-closed in X and F−(V ) ⊆ F−(cμY (V )). Therefore, we obtain
cβX(F

−(V )) ⊆ F−(cμY (V )).
(2) ⇒ (3) This is obvious since σ(μY ) ⊆ β(μY ).
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(3) ⇒ (4) Let V ∈ π(μY ). Then, we have V ⊆ iμY (cμY (V )) and Y − V ⊇ cμY (iμY (Y − V )).
Since cμY (iμY (Y − V )) ∈ σ(μY ), we have X − F+(V ) = F−(Y − V ) ⊇ F−(cμY (iμY (Y − V ))) ⊇
cβX(F

−(cμY (iμY (Y − V )))) = cβX(F
−(Y − iμY (cμY (V )))) = cβX(X − F+(iμY (cμY (V )))) = X −

iβX(F
+(iμY (cμY (V )))). Therefore, we obtain F+(V ) ⊆ iβX(F

+(iμY (cμY (V )))).
(4) ⇒ (1) Let V be any μYr-open set of Y . Since V ∈ π(μY ), we have F+(V ) ⊆

iβX(F
+(iμY (cμY (V )))) = iβX(F

+(V )) and hence F+(V ) ∈ β(μX). It follows from Theorem 4.6
that F is upper almost β(μX, μY )-continuous.

Theorem 4.9. The following are equivalent for a multifunction F : X → Y :

(1) F is lower almost β(μX, μY )-continuous,

(2) cβX(F
+(V )) ⊆ F+(cμY (V )) for every V ∈ β(μY ),

(3) cβX(F
+(V )) ⊆ F+(cμY (V )) for every V ∈ σ(μY ),

(4) F−(V ) ⊆ iβX(F
−(iμY (cμY (V )))) for every V ∈ π(μY ).

Proof. The proof is similar to that of Theorem 4.8 and is thus omitted.

For a multifunction X → Y , by cμF : X → Y we denote a multifunction defined
as follows: (cμF)(x) = cμY (F(x)) for each x ∈ X. Similarly, we can define cβF : X → Y ,
cσF : X → Y , cπF : X → Y , and cαF : X → Y .

Theorem 4.10. A multifunction F : X → Y is upper almost β(μX, μY )-continuous if and only if
cσF : X → Y is upper almost β(μX, μY )-continuous.

Proof. Suppose that F is upper almost β(μX, μY )-continuous. Let x ∈ X, and let V be any
μY -open set of Y such that (cσF)(x) ⊆ V . Then F(x) ⊆ V and by Theorem 4.6 there exists
U ∈ β(μX, x) such that F(U) ⊆ cβY (V ). For each u ∈ U, F(u) ⊆ cσY (V ) and hence cσY (F(U)) ⊆
cσY (V ). Therefore, we have (cσF)(U) ⊆ cσY (V ) and by Theorem 4.6 cσF is is upper almost
β(μX, μY )-continuous.

Conversely, suppose that cσF is upper almost β(μX, μY )-continuous. Let x ∈ X, and let
V be any μY -open set of Y containing F(x). Then F(x) ⊆ V and cσY (F(x)) ⊆ cσY (V ). Since
cσY (V ) = iμY (cμY (V )) is μY -open, there existsU ∈ β(μX, x) such that (cσF)(U) ⊆ cσY (cσY (V )) =
cσY (V ). Therefore, we have F(U) ⊆ cσY (V ) and hence F is upper almost β(μX, μY )-continuous.

Definition 4.11. A subset A of a generalized topological space (X, μX) is said to be μX-α-
paracompact if every cover ofA by μX-open sets of X is refined by a cover ofA that consists of
μX-open sets of X and is locally finite in X.

Definition 4.12. A subsetA of a generalized topological space (X, μX) is said to be μX-α-regular
if, for each point x ∈ A and each μX-open set U of X containing x, there exists a μX-open set
G of X such that x ∈ G ⊆ cμX(G) ⊆ U.

Lemma 4.13. If A is a μX-α-regular μX-α-paracompact subset of a quasitopological space (X, μX)
and U is a μX-open neighbourhood of A, then there exists a μX-open set G of X such that A ⊆ G ⊆
cμX(G) ⊆ U.

Lemma 4.14. Let (X, μX) be a generalized topological space and (Y, μY ) a quasitopological space. If
F : X → Y is a multifunction such that F(x) is μY -α-paracompact μY -α-regular for each x ∈ X,
then for each μY -open set V of Y G+(V ) = F+(V ), where G denotes cβF, cπF, cαF, or cμF.

Proof. Let V be any μY -open set of Y and x ∈ G+(V ). Thus G(x) ⊆ V and F(x) ⊆ G(x) ⊆ V .
We have x ∈ F+(V ) and henceG+(V ) ⊆ F+(V ). Let x ∈ F+(V ); then F(x) ⊆ V . By Lemma 4.13,
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there exists a μY -open set W of Y such that F(x) ⊆ W ⊆ cμY (W) ⊆ V ; hence G(x) ⊆ cμY (W) ⊆
V . Therefore, we have x ∈ G+(V ) and F+(V ) ⊆ G+(V ).

Theorem 4.15. Let (X, μX) be a generalized topological space and (Y, μY ) a quasitopological space.
Let F : X → Y be a multifunction such that F(x) is μY -α-paracompact and μY -α-regular for each
x ∈ X. Then the following are equivalent:

(1) F is upper almost β(μX, μY )-continuous,

(2) cβF is upper almost β(μX, μY )-continuous,

(3) cπF is upper almost β(μX, μY )-continuous,

(4) cαF is upper almost β(μX, μY )-continuous,

(5) cμF is upper almost β(μX, μY )-continuous.

Proof. Similarly to Lemma 4.14, we put G = cβF, cπF, cαF, or cμF. First, suppose that F is
upper almost β(μX, μY )-continuous. Let x ∈ X, and let V be any μY -open set of Y containing
G(x). By Lemma 4.14, x ∈ G+(V ) = F+(V ) and there exists U ∈ β(μX, x) such that F(U) ⊆
cσY (V ). Since F(u) is μY -α-paracompact and μY -α-regular for each u ∈ U, by Lemma 4.13 there
exists a μY -open setH such that F(u) ⊆ H ⊆ cμY (H) ⊂ cσY (V ); hence G(u) ⊆ cμY (H) ⊆ cσY (V )
for each u ∈ U. This shows that G is upper almost β(μX, μY )-continuous.

Conversely, suppose that G is upper almost β(μX, μY )-continuous. Let x ∈ X, and
let V be any μY -open set of Y containing F(x). By Lemma 4.14, x ∈ F+(V ) = G+(V ) and
hence G(x) ⊆ V . There exists U ∈ β(μX, x) such that G(U) ⊆ cσY (V ). Therefore, we obtain
F(U) ⊆ cσY (V ). This shows that F is upper almost β(μX, μY )-continuous.

Lemma 4.16. If F : X → Y is a multifunction, then for each μY -open set V of (Y, μY )G−(V ) =
F−(V ), where G denotes cβF, cπF, cαF, or cμF.

Lemma 4.17. cσX(V ) = iμX(cμX(V )) for every μX-preopen set V of a generalized topological space
(X, μX).

Theorem 4.18. Let (X, μX) be a generalized topological space and (Y, μY ) a quasitopological space.
For a multifunction F : X → Y , the following are equivalent:

(1) F is lower almost β(μX, μY )-continuous,

(2) cβF is lower almost β(μX, μY )-continuous,

(3) cσF is lower almost β(μX, μY )-continuous,

(4) cπF is lower almost β(μX, μY )-continuous,

(5) cαF is lower almost β(μX, μY )-continuous,

(6) cμF is lower almost β(μX, μY )-continuous.

Proof. Similarly to Lemma 4.14, we put G = cβF, cπF, cσF, cαF, or cμF. First, suppose that
F is lower almost β(μX, μY )-continuous. Let x ∈ X, and let V be any μY -open set of Y such
that G(x) ∩ V /= ∅. Since V is μY -open, F(x) ∩ V /= ∅ and there exists U ∈ β(μX, x) such that
F(u) ∩ cσY (V )/= ∅ for each u ∈ U. Therefore, we obtain G(u) ∩ cσY (V )/= ∅ for each u ∈ U. This
shows that G is lower almost β(μX, μY )-continuous.

Conversely, suppose that G is lower almost β(μX, μY )-continuous. Let x ∈ X, and let V
be any μY -open set of Y such that F(x)∩V /= ∅. Since F(x) ⊆ G(x),G(x)∩V /= ∅ and there exists
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U ∈ β(μX, x) such that G(u) ∩ cσY (V )/= ∅ for each u ∈ U. By Lemma 4.17 cσY (V ) = iμY (cμY (V ))
and F(u) ∩ cσY (V )/= ∅ for each u ∈ U. Therefore, by Theorem 4.7 F is lower almost β(μX, μY )-
continuous.

For a multifunction F : X → Y , the graph multifunction GF : X → X × Y is defined
as follows: GF(x) = {x} × F(x) for every x ∈ X.

Lemma 4.19 (see [25]). The following hold for a multifunction F : X → Y :

(a) G+
F(A × B) = A ∩ F+(B),

(b) G−
F(A × B) = A ∩ F−(B),

for any subsets A ⊆ X and B ⊆ Y .

Theorem 4.20. Let F : X → Y be a multifunction such that F(x) is μY -compact for each x ∈ X.
Then, F is upper almost β(μX, μY )-continuous if and only if GF : X → X × Y is upper almost
β(μX, μX×Y )-continuous.

Proof. Suppose that F : X → Y is upper almost β(μX, μY )-continuous. Let x ∈ X, and let W
be any μX×Y r-open set of X × Y containing GF(x). For each y ∈ F(x), there exist μXr-open
set U(y) ⊆ X and μYr-open set V (y) ⊆ Y such that (x, y) ∈ U(y) × V (y) ⊆ W . The family
{V (y) : y ∈ F(x)} is a μY -open cover of F(x) and F(x) is μY -compact. Therefore, there exist
a finite number of points, say, y1, y2,. . .,yn in F(x) such that F(x) ⊆ ∪{V (yi) : 1 ≤ i ≤ n}. Set
U = ∩{U(yi) : 1 ≤ i ≤ n} and V = ∪{V (yi) : 1 ≤ i ≤ n}. Then U is μX-open in X and V
is μY -open in Y and {x} × F(x) ⊆ U × V ⊆ U × cσY (V) ⊆ cσX×Y (W) = W . Since F is upper
almost β(μX, μY )-continuous, there exists U0 ∈ β(μX) containing x such that F(U0) ⊆ cσY (V).
By Lemma 4.19, we have U ∩ U0 ⊆ U ∩ F+(cσY (V)) = G+

F(U × cσY (V)) ⊆ G+
F(W). Therefore,

we obtain U ∩ U0 ∈ β(μX, x) and GF(U ∩ U0) ⊆ W . This shows that GF is upper almost
β(μX, μX×Y )-continuous.

Conversely, suppose that GF : X → X × Y is upper almost β(μX, μX×Y )-continuous.
Let x ∈ X, and let V be any μY -open set of Y containing F(x). Since X × V is μX×Y r-open in
X ×Y and GF(x) ⊆ X ×V , there existsU ∈ β(μX, x) such that GF(U) ⊆ X ×V . By Lemma 4.19,
we haveU ⊆ G+

F(X×V ) = F+(V ) and F(U) ⊆ V . This shows that F is upper almost β(μX, μY )-
continuous.

Theorem 4.21. A multifunction F : X → Y is lower almost β(μX, μY )-continuous if and only if
GF : X → X × Y is lower almost β(μX, μX×Y )-continuous.

Proof. Suppose that F is lower almost β(μX, μY )-continuous. Let x ∈ X, and let W be any
μX×Y r-open set ofX×Y such that x ∈ G−

F(W). SinceW ∩ ({x}×F(x))/= ∅, there exists y ∈ F(x)
such that (x, y) ∈ W and hence (x, y) ∈ U × V ⊆ W for some μXr-open set U ⊆ X and
μYr-open set V ⊆ Y . Since F(x) ∩ V /= ∅, there exists G ∈ β(μX, x) such that G ⊆ F−(V ).
By Lemma 4.19, we have U ∩ G ⊆ U ∩ F−(V ) = G−

F(U × V ) ⊆ G−
F(W). Moreover, we have

U ∩G ∈ β(μX, x) and hence GF is lower almost β(μX, μX×Y )-continuous.
Conversely, suppose that GF is lower almost β(μX, μY )-continuous. Let x ∈ X, and

let V be a μYr-open set of Y such that x ∈ F−(V ). Then X × V is μX×Y r-open in X × Y and
GF(x) ∩ (X × V ) = ({x} × F(x)) ∩ (X × V ) = {x} × (F(x) ∩ V )/= ∅. Since GF is lower almost
β(μX, μX×Y )-continuous, there exists U ∈ β(μX, x) such that U ⊆ G−

F(X × V ). By Lemma 4.19,
we obtain U ⊆ F−(V ). This shows that F is lower almost β(μX, μY )-continuous.

Lemma 4.22. Let f : X → Y be (μX, μY )-continuous and (μX, μY )-open. If A is μX-β-open in X,
then f(A) is μX-β-open in Y .
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Theorem 4.23. Let μXα and μYα be strong for each α ∈ Φ. If the product multifunction F :
∏

Xα →
∏

Yα is upper almost β(μ∏
Xα , μ

∏
Yα)-continuous, then Fα : Xα → Yα is upper almost β(μXα, μYα)-

continuous for each α ∈ Φ.

Proof. Let γ be an arbitrary fixed index and Vγ any μYγ r-open set of Yγ . Then V =
∏

Yα ×
Vγ is μ∏

Yαr-open in
∏

Yα, where γ ∈ Φ and α/= γ . Since F is upper almost β(μ∏
Xα , μ

∏
Yα)-

continuous, by Theorem 4.6 F+(V) =
∏

Xα × F+
γ (Vγ) is μ∏

Xα -β-open in
∏

Xα. By Lemma 4.22,
F+
γ (Vγ) is μXγ -β-open in Xγ and hence Fγ is upper almost β(μXγ , μYγ )-continuous for each γ ∈

Φ.

Theorem 4.24. Let μXα and μYα be strong for each α ∈ Φ. If the product multifunction F :
∏

Xα →
∏

Yα is lower almost β(μ∏
Xα , μ

∏
Yα)-continuous, then Fα : Xα → Yα is lower almost β(μXα, μYα)-

continuous for each α ∈ Φ.

Proof. The proof is similar to that of Theorem 4.23 and is thus omitted.

Definition 4.25. The μX-β-frontier of a subset A of a generalized topological space (X, μX),
denoted by frβX , is defined by frβX (A) = cβX(A) ∩ cβX(X −A) = cβX(A) − iβX(A).

Theorem 4.26. A multifunction F : X → Y is not upper almost β(μX, μY )-continuous (lower
almost β(μX, μY )-continuous) at x ∈ X if and only if x is in the union of the μX-β-frontier of the
upper (lower) inverse images of μXr-open sets containing (meeting) F(x).

Proof. Let x be a point of X at which F is not upper almost β(μX, μY )-continuous. Then,
there exists a μYr-open set V of Y containing F(x) such that U ∩ (X − F+(V ))/= ∅ for every
U ∈ β(μX, x). By Lemma 3.2, we have x ∈ cβX(X − F+(V )). Since x ∈ F+(V ), we obtain
x ∈ cβX(F

+(V )) and hence x ∈ frβX(F
+(V )).

Conversely, suppose that V is a μYr-open set containing F(x) such that x ∈
frβX(F

+(V )). If F is upper almost β(μX, μY )-continuous at x, then there exists U ∈ β(μX, x)
such that F(U) ⊆ V . Therefore, we obtain x ∈ U ⊆ iβX(F

+(V )). This is a contradiction to
x ∈ frβX (F

+(V )). Thus F is not upper almost β(μX, μY )-continuous at x. The case of lower
almost β(μX, μY )-continuous is similarly shown.

Definition 4.27. A subset A of a generalized topological space (X, μ) is said to be μX-α-nearly
paracompact if every cover ofA by μX-regular open sets of X is refined by a cover ofAwhich
consists of μX-open sets of X and is locally finite in X.

Definition 4.28 (see [26]). A space (X, μX) is said to be μX-Hausdorff if, for any pair of distinct
points x and y of X, there exist disjoint μX-open sets U and V of X containing x and y,
respectively.

Theorem 4.29. Let (X, μX) be a generalized topological space and (Y, μY ) a quasitopological space.
If F : X → Y is upper almost β(μX, μY )-continuous multifunction such that F(x) is μY -α-nearly
paracompact for each x ∈ X and (Y, μY ) is μY -Hausdorff, then, for each (x, y) ∈ X × Y −G(F), there
existU ∈ β(μX, x) and a μY -open set V containing y such that [U × cμY (V )] ∩G(F) = ∅.

Proof. Let (x, y) ∈ X × Y − G(F); then y ∈ Y − F(x). Since (Y, μY ) is μY -Hausdorff, for each
z ∈ F(x) there exist μY -open sets V (z) and W(y) containing z and y, respectively, such that
V (z)∩W(y) = ∅; hence iμ(cμ(V (z)))∩W(y) = ∅. The family V = {iμ(cμ(V (z))) : z ∈ F(x)} is a
cover of F(x) by μY -regular open sets of Y and F(x) is μY -α-nearly paracompact. There exists
a locally finite μY -open refinement H = {Hγ : γ ∈ Γ} of V such that F(x) ⊆ ∪{Hγ : γ ∈ Γ}.
Since H is locally finite, there exists a μY -open neighbourhood W0 of Y and a finite subset Γ0
of Γ such that W0 ∩Hγ = ∅ for every γ ∈ Γ − Γ0. For each γ ∈ Γ0, there exists z(γ) ∈ F(x) such
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that Hγ ⊆ V (z(γ)). Now, put M = W0 ∩ [∩{W(z(γ)) : γ ∈ Γ0}] and N = ∪{Hγ : γ ∈ Γ}. Then
M is a μY -open neighbourhood of y,N is μY -open in Y , andM∩N = ∅. Therefore, we obtain
F(x) ⊆ N and cμY (M)∩N = ∅ and hence F(x) ⊆ Y − cμY (M). SinceM is μY -open, Y − cμY (M)
is μY -regular open in Y . Since F is upper almost β(μX, μY )-continuous, by Theorem 4.6, there
exists U ∈ β(μ, x) such that F(U) ⊆ Y − cμY (M), hence F(U) ∩ cμY (M) = ∅. Therefore, we
obtain [U × cμY (V )] ∩G(F) = ∅.

Corollary 4.30. Let (X, μX) be a generalized topological space and (Y, μY ) a quasitopological space.
If F : X → Y is upper almost β(μX, μY )-continuous multifunction such that F(x) is μ-compact for
each x ∈ X and (Y, μY ) is μY -Hausdorff, then for each (x, y) ∈ X ×Y −G(F), there existU ∈ β(μ, x)
and a μ-open set V containing y such that [U × cμ(V )] ∩G(F) = ∅.

Corollary 4.31. Let (X, μX) be a generalized topological space and (Y, μY ) a quasitopological space.
If F : X → Y is upper almost β(μX, μY )-continuous such that F(x) is μX-α-nearly paracompact for
each x ∈ X and (Y, μY ) is μY -Hausdorff, then G(F) is μX×Y -β-closed in X × Y .

Proof. By Theorem 4.29, for each (x, y) ∈ X×Y −G(F), there existU ∈ β(μX, x) and a μY -open
set V containing y such that [U × cμY (V )] ∩G(F) = ∅. Since cμY (V ) is μY -semiopen, it is μY -β-
open and henceU × cμY (V ) is a μX×Y -β-open set of X ×Y containing (x, y). Therefore, G(F) is
μX×Y -β-closed in X × Y .

5. Upper and Lower Weakly β(μX, μY )-Continuous Multifunctions

Definition 5.1. Let (X, μX) and (X, μY ) be generalized topological spaces. A multifunction F :
X → Y is said to be

(1) upper weakly β(μX, μY )-continuous at a point x ∈ X if, for each μY -open set V of
containing F(x), there exists U ∈ β(μX, x) such that F(U) ⊆ cμY (V ),

(2) lower weakly β(μX, μY )-continuous at a point x ∈ X if, for each μY -open set V of Y
such that F(x)∩V /= ∅, there existsU ∈ β(μX, x) such that F(z)∩cμY (V )/= ∅ for every
z ∈ U,

(3) upper weakly (resp. lower weakly) β(μX, μY )-continuous if F has this property at each
point of X.

Remark 5.2. For a multifunction F : X → Y , the following implication holds: upper almost
β(μX, μY )-continuous ⇒ upper weakly β(μX, μY )-continuous.

The following example shows that this implication is not reversible.

Example 5.3. Let X = {1, 2, 3, 4} and Y = {a, b, c, d}. Define a generalized topology μX =
{∅, {4}, {1, 2, 3}, X} on X and a generalized topology μY = {∅, {d}{a, c}, {a, c, d}, {b, c, d}, Y}
on Y . Define F : (X, μX) → (Y, μY ) as follows: F(1) = {a}, F(2) = {b}, F(3) = {c}, and
F(4) = {d}. Then F is upper weakly β(μX, μY )-continuous but it is not upper almost β(μX, μY )-
continuous.

Theorem 5.4. Let F : X → Y be a multifunction. Then F is upper weakly β(μX, μY )-continuous at
a point x ∈ X if and only if x ∈ iβX(F

+(cμY (V ))) for every μY -open set V of Y containing F(x).

Proof. Suppose that F is upper weakly β(μX, μY )-continuous at a point x ∈ X. Let V be any μY -
open set of Y containing F(x). There exists U ∈ β(μX) containing x such that F(U) ⊆ cμY (V ).
Thus x ∈ U ⊆ F+(cμY (V )). This implies that x ∈ iβX(F

+(cμY (V ))).
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Conversely, suppose that x ∈ iβX(F
+(cμY (V ))) for every μY -open set V of Y containing

F(x). Let x ∈ X, and let V be any μY -open set of Y containing F(x). Then x ∈ iβX(F
+(cμY (V ))).

There exists U ∈ β(μX) containing x such that U ⊆ F+(cμY (V )); hence F(U) ⊆ cμY (V ). This
implies that F is upper weakly β(μX, μY )-continuous at a point x.

Theorem 5.5. Let F : X → Y be a multifunction. Then F is upper weakly α(μX, μY )-continuous at
a point x ∈ X if and only if x ∈ iβX(F

−(cμY (V ))) for every μY -open set V of Y such that F(x)∩V /= ∅.

Proof. The proof is similar to that of Theorem 5.4.

Theorem 5.6. The following are equivalent for a multifunction F : X → Y :

(1) F is upper weakly β(μX, μY )-continuous,

(2) F+(V ) ⊆ cμX(iμX(cμX(F
+(cμY (V ))))) for every μY -open set V of Y ,

(3) iμX(cμX(iμX(F
−(iμY (M))))) ⊆ F−(M) for every μY -closed setM of Y ,

(4) cβX(F
−(iμY (M))) ⊆ F−(M) for every μY -closed setM of Y ,

(5) cβX(F
−(iμY (cμY (A)))) ⊆ F−(cμY (A)) for every subset A of Y ,

(6) F+(iμY (A)) ⊆ iβX(F
+(cμY (iμY (A)))) for every subset A of Y ,

(7) F+(V ) ⊆ iβX(F
+(cμY (V ))) for every μY -open set V of Y ,

(8) cβX(F
−(iμY (M))) ⊆ F−(M) for every μYr-closed setM of Y ,

(9) cβX(F
−(V )) ⊆ F−(cμY (V )) for every μY -open set V of Y .

Proof. (1) ⇒ (2) Let V be any μY -open set of Y and x ∈ F+(V ). Then F(x) ⊆ V and there
exists U ∈ β(μX, x) such that F(U) ⊆ cμY (V ). Therefore, we have x ∈ U ⊆ F+(cμY (V )). Since
U ∈ β(μX, x), we have x ∈ U ⊆ cμX(iμX(cμX(F

+(cμY (V ))))).
(2) ⇒ (3) Let M be any μY -closed set of Y . Then Y −M is a μY -open set in Y . By (3),

we have F+(Y −M) ⊆ cμX(iμX(cμX(F
+(cμY (Y −M))))). By the straightforward calculations, we

obtain iμX(cμX(iμX(F
−(iμY (M))))) ⊆ F−(M).

(3) ⇒ (4) LetM be any μY -closed set of Y . Then, we have iμX(cμX(iμX(F
−(iμY (M))))) ⊆

F−(M) and hence cβX(F
−(iμY (M))) ⊆ F−(M).

(4) ⇒ (5) Let A be any subset of Y . Then, cμY (A) is μY -closed in Y . Therefore, by (5)
we have cβX(F

−(iμY (cμY (A)))) ⊆ F−(cμY (A)).
(5) ⇒ (6) Let A be any subset of Y . Then, we obtain X − F+(iμY (A)) = F−(cμY (Y −

A)) ⊇ cβX(F
−(iμY (cμY (Y − A)))) = cβX(F

−(Y − cμY (iμY (A)))) = cβX(X − F+(cμY (iμY (A)))) =
X − iβX(F

+(cμY (iμY (A)))). Therefore, we obtain F+(iμY (A)) ⊆ iβX(F
+(cμY (iμY (B)))).

(6) ⇒ (7) The proof is obvious.
(7) ⇒ (1) Let x ∈ X, and let V be any μY -open set of Y containing F(x). Then, we obtain

x ∈ iβX(F
+(cμY (V ))) and hence F is upper weakly β(μX, μY )-continuous at x by Theorem 5.4.

(4) ⇒ (8) The proof is obvious.
(8) ⇒ (9) Let V be any μY -open set of Y . Then cμY (V ) is μY -regular closed in Y and

hence we have cβX(F
−(V )) ⊆ cβX(F

−(iμY (cμY (V )))) ⊆ F−(cμY (V )).
(9) ⇒ (7) Let V be any μY -open set of Y . Then we have X − iβX(F

+(cμY (V )))= cμX(X −
F+(cμY (V )))= cμX(F

−(Y −cμY (V ))) ⊆ F−(cμY (Y −cμY (V )))=X − F+(iμY (cμY (V ))). Therefore, we
obtain F+(V ) ⊆ F+(iμY (cμY (V ))) ⊆ iβX(F

+(cμY (V ))).

Theorem 5.7. The following are equivalent for a multifunction F : X → Y :

(1) F is lower weakly β(μX, μY )-continuous,
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(2) F−(V ) ⊆ cμX(iμX(cμX(F
−(cμY (V ))))) for every μY -open set V of Y ,

(3) iμX(cμX(iμX(F
+(iμY (M))))) ⊆ F+(M) for every μY -closed setM of Y ,

(4) cβX(F
+(iμY (M))) ⊆ F+(M) for every μY -closed setM of Y ,

(5) cβX(F
+(iμY (cμY (A)))) ⊆ F+(cμY (A)) for every subset A of Y ,

(6) F−(iμY (A)) ⊆ iβX(F
−(cμY (iμY (A)))) for every subset A of Y ,

(7) F−(V ) ⊆ iβX(F
−(cμY (V ))) for every μY -open set V of Y ,

(8) cβX(F
+(iμY (M))) ⊆ F+(M) for every μYr-closed setM of Y ,

(9) cβX(F
+(V )) ⊆ F+(cμY (V )) for every μY -open set V of Y .

Proof. The proof is similar to that of Theorem 5.6.

Theorem 5.8. Let (X, μX) be a generalized topological space and (Y, μY ) a quasitopological space. For
a multifunction F : X → Y such that F(x) is a μY -α-regular μY -α-paracompact set for each x ∈ X,
the following are equivalent:

(1) F is upper weakly β(μX, μY )-continuous,

(2) F is upper almost β(μX, μY )-continuous,

(3) F is upper β(μX, μY )-continuous.

Proof. (1) ⇒ (3) Suppose that F is upper weakly β(μX, μY )-continuous. Let x ∈ X, and let G
be a μY -open set of Y such that F(x) ⊆ G. Since F(x) is μY -α-regular μY -α-paracompact, by
Lemma 4.13 there exists a μY -open set V such that F(x) ⊆ V ⊆ cμY (V ) ⊆ G. Since F is upper
weakly β(μX, μY )-continuous at x and F(x) ⊆ V , there exists U ∈ β(μX, x) such that F(U) ⊆
cμY (V ) and hence F(U) ⊆ cμY (V ) ⊆ G. Therefore, F is upper β(μX, μY )-continuous.

Definition 5.9. A generalized topological space (X, μX) is said to be μX-compact if every cover
of X by μX-open sets has a finite subcover.

A subsetM of a generalized topological space (X, μX) is said to be μX-compact if every
cover of M by μX-open sets has a finite subcover.

Definition 5.10. A space (X, μX) is said to be μX-regular if for each μX-closed set F and each
point x /∈ F, there exist disjoint μX-open sets U and V such that x ∈ U and F ⊆ V .

Corollary 5.11. Let F : X → Y be a multifunction such that F(x) is μX-compact for each x ∈ X
and (Y, μY ) is μY -regular. Then, the following are equivalent:

(1) F is upper weakly β(μX, μY )-continuous,

(2) F is upper almost β(μX, μY )-continuous,

(3) F is upper β(μX, μY )-continuous.

Lemma 5.12. IfA is a μX-α-regular set of X, then, for every μX-open setU which intersectsA, there
exists a μX-open set V such that A ∩ V /= ∅ and cμX(V ) ⊆ U.

Theorem 5.13. For a multifunction F : X → Y such that F(x) is a μY -α-regular set of Y for each
x ∈ X, the following are equivalent:

(1) F is lower weakly β(μX, μY )-continuous,



16 International Journal of Mathematics and Mathematical Sciences

(2) F is lower almost β(μX, μY )-continuous,

(3) F is lower β(μX, μY )-continuous.

Proof. (1) ⇒ (3) Suppose that F is lower weakly β(μX, μY )-continuous. Let x ∈ X, and let
G be a μY -open set of Y such that F(x) ∩ G/= ∅. Since F(x) is μX-α-regular, by Lemma 5.12
there exists a μY -open set V of Y such that F(x) ∩ V /= ∅ and cμY (V ) ⊆ G. Since F is lower
weakly β(μX, μY )-continuous at x, there exists U ∈ β(μX, x) such that F(u) ∩ cμY (V )/= ∅ for
each u ∈ U. Since cμY (V ) ⊆ G, we have F(u) ∩ G/= ∅ for each u ∈ U. Therefore, F is lower
β(μX, μY )-continuous.

Definition 5.14. A space (X, μX) is said to be μX-normal if for every pair of disjoint μX-closed
sets F and F ′, there exist disjoint μX-open sets U and V such that F ⊆ U and F ′ ⊆ V .

Theorem 5.15. Let F : X → Y be a multifunction such that F(x) is μY -closed in Y for each x ∈ X
and (Y, μY ) is μY -normal. Then, the following are equivalent:

(1) F is upper weakly β(μX, μY )-continuous,

(2) F is upper almost β(μX, μY )-continuous,

(3) F is upper β(μX, μY )-continuous.

Proof. (1) ⇒ (3): Suppose that F is lower weakly β(μX, μY )-continuous. Let x ∈ X, and let G
be a μY -open set of Y containing F(x). Since F(x) is μY -closed in Y , by the μY -normality of Y
there exists a μY -open set V of Y such that F(x) ⊆ V ⊆ cμY (V ) ⊆ G. Since F is upper weakly
β(μX, μY )-continuous, there existsU ∈ β(μX, x) such that F(U) ⊆ cμY (V ) ⊆ G. This shows that
F is upper β(μX, μY )-continuous.

Theorem 5.16. If F : X → Y is lower almost β(μX, μY )-continuous multifunction such that F(x)
is μY -semiopen in Y for each x ∈ X, then F is lower β(μX, μY )-continuous.

Proof. Let x ∈ X, and let V be a μY -open set of Y such that F(x) ∩ V /= ∅. By Theorem 4.7 there
exists U ∈ β(μX, x) such that F(u) ∩ cσY (V )/= ∅ for each u ∈ U. Since F(u) is μY -semiopen in
Y , F(u) ∩ V /= ∅ for each u ∈ U and hence F is lower β(μX, μY )-continuous.
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[1] O. Njȧstad, “On some classes of nearly open sets,” Pacific Journal of Mathematics, vol. 15, pp. 961–970,
1965.

[2] N. Levine, “Semi-open sets and semi-continuity in topological spaces,” The American Mathematical
Monthly, vol. 70, pp. 36–41, 1963.

[3] A. S. Mashhour, M. E. Abd El-Monsef, and S. N. El-Deeb, “On precontinuous and weakprecontinuous
functions,” Proceedings of the Mathematical and Physical Society of Egypt, vol. 53, pp. 47–53, 1982.

[4] M. E. Abd El-Monsef, S. N. El-Deeb, and R. A. Mahmoud, “β-open sets and β-continuous mapping,”
Bulletin of the Faculty of Science. Assiut University, vol. 12, no. 1, pp. 77–90, 1983.
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